变压器防雷保护

合集下载

变压器防雷保护的原理

变压器防雷保护的原理

变压器防雷保护的原理变压器防雷保护的原理主要包括以下几个方面:1. 雷电的形成和特点:雷电是一种高能量、高电压、高电流的自然现象,诱发雷电的主要因素有电荷分离、电场强度、空间倾斜等。

雷电具有爆发性、瞬态性和高频性的特点,可能导致设备损坏、火灾和人员伤亡。

2. 变压器的特点:变压器是电能传输和变换的重要设备,主要由高压线圈、低压线圈和铁芯组成。

当雷电击中变压器时,可能导致线圈绝缘破坏、瞬态电压过高、电涌等问题,从而对设备造成严重损坏。

3. 防雷保护的原则:变压器的防雷保护主要遵循两个原则,一是尽量减小雷电对变压器的直接冲击,二是将雷电产生的过电压和过电流引导到接地或绝缘地。

4. 防雷保护装置:为了实现变压器的防雷保护,通常会采用以下装置:(1)避雷针:避雷针是用于引导雷电放电的导体杆状物,通常安装在变压器上方的高处。

避雷针通过尖端放电,将雷电引导到地面,从而减小雷电直接击中变压器的可能性。

(2)避雷器:避雷器是一种用于限制过电压的装置,主要由外壳、电极和电阻组成。

当过电压到达设定值时,避雷器会自动分流,将过电压引入地线,从而保护变压器不受损。

(3)避雷接地:避雷接地是将过电压引入地线的过程,通常通过铜棒或铜带将避雷器接地。

合理的接地系统可以提供低阻抗路径,将过电压平稳地导入地下,从而降低雷电对变压器的伤害。

(4)电涌保护装置:电涌保护装置主要用于限制过电流,通常通过金属氧化物压敏电阻等元件实现。

当电涌产生时,电涌保护装置会迅速导通,将电涌分流到地线,保护变压器免受电涌损害。

5. 防雷保护系统的建立:为了实现变压器的全面防雷保护,需要建立完整的防雷保护系统。

这个系统包括避雷针、避雷器、避雷接地系统、电涌保护装置等组成,通过合理的布局和接地设计,将雷电产生的过电压和过电流有效地引导到地下。

总结起来,变压器防雷保护的原理是通过引导和限制雷电产生的过电压和过电流,以减小雷电对变压器的直接冲击。

通过合理的布局和接地系统的建立,可以提供低阻抗路径,将雷电平稳地导入地下,从而保护变压器免受雷电的损害。

变压器防雷安全措施

变压器防雷安全措施

变压器防雷安全措施变压器是电力系统中重要的电气设备,用于变换电能的电压,为各类设备提供稳定的电能。

然而,在雷电活动频繁的地区或季节,变压器容易受到雷电的攻击,造成设备损坏和人员伤害。

因此,为了确保变压器的安全运转,必须采取一系列的防雷措施。

本文将就变压器防雷安全措施展开讨论,以期为用户提供参考。

一、变压器防雷安全现状众所周知,雷电对建筑物和设备造成的破坏是不可低估的。

在变压器防雷危害方面,主要表现为以下几方面:1. 直击破坏:当雷电直接击中变压器,电荷通过设备内部电线电缆等媒介导致设备内部元器件损坏,从而影响设备的使用寿命和性能。

2. 感应破坏:当雷电附近放电时,会在电路中产生一定的感应电流和感应电压,从而影响变压器的性能。

3. 绝缘破坏:在雷电活动过程中,电荷会产生静电场,电场强度高于设备的绝缘强度,从而形成绝缘损坏,影响设备的使用寿命和性能。

二、变压器防雷安全措施1. 绝缘防护绝缘防护是变压器防雷的重要措施。

变压器应选用具有良好绝缘性能的材料,如由石英砂和树脂等材料制作的绝缘支撑。

另外,变压器的绝缘导体应严格符合规范标准,且必须与大地电位隔离。

2. 接地保护接地保护是遏制雷击干扰和低频干扰的有效技术措施。

变压器的导体必须接地保护,以保证设备处于电场均衡状态。

接地保护可以使用“屏蔽接地”或“直接接地”方法。

屏蔽接地是将变压器导体接入屏蔽装置,从而防止电磁波的干扰;而直接接地是将变压器导体直接接入大地,从而达到放电保护的目的。

3. 避雷针保护避雷针是一种用于防止雷击损害的重要设备。

避雷针通常安装在变压器上方,当雷电击中避雷针时,会在避雷针与大地间形成针间电位差,进而将雷电引至大地。

这样就可以防止雷电直接攻击变压器,减少设备的损坏率。

4. 闪络器保护闪络器也是变压器保护的一种重要技术措施。

当雷电产生时,闪络器能够迅速放电,将问题区域的电荷导向大地,从而遏制雷击干扰。

闪络器的选择应符合设备要求,并定期进行检查和维护。

变压器防雷安全措施

变压器防雷安全措施

02
03
04
定期检查:定 期对变压器进 行防雷检测, 确保防雷设施 完好有效
实时监测:建 立实时监测系 统,及时发现 并处理防雷隐 患
维护保养:定 期对变压器进 行维护保养, 确保防雷设施 正常运行
培训教育:加 强防雷知识培 训,提高员工 防雷意识和技 能
变压器防雷的效果和评估科学化
A
B
C
D
防雷效果:通过安装防 雷装置,降低变压器遭
受雷击的风险
评估科学化:采用科学 的评估方法,如雷电监 测系统、防雷性能测试 等,确保防雷措施的有
效性
建议:定期检查和维护 防雷装置,确保其性能
稳定
提高防雷意识:加强防 雷知识的宣传和培训, 提高相关人员的防雷意
识和应对能力
性能
优化防雷线路布 局,减少雷击风

增加防雷接地装 置,提高接地电

定期进行防雷检 测,确保防雷设
施的有效性
变压器防雷的综合效益评估
防雷效果:降低变压器遭受雷击 的风险,提高供电可靠性
社会效益:保障电力供应,提高 居民生活品质和企业生产效率
A
B
C
D
经济效益:减少因雷击导致的设 备损坏和停电损失,降低维修和
04
避雷器维护:定期清洁避雷器表面, 检查避雷器内部结构,更换损坏或老 化的部件
接地电阻的监测
01
接地电阻是变压器防雷安全的 重要指标
02
监测方法:采用接地电阻测试 仪进行测量
03
监测频率:定期进行,如每年 一次或两次
监测结果分析:根据测试结果
04 判断接地电阻是否满足要求,
如不满足,需采取措施改善
的损害。
绝缘保护:提 高变压器的绝 缘性能,防止 雷电对变压器

变压器防雷措施和接地要求

变压器防雷措施和接地要求

变压器防雷措施和接地要求变压器据不完全统计,年平均雷暴日数在35~45的地区,10kv级配电变压器被雷击损坏率大约占配变总数4%~10%。

损坏的主要原因是变压器装设的避雷器和接地引下线不妥而造成的。

如;①变压器高压侧避雷器利用支架作接地引下线;②变压器中性点、高、低压侧避雷器分别接地;③避雷器未作预防性试验;④接地引下线截面过小及引线过长等。

1.杆上变压器防火维护⑴容量在100kva以上的变压器,高压侧一般采用三个阀型避雷器作保护;50~100kva的变压器,一般采用两个阀型避雷器和一个保护间隙(又称火花或角形间隙),也有采用三个阀型避雷器作保护;50kva以下的变压器,一般采用角形间隙,或两个阀型避雷器和一个角形间隙作保护。

高压两端装设避雷器,能够有效率避免高压两端线路示现时雷电波袭入而损毁变压器。

工程中常在配变10kv高压两端装设fs―10型阀型避雷器高压侧装设避雷器后,避雷器接地线应与变压器外壳及低压侧中性点连接后共同接地,以充分发挥避雷器限压作用和防止逆闪络。

(中性点不接地运行时,在中性点对地加装击穿保护间隙)。

⑵多雷地区的10kv,或y,连结的配电变压器,为避免扰动两端雷电入侵波转换至高压两端损毁变压器的绝缘,以及避免反转换波(指变压器高压侧受雷电,避雷器振动,其接地装置上的电压将通过变压器扰动绕组转换至高压两端的冲击波)损毁变压器的绝缘,在扰动两端宜装设一组扰动阀型避雷器(如fs―0.25型、fs―0.5型)或压敏电阻(如my―400型、my―440型)通在流量10~20ka或打穿保险器。

防火接线如下图;1变压器u10kvvw低、扰动两端避雷器的接线fs-10my―400或fs―0.25变压器外壳380/220vuvw⑶35/0.4kv直配变压器,高压两端和扰动两端均应当装设阀型避雷器。

⑷也可以使用阀型避雷器和火花间隙双重维护。

以避雷器居多,火花间隙为后备维护。

⑸实际施工中,常在配变高压套管的引线与避雷器引线之间绕8~10匝直径为8~10cm的空心线圈。

变压器防雷措施和接地要求

变压器防雷措施和接地要求

变压器防雷措施和接地要求变压器是电力系统中常见的电气设备,用于将高压输电线路上的电能转换为低压用电电能。

由于变压器经常处于室外环境,特别是在雷电多发的地区,为了保护变压器免受雷击的破坏,需要采取一系列的防雷措施和接地要求。

防雷措施:1.安装避雷针:在变压器周围安装避雷针,将避雷针与变压器的金属外壳等导体相连,形成一个完整的保护系统,将雷击电流导入地下,保护变压器。

2.安装避雷器:在变压器的高压侧和低压侧分别安装避雷器。

避雷器是一种具有特定动作特性的电器元件,当遭受雷击时,能够引导大部分雷电流通过流经避雷器,保护变压器不受雷击损坏。

3.建造避雷亭:在变压器附近设置避雷亭,避雷亭顶部应有良好的避雷装置,接地引流电流,避免雷电直接击中变压器。

4.导线绝缘处理:将高压线路与低压线路之间的导线进行良好的绝缘处理,避免雷电通过导线直接传导到变压器。

接地要求:1.接地装置的种类:变压器的金属外壳和金属部件应与地面接地,接地方式可以采用单点接地或多点接地。

单点接地是将变压器的金属外壳和金属部件通过导线连接到接地极上,而多点接地是将多个接地点均匀分布在变压器周围。

2.地网的设置:变压器接地装置通常需要与地下的大面积金属结构相连接,形成一个地网。

地网需要有足够的面积和导电能力,能够有效地分散雷电流,降低接地电阻。

3.地网的材料选择:地网通常使用铜排或镀锌钢带等优良导电材料制成。

对于要求较高的场所,可以使用无氧铜材料,以提高接地的导电性能。

4.接地系统的检测和维护:定期对变压器的接地系统进行检测和维护,确保接地系统的导电性能良好和可靠,以及及时处理故障。

同时,还应对接地系统进行标识,以便在需要时进行维修和排查故障。

总之,为了保护变压器免受雷击的破坏,需要采取一系列的防雷措施和接地要求。

通过建立良好的防雷装置和接地系统,可以有效地减少雷电对变压器造成的潜在威胁,确保电力系统的安全运行。

变压器防雷保护装置的选型与应用技术

变压器防雷保护装置的选型与应用技术

变压器防雷保护装置的选型与应用技术随着电力系统的发展和电子设备的普及,变压器作为输配电的重要设备,其正常运行对电力系统的稳定性和可靠性至关重要。

然而,雷电天气等突发情况给变压器带来了巨大的威胁,因此选用合适的防雷保护装置成为了保障变压器运行安全的关键。

一、防雷保护装置的选型选择适合的防雷保护装置对于保护变压器免受雷击是至关重要的。

以下是一些常见的防雷保护装置的选型要点:1. 避雷针:避雷针常常被用于建筑物顶部,能够释放自然界的静电荷,防止其积累到危险程度。

在某些情况下,也可以将避雷针放置在变压器旁边,以吸引和分散雷电对变压器的影响。

2. 避雷器:在变压器的输入侧和输出侧安装避雷器是一种常见且有效的防雷保护措施。

避雷器能够将雷电冲击电流引入接地,通过控制回路的电压和电流,保护变压器免受雷击。

3. 防雷屏蔽:在变压器外壳和绝缘部分之间设置金属屏蔽,可以有效地屏蔽雷电的电磁波,防止其对变压器造成损害。

以上只是几种常见的防雷保护装置,选型时需要根据具体情况,如变压器类型、运行环境、雷电频率和等级等因素综合考虑。

二、防雷保护装置的应用技术选好了合适的防雷保护装置后,还需要正确应用技术来确保其有效工作。

以下是几个值得注意的技术要点:1. 接地系统:良好的接地系统是防雷保护装置正常工作的基础。

确保变压器的接地电阻足够低,并定期检测和维护接地系统的连接,以保障其接地效果。

2. 防雷电位的均衡:将防雷保护装置的引线布置在合适的位置,使得保护装置和待保护设备具有相同的等电势,从而减少雷暴时的电流流入。

3. 监测系统:安装变压器防雷保护装置后,需要定期对装置进行监测和检测,确保其正常工作。

同时,可以添加报警装置,当保护装置受损或失效时,及时发出警报,以便及时维修或更换。

4. 分级保护:根据变压器的重要性和所处环境,可以对防雷保护装置进行分级保护。

对于重要性较高的变压器,可以采用多层保护,提高防雷能力,确保其安全运行。

变压器的防雷技术

变压器的防雷技术

变压器的防雷技术变压器是电力系统中的重要设备,用于将电压进行升降转换。

然而,在雷电天气条件下,变压器很容易受到雷击而造成损坏甚至爆炸。

因此,为了保护变压器的安全运行,必须采取相应的防雷技术。

本文将详细介绍变压器的防雷技术,以期有效预防雷击事件的发生。

1.接地系统的建设接地系统是变压器防雷的基础,通过将变压器的金属部分与地面相连,能够有效地将雷击电流导入地面。

在接地系统的建设上,需要注意以下几点:(1)接地电阻要低:接地电阻是衡量接地系统好坏的重要指标,它越低,能有效地将雷击电流引入地下。

因此,在接地系统的设计中,应尽量减小接地电阻,通过选用合适的接地电极材料和增加接地电极的数量来实现。

(2)接地环形电阻的设置:在变压器的周围设置一条导电性能好的接地环形电阻,能够将雷击电流分散到更大的地面范围内,降低雷电对变压器造成的威胁。

2.雷电防护装置的安装雷电防护装置是变压器防雷的重要手段之一,通过将雷电防护装置与变压器相连接,能够有效地引导并分散雷电电流。

在雷电防护装置的安装上,需要注意以下几点:(1)设置避雷针:将避雷针安装在变压器的高处,能够有效地引导雷电击中避雷针,并通过避雷针上的导线将雷击电流导入地下,减少对变压器的影响。

(2)设置避雷器:在变压器的进出线路上设置避雷器,能够有效地吸收和分散雷电冲击波的能量。

避雷器的选择应根据变压器的额定电压和雷电环境来确定。

3.防雷保护措施的提升除了接地系统和雷电防护装置,还可以采取其他防雷保护措施来进一步提升变压器的防雷能力:(1)设置金属屏蔽罩:在变压器周围设置金属屏蔽罩,能够有效地隔离雷电电场的干扰,减少雷击对变压器的影响。

(2)加装避雷线:将避雷线安装在变压器所在区域的建筑物顶部,能够引导雷电电流迅速传导至地下,减少雷电对变压器的危害。

(3)定期检测和维护:定期对变压器的接地系统、雷电防护装置等进行检测和维护,及时排除存在的隐患,确保防雷措施的有效性。

总结:变压器防雷技术是确保变压器安全运行的重要手段。

浅析配电变压器受雷击分析与防雷措施

浅析配电变压器受雷击分析与防雷措施

浅析配电变压器受雷击分析与防雷措施随着我国城乡规模的不断扩大,配电网的供电面积越来越大,所需的配电变压器也日益增多。

而这些配电变压器都极易受到雷电的损坏,一旦配电变压器被雷电损坏后,必然会造成大面积的停电现象,直接影响到人们日常的学习、生产与生活。

为了有效防止雷击侵害配电变压器,我们就必须弄清楚雷击的种类、特点以及侵害机理。

1 雷击及对配电网的损害1.1 雷击的形成雷击是一种瞬间脉冲放电,其形成主要是在强对流条件下,发生位置主要在云层与云层之间以及云层与大地之间。

雷击放电的一个主要特点就是重复放电,每次的脉冲个数平均在3~4个之间,其组成主要有预放电、主放电以及余辉放电。

在发生主放电的过程中,会有很大的雷电流产生,导致配电变压器发生损坏的根源就是这种雷电流。

1.2 雷击的特点与种类(1)瞬间放电,雷击整个放电的完成通常都在6µs以内;(2)雷击现象具有很大的冲击电流,其电流可达几万安培甚至几十万安培;(3)其产生的电压具有很高峰值,感应电压甚至可达亿伏左右;(4)雷击产生的电流具有很大的变化梯度,雷电流有极强的破坏力。

2 配电变压器雷害事故的原因雷击对配电变压器的损害主要是通过“正、逆变换”的过电压来实现的,而在这两种变换中损害最大的是逆变换过电压。

造成配电变压器雷害事故的原因主要有六个方面:(1)安装配电变压器时,没有科学、合理地选择安装位置;(2)没有对避雷器做交接试验便进行安装,当避雷器出现故障后检出的不及时;(3)没有按照相关规程来设计避雷器的接地引下线截面。

当出现雷击现象后极易造成烧断接地引下线,导致雷电流无法顺利向大地泄入;(4)配电变压器避雷设备装设的不足,如在部分农村避雷器仅装置在变压器的高压侧,低压侧则不装设;(5)缺乏完善的防雷接地装置,如部分避雷器存在过长的引下线;(6)接地级存在过大的接地电阻值。

具体接地电阻阻值可按表1选取:3 配电变压器接线方式与受雷害的关系3.1 避雷器只装设在高压侧的接地方式避雷器只装设在配电变压器高压侧的防雷保护可分为两种:(1)对避雷器进行单独接地,这种接地方式可能损坏配电变压器的绝缘,存在很大的缺陷;(2)3点同时接地,这种方式具有既简单又经济的特点,适合应用在一些雷少的地区,如平原地区等,其具体分别如图1与图2所示:3.2 双侧都有避雷器装设的三点一地方式人们在长期的生产实践中发现雷击破坏了配电变压器的同时也会对一些电度表、电动机等一些低压设备形成破坏,由此可以推断低压线路上产生的雷击过电压与配电变压器遭受的雷击损坏也有一定关系,所以我们可通过把氧化锌避雷器装设在低压侧的方式来防止过电压在低压侧的出现,进而更完善地对高压侧进行保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u
开路的中压端子出
现的最大电压约为
U0
高压侧电压的2U0/k
倍,可能使中压端
套管闪络。
0
所以应在中压端 套管与断路器间
U0 A
装设一组避雷器FV2。
U0 k
A QF1
A
QF2
x
FV2
A
N
2、中、低压绕组运行,高压侧开路:
中压端有入侵波U 0 时,类似分析可知,中压端子到中性点
的稳态电压分布和末端接地的变压器绕组相同,从中压端子
这种系统的变压器,其中性点绝缘水平分全绝缘和分级绝 缘两种。
1、中性点全绝缘:
一般不需保护;
但在变电站只有一台变压器且为单路进线情况下,若为 三相同时进波,中性点电压可达绕组始端电压U0的两倍, 需在中性点加装一台与绕组首端同电压等级的避雷器。
2、中性点分级绝缘:
须选用与中性点绝缘等级相当的避雷器保护,且其冲击放 电电压应低于中性点冲击绝缘水平;
中压绕组也有开路的可能性,但其绝缘水平较高,一般不 需加装避雷器保护。
二、自耦变压器的防雷保护
为了减小系统的零序阻抗和改善电压波形,自耦变压器的 低压绕组是一个三角形接线的非自耦绕组。
该绕组上应装设限制静电过电压的避雷器。
此外,自耦变压器中的波过程有其自己的特点(与单相变 压器类似)。
单相变压器除具有分布的自电感和对地电容外,还有各匝 间分布的互电感和匝间互电容。
缺点: 避雷器动作引起地电位升高,可能危及低压侧用 户安全。
如果低压绕组进波,其幅值较低,而高压绕组绝缘水平又高, 传递过去的静电分量不会对高压绕组的绝缘形成威胁。
若变压器正常运行,高低压侧断路器均闭合,两侧都有 BLQ保护,所以一侧来波不会对另一侧绕组造成损害。
静电分量是在冲击电压作用瞬间出现的,此后绕组中逐渐 通过电流,在其他绕组中感应的电压为电磁分量。它按绕 组的变比传递,又与绕组的连接方式及进波方式有关。
同样的,高压侧有出线,中压侧进波 也会造成类似的结果。
A A′越短(k越小),危险性越大。 一般在k <1.25时,还应在A A′之间 再跨接一组避雷器FV3。
3、低压侧:
采用三角形接线绕组,应装设限制静电 感应过电压的避雷器。
A
FV3
A QF2 FV2
QF1 FV1
三、变压器中性点的保护
在110kv及以上中性点有效接地系统中,为减小单相接地 短路电流,部分变压器中性点不接地运行,因而需要考虑 其中性点绝缘的保护。
上的最大对地电压值及出现 u
的位置。
ห้องสมุดไป่ตู้
U0
如末端接地时,最大电压出 1.0
现在首端l/3处,其值达1.4
t
U0左右。
1.0
t
如末端开路,最大电压发生
t0
在末端约为2.0U0。
0
x0
l
t0
x l
1、高、低压绕组运行,中压侧开路:
入侵波自高压端侵入时,中压端开路时,绕组中的初始电 压分布、稳态电压分布及最大电位包络线,都和前面分析 中性点接地的单相变压器相同。
该分量一般不会对绕组的绝缘构成威胁。
2、三绕组变压器:
高压侧或中压侧有雷过电压波袭来时,通过绕组间的静电 和电磁耦合,其低压绕组上也会出现一定的过电压。
最不利的情况是低压绕组开路时,其对地电容较小,低压 绕组上的静电感应分量可能很大而危及其绝缘。考虑到此 分量将使低压绕组三相电位同时升高,所以只要在任一相 低压绕组出线端加装一只该电压等级的阀式避雷器,就能 保护好低压绕组。
高压出线电位受避雷器固定,此过电压将沿高压绕组分布, 在中性点达到最大值,可能击穿其附近的绝缘,也会危及绕 组的纵绝缘。
2、接线特点:
避雷器靠近变压器安装,其接地线应与变压器金属外壳、低压 侧中性点连在一起共同接地,俗称“三点共同接地”。
接地线长度应尽量短,以减小其上的电压降。
优点: 作用在变压器主绝缘的电压只是避雷器的残压, 不包括接地电阻的电压降;
项目三 变压器的防雷保护
一、三双绕组变压器的防雷保护
1、双绕组变压器:
U0
A
变压器高压侧有雷电波入侵时,会在低
压侧产生静电分量和电磁分量传递过电压。 传递电压的静电分量是在冲击电压作用最 初瞬间,因电感中电流不能突变,一、二 O
C12 Ⅰ
C2 Ⅱ
次绕组间电容和其纵向、对地电容构成复 变压器绕组间
杂的电容链回路,使两绕组间初始电压出
由于这些电容所组成的电容链的作用,当绕组首端加上冲击
电压后,会立即在绕组各点上出现一定的电压分布,这是一
个复杂的多频率振荡电路,不同时刻各点对地电位分布不同,
将振荡过程中绕组各点出现的最大对地电压连起来就成为最
大电位包络线。它反映了绕组上的最大对地电压值及出现的
位置。 u
最大电位包络线反映了绕组
U0
到高压端子的稳态电压分布由电磁感应形成。
u
在振荡中,高压端
子最大电压可能达
2kU 0倍,会危及开
路状态高压端的绝
kU
0
缘,因此应在高压
端和断路器间加装
一组避雷器FV1。
0
U
0
A QF1
A
QF2
FV1
x FV2
A
A
N
U 0
同时应注意:当中压侧接有出线时(相当于A′点经线路波阻 抗接地),如高压侧有过电压波入侵,A′点的电位接近于零, 大部分电压作用在A A′段,是很危险的;
避雷器灭弧电压应大于电网单相接地而引起的中性点电位升 高的稳态值,即最高运行线电压的0.35倍。
所以变压器的中性点可以采用灭弧电压等于0.4倍系统最高 运行线电压的避雷器。
3、35kv及以下的中性点非有效接地系统 中的变压器:
中性点采用全绝缘,一般不需保护。
四、配电变压器的保护
1、保护配置:
配电变压器一般采用Y-Y0接线,其保护措施是在高压侧加装 氧化锌或阀式避雷器,低压侧也装避雷器。
的静电耦合
现振荡而引起的。
定性分析,二次侧最大静电分量 常由右面简化公式估算:
二次绕组上最大静电分量和一次 绕组一样,都是出现在绕组首端。
u2
C12 C12 C2
U0
它只与低压侧对地电容和两绕组间的电容有关,而与绕组 变比无关。
当低压侧开路时,就可能出现危及其绝缘的静电过电压; 变比越大,出现在高压绕组首端的进波电压幅值也增大, 低压绕组上的静电分量也越大。
运行经验表明,只在高压侧装避雷器,不在低压侧装避雷器 并不能完成保护任务:
(1)雷击低压线或感应雷作用时,低压侧绝缘会损坏;
(2)同时通过电磁耦合,在高压侧出现与变比成正比的过 电压(正变换过电压);高压侧绝缘裕度小,可能造成其绝 缘损坏;
(3)直击雷或感应雷作用于高压线路使避雷器动作时,接地 电阻流过很大冲击电流,产生的压降作用在低压绕组,通过电 磁耦合,按变比关系在高压侧产生过电压(反变换过电压)。
相关文档
最新文档