均匀无耗传输线的工作状态

合集下载

电磁场课件--第二章无耗均匀传输线的工作状态

电磁场课件--第二章无耗均匀传输线的工作状态

Z
2 0
X
2 L
e
j
x
e j 2x
Z
2 0
X
2 L
e
j x
U d j
Z
2 0
X
2 L
IL
sind
x
Id
1 Z0
Z
2 0
X
2 L
IL
cosd
x
Zin d jZ0 tgd x
传输线终端接纯电抗负载时,沿线电压、 电流幅值分布与终端开路或短路时不同之 处,只是线终端处不是电压、电流的波腹 或波节。这一点其实可以这样来理解:终 端开路或短路的传输线,其输入阻抗均为 纯电抗,那么现在传输线接纯电抗负载, 就相当于在线终端处接入一段终端开路或 短路的传输线。也就是说以纯电抗为负载 的传输线,就相当于负载端延长一段长度 的开路或短路线。
• 在实测时把这种专用的测量线替代一段实际系统 的传输线接入,可在系统输入端接入信号源作模 拟测试,必要时也可以进行在线测试。对于不同 型号的同轴线或金属波导,必须配用相符合的测 量线。
测量原理和步骤
• 测电压驻波比 测量电压波腹电压和波节电压,为使测试
结果准确可靠,波腹值和波节值尽可能由 多个波腹、波节值取平均而定。 • 测电压反射系数
m in
行波
d 0
S 1
驻波
d ej S
行驻波
0 d 1 1 S
纯阻负载驻波比的计算
d RL Z0
RL Z0
d Z0 RL
Z0 RL
S
1 1
d d
RL Z0
S
1 1
d d
Z0 RL
驻波比与反射系数
• 电压驻波比与电压反射系数都是表征传输 线工作状态的参量,驻波比与反射系数模 值之间存在一一对应的关系。

传输线基本理论2_工作状态

传输线基本理论2_工作状态

的终端短路同轴线, 例:填充空气、Zc = 50 、长度为 0.1m 的终端短路同轴线, 填充空气、 求其输入阻抗。 当频率分别为 0.75GHz 、1.5GHz 、4GHz 时,求其输入阻抗。
传输线的绝对长度 l = 传输线的电长度 le= 工作频率对应的波导波长 λ g 2π l e λ g = 2π l e βl= l = leλg λg 解: le Z in = jZ c tan(β l ) = jZ c tan(2π l e ) f (GHz) λg (m)
三、输入阻抗: 输入阻抗
Γ (z ) = 0 ,
1 + Γ (z ) Z in (z ) = Z c ⋅ = Zc 1 − Γ (z )
传输线上,任意点的输入阻抗均等于特性阻抗。 传输线上,任意点的输入阻抗均等于特性阻抗。
四、优点
行波状态是理想的工作状态,能量被负载完全 行波状态是理想的工作状态, 接收。但实际工作中, 接收。但实际工作中,不可能达到理想的行波状 总是或多或少存在反射。 态,总是或多或少存在反射。 在天线、微波器件、微波电路的设计中, 在天线、微波器件、微波电路的设计中,如何 采取各种措施,使负载尽量匹配、尽量减少反射, 采取各种措施,使负载尽量匹配、尽量减少反射, 是很重要的一项工作内容。 是很重要的一项工作内容。
λg
6 2π λ g − j2 λg 6 2π 3
= -e Γ 6
λg
− j2β
= -e
= -e
−j
例: 欲用特性阻抗为 欲用特性阻抗为50 、终端短路的传输线来得到
值为 j25 的电抗,则该段传输线最短应为多长。 的电抗,则该段传输线最短应为多长。
Z c = 50 Ω
0.75 1.5 4

第1.3节 无耗传输线的状态分析

第1.3节 无耗传输线的状态分析

传输线上反射波的大小,可用反射系数的模、 传输线上反射波的大小,可用反射系数的模、驻波比 和行波系数三个参量来描述。 和行波系数三个参量来描述。 反射系数模的变化范围为 驻波比的变化范围为 行波系数的变化范围为
,,
0≤ Γ ≤1
1≤ ρ ≤ ∞
0≤ K ≤1
传输线工作参数 反射系数
Γ(z' )
输入阻抗 Zin (z)
ρ
1+ | Γl | ρ= 1− | Γl |
ρ=
(R1 + Z0 )2 + xl2 + (R1 − Z0 )2 + xl2 (R1 + Z0 )2 + xl2 − (R1 − Z0 )2 + xl2
| U(z) |max ρ= | U(z) |min
例题: 例题: 在一均匀无耗传输线上传输频率为3GHz的信号,已知其 特性阻抗 Z 0 = 100Ω ,终端接 Z l = 75 + j100Ω 的负载, 试求: 1)传输线上的驻波系数; 1) 2)离开终端10cm处的反射系数; 3)离开终端2.5cm处的输入阻抗;
解: 1)终端反射系数: 终端反射系数:
Z l − Z 0 75 + j100 − 100 − 1 + j 4 9 + j 32 Γl = = = = = 0.51e j74.3 Z l + Z 0 75 + j100 + 100 7 + j 4 65
故,传输线上的驻波系数: 传输线上的驻波系数:
纯驻波状态下传输线上的电压和电流: 纯驻波状态下传输线上的电压和电流:
U ( z ) = U + + U − = j2 A1 sin βz 2A I ( z ) = I + + I − = 1 cos βz Z0 传输线上任意一点z处的输入阻抗为 处的输入阻抗为: 传输线上任意一点 处的输入阻抗为:

第四节均匀无耗传输线的工作状态

第四节均匀无耗传输线的工作状态

Ui (z) A1
UiL Ui
Ii (z)
U iL Z0
Ui Z0
二、驻波状态(全反射情况)
当终端短路(ZL=0)、开路(ZL=∞)或接纯电抗负载 (ZL=±jXL)时,︱(z)︱=︱L︱=1,终端全反射,沿 线入、反射波叠加形成驻波分布。负载与传输线完全
失配。驻波状态下,︱︱=1,r=∞,K=0。
z
Xin(z)
z长度短路线 的等效电路
0 =0(短路) 串联谐振
0~l/4 >0(感性) 电 感
l/4 =±∞(开路) 并联谐振
l/4 ~ <0(容性) 电 容
l/2
l/2 =0 (短路) 串联谐振
沿线每经过l/4,阻抗性质变化一次;每经过
l/2,阻抗重复原有值。
2. 终端开路(ZL=∞)
L 1 e j0 IL 0 ,U L UiL (1 L ) 2UiL ,
1)沿线电压、电流分布
以上关系代入式(2-4e)得
UI((zz))UjUZ2
cos z
2 sin
0
2Ui2 cos
z j2Ii2 sin
z
z
UiL IiLZ0
电压、电流瞬时表达式为:
u( z, t )
2 U i 2
cos
z
cos(
t
2)
i( z, t )
2
Ii 2
sin
z cos(
z

(2 4e)
U (z) j2UiLsin z I(z) 2IiL cos z
设UiL Ui e j 2, 则电压、电流瞬时表达式为:
u( z, t )
2 U i
sin

lec04 传输线工作状态分析

lec04 传输线工作状态分析

三 均匀无耗传输线工作状态 2)终端负载开路 终端负载开路 负载阻抗Zl=∞ ;终端电流:Il=0 此时,线上任意位置的电压和电流复振幅表示式为: U(z)=Ulcosβz U I(z)= j l sinβz Zc 输入阻抗为: Z in ( z ) = − jZ c ctgβ z 反射系数为: Γ(z)=e -j2βz 驻波系数为:s→∞
三 均匀无耗传输线工作状态
2. 纯驻波状态 纯驻波状态
纯驻波状态就是全反射状态, 也即终端反射系数|Γl|=1。 在此状态下, 由式(1.3-23),负载阻抗必须满足
Zl − Zc = Γl = 1 Zl + Zc
由于无耗传输线的特性阻抗Zc为实数, 因此要满足上式 负载阻 要满足上式, 要满足上式 抗必须为短路( 抗必须为短路(Zl=0)、开路(Zl→∞)或纯电抗(Zl=±jXl) ) 开路( )或纯电抗( 三种情况之一。在上述三种情况下, 传输线上入射波在终端将 三种情况之一 全部被反射, 沿线入射波和反射波叠加都形成纯驻波分布, 唯一 的差异在于驻波的分布位置不同。
λ X ( 1) lsl= arctan Zc 2π
三 均匀无耗传输线工作状态
同理可得, 当终端负载为Zl=-jX1的纯电容时, 可用长度小于 λ/4的开路线loc来代替(或用长度为大于λ/4小于λ/2的短路线来 代替),由式Zin(z)=-jZcctgβz有:
λ X1 loc = arcctg ( ) 2π Zc
(
2
)
根据上述分析结果,开路线电压、电流复振幅、输入 阻抗分布图如下:
三 均匀无耗传输线工作状态
无耗终端开路线的驻波特性
三 均匀无耗传输线工作状态
分析: 分析 : 终端开路时传输线上的电压和电流也呈 纯驻波分布, 因此也只能存储能量而不能传输能量。 在 z=nλ/2 (n=0,1,2, …) 处 为 电 压 波 腹 点 , 而 在 z=(2n+1)λ/4(n=0, 1, 2, …)处为电压波节点。 实际上终 端开口的传输线并不是开路传输线, 因为在开口处会 , 有辐射, 所以理想的终端开路线是在终端开口处接上 λ/4短路线来实现的。前页的图给出了终端开路时的 驻波分布特性。O′位置为终端开路处, OO′为λ/4短路 线。

无耗传输线的状态分析

无耗传输线的状态分析

第一章 均匀传输线理论之•状态分析
(3) 终端接纯电抗 in= ±jX 终端接纯电抗 电抗Z
当均匀无耗传输线端接纯电抗 负载时,可以将纯电抗 纯电抗Z 当均匀无耗传输线端接纯电抗Zin= ±jX 负载时,可以将纯电抗 in= ±jX 纯电抗 负载用一段短路线或开路线来等效,因而对这种情况的分析与( )( )(2) 负载用一段短路线或开路线来等效,因而对这种情况的分析与(1)( ) 的情况类似。 的情况类似。
Z L + jZ 0tg (β z ) Z in ( z ) = Z 0 = jZ 0 tan β z Z 0 + jZ L tg (β z )
U ( z ) = U i + U r = A1e jβz - A1e -jβz = j2 A1 sin βz 纯驻波状态下传输 线上的电压和电流: 线上的电压和电流: 2A I ( z ) = I i + I r = 1 cos βz Z0
传输线上电压电 流瞬时表达式为: 流瞬时表达式为: 传输线上任意一点z处的输入阻抗为: 传输线上任意一点 处的输入阻抗为: 处的输入阻抗为
u ( z , t ) = 2 A1 cos(ωt + φ0 + π ) sin β z 2 i( z, t ) = 2 A1 Z0 cos(ωt + φ0 ) cos β z
第一章 均匀传输线理论之•状态分析
1.3 无耗传输线的状态分析
本节要点
行波 纯驻波 行驻波状态 传输线的等效
微波工程基础
1
第一章 均匀传输线理论之•状态分析
对于无耗传输线, 对于无耗传输线 , 负载阻抗不同则波的 反射也不同;反射波不同则合成波不同; 反射也不同 ;反射波不同则合成波不同 ; 合成波的不同意味着传输线有不同的工 作状态。归纳起来, 作状态。 归纳起来 ,无耗传输线有三种 不同的工作状态: 不同的工作状态: Γ(z ) Γ (0 ) 行波状态; 行波状态; Z (z ) Z 纯驻波状态; 纯驻波状态; Z 行驻波状态。 行驻波状态。

微波技术基础1.4 均匀无耗传输线的工作状态

微波技术基础1.4 均匀无耗传输线的工作状态

I (z)
Il
cos z
j Ul Zc
sin
z
U (z) jIlZc sin z
I (z) Il cos z
(1-36) (1-37)
§1.4 均匀无耗传输线的工作状态
1. 终端短路
也可以写成入射波和反射波之和:
U(z)
jIl Zc sin z
IlZc 2
(e jz
e jz )
U (z) U (z) U (0)(e jz e jz )
3 /4 / 2 /4
开路线特性
z
z
|U (z) | | I(z) | Z in ( z )
开路线的特性
§1.4 均匀无耗传输线的工作状态
2. 终端开路
结论
• 对于开路线可以认为,从终端算起,把短路线截去λ/4 。
• 因此,在短路线中的电压和电流沿线分布、瞬时状态等规律, 也适合于开路线。
• 根据(1.3-43),开路线的输入阻抗为
§1.4 均匀无耗传输线的工作状态
1.4.1 行波状态
结论
(1)电压、电流瞬时值同相; (2)传输线上电压、电流幅值不变; (3)电压、电流随时间做简谐振荡(如图),
把信号源的能量不断地传向负载,并被负载所吸收.
u(z,t)
z
t1 o
t2
终端匹配时线上电压分布
|U(z)|
电流分布图类似, 只是幅度不一样.
1.4.1 行波状态
若令 U (0) U ,(0) e ju0 I (0) I (0) e ji0
因为
U (0) I (0)
Zc
所以
i0 u0 0
则电压和电流瞬时值可表示:
u(z,t) Re[U (z)e j t ] U (0) cos(t 0 z) (1-69)

讲5无耗线的工作状态分析

讲5无耗线的工作状态分析

传输线终端的入射波将被全反射, 传输线终端的入射波将被全反射,沿线入射波与反射 波叠加形成驻波分布。入射功率一点也没有被负载吸收, 波叠加形成驻波分布。入射功率一点也没有被负载吸收, 负载与传输线完全失配。 负载与传输线完全失配。
ρ =∞
Κ =0
+

Zg
i u
Il Ul
~ Eg
z’
Zl
z’
1 短路状态
z' =
z' =
mλ g
2 ( 2m + 1)λ g
4
电压波节点, 电压波节点,电流波腹点 电压波腹点, 电压波腹点,电流波节点
m = 0.1,2L
Zg
i u
Il Ul
+

~ E g
Zl
z’
z’
λg
3λg 4
λg
2
λg
4
Z ( z ' ) = jZ 0 tan βz '
(2) 传输线阻抗沿线周期变化,周期为 g/2。 传输线阻抗沿线周期变化,周期为λ 。
jβ z '
(1.4-1)有错 有错
z’
z’
u ( z ) = U 0 e − jβ z
u ( z , t ) =| U 0 | cos(ωt − β z + ϕ1 ) i ( z , t ) =| I 0 | cos(ωt − β z + ϕ1 ) u ( z ' , t ) =| U l | cos(ωt − β z '+ϕ1 ' ) i ( z ' , t ) =| I l | cos(ωt − β z '+ϕ1 ' )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I(z)
Ii (z)
A1 Z0
e j
z
Zin ( z)
U(z) I(z)
Z0
电压、电流瞬时值表达式为(设 A1 A1 e j 0 ):
u(z,t) ui (z,t) A1 cos( t z 0)
i( z, t )
ii (z,t)
A1 Z0
cos( t
z
0)
(2 15a)
由此可得行波工作状态的特点(如图2-13所示):
UiL Z0
Ui Z0
二、驻波状态(全反射情况)
当终端短路(ZL=0)、开路(ZL=∞)或接纯电抗负载 (ZL=±jXL)时,︱(z)︱=︱L︱=1,终端全反射,沿 线入、反射波叠加形成驻波分布。负载与传输线完全
失配。驻波状态下,︱︱=1,r=∞,K=0。
(1) 终端短路(ZL=0)
L
ZL ZL
)、电流波腹点(
I max
2 Ii2
)。
2)开路线的输入阻抗
Zin(z) Z0
ZL Z0
jZ0 tg jZL tg
z z
jZ0 ctg
z
j Xin(z) (2 17c)
亦为纯电抗。f 固定时,Zin(z)按余切规律变化,T= /2。
由输入阻抗的等效观点出发, 可将任意长度的
一段开路线等效为相应的等效电路。
z 0 0~l/4 l/4 l/4 ~l/2 l/2
Xin(z) =±∞(开路) <0(容性) =0(短路) >0(感性) =±∞(开路)
z长度开路线的等效电路 并联谐振 电容 串联谐振 电感 并联谐振
沿线每经过l/4,阻抗性质变化一次;每经过
l/2,阻抗重复原有值。
3)短路线与开路线比较 各对应量的相位相差 /2(即l/4)。
z
z
设UiL Ui e j 2, 则电压、电流瞬时表达式为:
u( z, t )
2Ui sin
z
cos(
t
2
2
)
i(z,t) 2 Ii cos z cos( t 2 )
短路时的驻波状态分布规律:
①沿线电压、电流均为驻
波分布。
②电压、电流之间在位置
或时间上,相位都相差/2。
③在z=n·(l/2) (n=0,1, …)
① 沿线电压、电流均为驻波分布。
② 电压、电流之间在位置或时间上,相位都相差/2。
③ 在z=n·(l/2) (n=0,1,2, …)处ຫໍສະໝຸດ ( 含终端 ) 为电压波腹点(
) 、电流波节点(
)。
④ 在Uz=max(2n+2U1)i·2 (l/4)
I 0
(n=0,1,2, …)m处in 为电压波
节点( U 0 min
对相同长度的 均匀无耗长线,有:
Z0
Z sc(z) Z oc(z)
in
in
Z
sc
in
(
z
)
jZ0
tg
z
Z
oc
in
(
z
)
jZ0
ctg
z
3. 终端接纯电抗负载 ( ZL=±jX (X>0))
L
ZL ZL
Z0 Z0
jX Z0 jX Z0
(X
2
Z 2) 2 0 X2 Z2
(2) 负载全反射的驻波状态
(3) 负载部分反射的行驻波状态
一、行波状态(无反射情况)
当ZL=Z0 时,L=(ZL- Z0)/(ZL+ Z0)=0; 或传输 线为无限长时,无反射,只有入射行波。
取z 轴原点在波源、指向负载,则行波状态下, 线上电压、电流复数表达式为
U(z)
Ui (z)
A1e
j
z
(1)︱︱=0,r=1,K=1,沿线只有入射行波而
无反射波;入射波的能量全部被负载吸收,传输效率
最高。 故称 ZL=Z0 时,负载与传输线匹配。
(2) Zin(z)=Z0 ,为 纯阻。
(3)电压和电流始终 同相。
(4)沿线电压、电流 的振幅恒定不变,
Ui (z) A1
UiL Ui
Ii (z)
U(z) I(z)
U2 cos z j U2 sin
Z0
2Ui2 cos
z j2Ii2 sin
z
z
UiL IiLZ0
电压、电流瞬时表达式为:
u( z, t )
2Ui2
cos
z
cos(
t
2
)
i( z, t )
2
Ii 2
sin
z cos(
t
2
)
2
开路时的驻波状态分布规律:
(2 17b)
Z0 Z0
输入阻抗
Zin ( z)
Z0
ZL Z0
jZ0 jZL
tg tg
z z
Z
in
(
z
)
Z0
1 1
( (
z) z)
ZL
Z0
1 L 1 L
第四节 均匀无耗传输线的工作状态
传输线的工作状态是指沿线电压、电流及阻抗 的分布规律。均匀无耗传输线的工作状态分为三种:
(1) 负载无反射的行波状态
处 ( 含终端 ) 为电压波节点
( U 0 ) 、电流波腹点
min
(
I max
2 Ii2
)。
(2 16b)
④在z=(2n+1)·(l/4) (n=0,1, …)处为电压波腹点
(
U max
2UiL
)、电流波节点( I 0 min
)。
2)短路线的输入阻抗
Zin ( z)
Z0
ZL Z0
jZ0 jZL
传输=入射+反射
U(z) ULie jz ULre jz
U( z)[1 ( z)] U(z) ULie jz ULre jz i
I(z) ILie jz ILre jz
Ii (z)[1 (z)]
反射系数
(z) L e j2 z
(z) Zin(z) Z0 Zin(z) Z0
L
ZL ZL
Z0 Z0
1 e j
UL 0 UiL UrL IiLZ0
IL IiL (1 L ) 2IiL
1)沿线电压、电流分布
以上关系式代入式(2-4e)
U(z)
UL
cos
z
IL
jZ0
sin
z
I(z) UL
j
sin
Z0
z
IL cos
z

(2 4e)
UI((zz))2jI2iLUcioL ssin
tg tg
z z
jZ0 tg z
j Xin(z) (2 16c)
为纯电抗。f 固定时,Zin(z)按正切规律变化,T= /2。 由输入阻抗的等效观点出发, 可将任意长度的一段
短路线等效为相应的等效电路。
z
Xin(z)
z长度短路线 的等效电路
0 =0(短路) 串联谐振
0~l/4 >0(感性) 电 感
l/4 =±∞(开路) 并联谐振
l/4 ~ <0(容性) 电 容
l/2
l/2 =0 (短路) 串联谐振
沿线每经过l/4,阻抗性质变化一次;每经过
l/2,阻抗重复原有值。
2. 终端开路(ZL=∞)
L 1 e j0
IL 0 ,UL UiL (1 L ) 2UiL ,
1)沿线电压、电流分布
以上关系代入式(2-4e)得
相关文档
最新文档