2.1,2.2矩阵的初等变换与标准形

合集下载

矩阵的初等变换与初等矩阵

矩阵的初等变换与初等矩阵

§2.2 矩阵的初等变换与初等矩阵1.矩阵的初等变换定义2.1 下列三种变换称为矩阵的初等列变换: (1)交换矩阵的第,i j 列,用i j c c ↔记之; (2)用非零数k 乘矩阵的第i 列,用i kc 记之;(3)把矩阵的第i 列的k 倍加到第j 列,用j i c kc +记之。

矩阵的初等行变换与列变换,统称为矩阵的初等变换。

如果矩阵A 经过有限次初等(行,列)变换,化为矩阵B ,就称矩阵A 与B (行,列)等价,记作~A B 。

矩阵的等价具有以下性质: (1)反身性 ~A A ;(2)对称性 如果~A B ,则~B A ;(3)传递性 如果~A B ,~B C ,则~A C 。

利用初等行变换,将方程组的增广矩阵化为行最简形,从而得出方程组的解。

可见,讨论矩阵的某种结构简单、而形式特定的等价矩阵,在理论和实际应用上都是必要而有价值的。

对矩阵的行最简形再施行初等列变换,可得到一种结构最为简单的形式。

以§A 为例,矩阵A 的行最简形为11610039210103910001300000⎛⎫⎪⎪⎪-⎪ ⎪- ⎪⎪⎝⎭,再经初等列变换344151425253116211,,,,,39393c c c c c c c c c c c c ↔---++化为10000010000010000000⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭F 。

称矩阵F 为矩阵A 的等价标准形。

定理 2.1 矩阵()ij m n a ⨯=A 经过有限次初等变换可化为如下的等价标准形:()()()()rr n r m r r m r n r ⨯--⨯-⨯-⎛⎫=⎪⎝⎭I O F O O ,其中下方及右边的零行,零列可能空缺。

由行列式的性质可知,行列式不为零的方阵,其等价矩阵的行列式也不为零。

由此可得以下结论:可逆矩阵的等价矩阵也为可逆矩阵;可逆矩阵的行最简形就是等价标准形,且一定是单位矩阵。

2.初等矩阵定义2.2 由单位矩阵经一次初等变换而得的矩阵称为初等矩阵。

矩阵的初等变换及其应用

矩阵的初等变换及其应用
(3)传递性 即对任何矩阵 , 与 ,若 与 等价, 与 等价,则 与 等价;
3.矩阵的初等变换的应用
3.1求矩阵的秩
求矩阵秩的方法很多,一般有定义法、初等变换法、相关公式法、综合法、但当矩阵的具体元素为已知时,一般采用初等变换法即求非零行(列)的个数。
定义3.1.1 矩阵 中非零子式的最高阶数 称为矩阵 的秩.亦即, 中存在不为0的 阶子式,而所有 阶子式(若有的话)均为0,这时矩阵 的秩记作 (或 或秩 )
定义3.5.1 设 是一个 阶方阵,如果存在一个数 及一个 维非零列向量 ,使得

成立,则称数 为方阵 的一个特征值,非零列向量 称为方阵 的对应于(或属于)特征值 的特征向量.
定义3.5.2 行列式 (或 )称为矩阵 的特征多项式(注:特征多项式是 的 次多项式.) 是矩阵 的特征方程,具体形式为:
总之,矩阵初等变换是线性代数中一种重要的计算手段,我们可以利用矩阵初等变换求矩阵的秩,求逆矩阵,求矩阵方程等各种计算实例。随着科学技术的不断发展,矩阵的应用已经深入到了自然,社会,工程,经济等各个领域,而且人工智能、手机通讯和一般的算法设计和阐发等,矩阵在其应用中是通讯优化。我们不能局限于书本的学习,要理论联系实际,更好的运用理论知识解决实际遇到的问题。
时,子块 就化为 ,使得 。此时,若令 ,则 化为标准形
例8 化二次型 为标准形。
解:二次型矩阵为
实施初等变换
这样,经坐标变换 ,其中
二次型化为标准形
注:二次型可以用多种方法化标准形,其标准形不唯一。
总 结
在解决代数方面的一些题目时,运用矩阵的初等变换可以使问题简单化,比如在化二次型为标准型时,除了可以用初等变换法,还可以用正交变换法和配方法来计算,相比较初等变换更为简单,易于计算,好理解。矩阵的初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处,一旦掌握了矩阵的运算,我们分析和解决方程组的能力将会大大增强。

初等变换法由正交矩阵得出二次型的标准型_概述及解释说明

初等变换法由正交矩阵得出二次型的标准型_概述及解释说明

初等变换法由正交矩阵得出二次型的标准型概述及解释说明1. 引言1.1 概述初等变换法由正交矩阵得出二次型的标准型是矩阵理论中一个重要且常用的概念。

通过进行一系列的初等变换和利用正交矩阵,我们可以将给定的二次型转化为标准型,从而简化问题的求解过程。

本文将对初等变换法和正交矩阵进行介绍,并说明它们在得出二次型的标准型中起到的关键作用。

1.2 文章结构本文共分为五个部分:引言、初等变换法与正交矩阵、二次型的标准型、初等变换法由正交矩阵得出二次型的标准型以及结论。

首先,在引言部分将对整篇文章的内容进行概述,并说明文章结构。

接下来,将详细介绍初等变换法和正交矩阵的概念及其性质,并讨论它们之间的关联性。

然后,我们会深入探讨二次型及其标准型的定义、意义以及性质。

紧接着,在给定了必要背景知识后,我们将介绍如何使用初等变换法和正交矩阵来得到二次型的标准型,包括具体的步骤和计算方法。

最后,在结论部分对全文进行总结,并讨论初等变换法由正交矩阵得出二次型的标准型在实际问题中的应用价值。

1.3 目的本文旨在通过概述和解释说明初等变换法由正交矩阵得出二次型的标准型,帮助读者充分理解初等变换法与正交矩阵在矩阵理论中的重要性以及它们在处理二次型问题中的作用。

同时,本文还将提供详细的步骤和计算方法,使读者能够从实际问题出发,灵活运用这种方法来求解相关的数学和工程问题。

2. 初等变换法与正交矩阵2.1 初等变换法介绍初等变换是线性代数中一种重要的操作,它可以通过对矩阵进行一系列基本运算来改变矩阵的形态。

常见的初等变换包括行交换、行倍乘以一个非零数和第j行加上第i行的k倍。

2.2 正交矩阵概述正交矩阵是指满足其转置矩阵乘以自身结果为单位矩阵的方阵。

简而言之,正交矩阵的转置就是它的逆矩阵。

具体而言,设A为n×n的实矩阵,若满足A^T⋅A=I (其中I为n×n的单位矩阵),则称A为正交矩阵。

在线性代数中,正交矩阵有很多重要性质和应用。

矩阵的初等变换

矩阵的初等变换

o 等价。 o
13
第一章
例2.3 问矩阵

1 1 4 0 1 2 1 0 A 0 1 2 0 , B 1 3 0 2 2 2 0 1 0 1 1 2
A
与矩阵
B
是否等价?
解 先求矩阵 A 与矩阵
1 4 1 2 0 2 4 0 0 11 3 2r3r1 2 2 r1 0 0 0 r 0 00 0 0 0
B 的标准形
11 11 4 4
4 4 2 2 8 8 11 1 14 0 r3r3 44r4 4r 0 0 0 1 1 2 0 0 0 0 0 0 0
1 1 A 0 A 0 1 2 2 2
3 2
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
第一章
0 1 2 1 0 1 2 1 0 1 1 0 2 0 1 0 r r2 r1 rr32 0 1 1 2 r3 2 B 1 3 0 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 0 0 0 0 0 0 0

r1 4 r2 1 r3 143
5 1 0 59 0 1 14 3 0 0 1 0
1 0 0 5 0 1 0 3 0 0 1 0
r2 14 r3 r1 59 r3
1 0 0 5 D 0 1 0 3 0 0 1 0
1 0 3 D. 0 1 0 0 0 1
例2:写出上题中初等矩阵的逆

第二章 矩阵的标准型

第二章  矩阵的标准型
①RA RB ②A 与B 相同的史密斯标准型
d1 d 2 求史密斯标准型的方法 :A d r 0 0
2014年12月20日 沈阳理工大学 13
P32例4设A 为6 6阶 - 矩阵,RA 4, 初等因子组为
13, - 1, - 1 ,2,2, 1, 试求A 的不变因子,行列式因 子,史密斯标准型 . 解:不变因子: 行列式因子: 3 d 4 2 1 - 1 D1 d1 1 d 3 2 1 - 1 D2 d 2 D1 d 2 D3 d 3 D2 3 1 - 1 d1 1 4 2 5 D4 d 4 D3 1 - 1
注: (1) 矩阵A 的史密斯标准形 S ( )对角线
为A 的不变因子。
上的元素为A 的不变因子; (2)d k 1 d k , (k 2,3, r );
(3)求A 的史密斯标准形方法 2 : 不变因子法。
2014年12月20日 沈阳理工大学 12
相似矩阵
若A ∽B , 则
2
沈阳理工大学 7
练习1
1- 求A 1 2
2 - 的史密斯标准型 2 1 - 2
- - 2
2 1
练习2:P 中第一小题 541
2014年12月20日
2 1 2 1 1- 1 2 ~ 2 0 1 2 1 2 1 - 2 2 1 0 0 0 0 1 1 2 2 ~ 0 - - ~ 0 0 0 2 - 2 - 2 1 S 2 1

2.1.矩阵的初等变换

2.1.矩阵的初等变换

0 1 1 1 0 1 1
2 3 0 5 1 1 2 3 2 1 1 0 1 3 6 1 4 0 3 3 7 1
1

A
1 0 0 0 0 0
1 1 1 1 2 0 0 1 3 0 0 0 1 0 0 0 0 0 0 0 0 3 0 5
1 A 1 0 0 1 1 1 1 0 3 0 1 1 0 0 1 10 0
3 1
例7 设 A 为 m n 矩阵, 证明:
r ( A) r m r 矩阵 P , r ( P ) = r r n 矩阵 Q , r ( Q ) = r
定理 初等变换不改变矩阵的秩
推论 设矩阵 r(A) = r , 则 A 的标准形矩阵为 Er O O O 推论 可逆矩阵的标准形矩阵( 规范的阶梯形 矩阵) 为单位矩阵
求矩阵的秩的方法 将矩阵化为阶梯形矩阵 阶梯形矩阵的非零行数即为矩阵的秩
例 2 求矩阵 A 的秩
A
1 0 0 0 1 0 0 0 1
1 4 2 5 3 6
初等行变换
例5 用初等变换法解矩阵方程
3 1 5 8 3 0 X 1 3 2 5 2 5 9 0 1
分析 设原方程为 XA B

A X B
A PQ

例4 用初等变换法解矩阵方程
解 5 1 5 3 3 2 1 2 1
5 1 5 8 5 9 3 3 2 X 3 1 2 1 0 0
8 5 3 9 0 0 1 4 X 2 5 3 6

2.1,2.2矩阵的初等变换与标准形

2.1,2.2矩阵的初等变换与标准形

化成标准形。
从定理2可以看出,若A B, 则A与B有相同的标 准形.设A是n阶方阵,经初等变换后化成B,据行 列式的性质及初等变换的定义可知,当 | A | 0时
必有 | B | 0,当 | A | 0时必有 | B | 0,即初等变换 不改变矩阵的可逆性因此,对于 . n阶可逆方阵A, 它的标准形I 也可逆,故I 是n阶单位矩阵En;反之 若n阶方阵A的标准形I En,则A可逆,故我们又 有如下定理
T
思考题解答
答 相等.
因为对于任一实向量 x 0, 当Ax 0时,
必有AT Ax 0, 反之当AT Ax 0时, 有x T AT Ax 0

Ax Ax 0 Ax 0;
T
由此可知
T
Ax 0与AT Ax 0同解,
故 RA A R A.
1 2
9 r4 r3 4 3 r3 ( ) 4
1 0 0 0
1 2
1
1 1 1 3 0 0 1 0 0 0
4 2 B 3 0
一般地,对任何矩阵均可类似上例进行, 从而有以下定理 定理1 任何非零矩阵A (aij )mn可以只用
2.1初等变换与矩阵等价
一. 初等(行/列)变换
定义1 下面三种变换称为矩阵的初等行变换:
ri rj 1 对调两行(对调i , j 两行, 记作ri rj); ; kri 2 以数 k 0 乘以某一行的所有元素 r kr (第 i 行乘 k , 记作 ri k) i j 3 把某一行所有元素的k 倍加到另一行
1 4 1 1 2 r 5r 1 2 0 1 1 2 3 3 r 3r 2 0 5 5 3 6 4 0 3 3 4 3

矩阵的标准形式是什么

矩阵的标准形式是什么

矩阵的标准形式是什么矩阵是线性代数中的重要概念,它在数学和工程领域中有着广泛的应用。

在研究矩阵的性质和特征时,我们常常需要将矩阵转化为其标准形式。

那么,矩阵的标准形式究竟是什么呢?本文将对此进行详细的介绍和解释。

首先,让我们来了解一下矩阵的基本概念。

矩阵是由 m 行 n 列元素组成的一个数表,通常记作 A=(aij)m×n。

其中,aij 表示矩阵 A 中第 i 行第 j 列的元素。

矩阵可以进行加法、数乘和乘法等运算,具有很强的代数性质。

接下来,我们来介绍矩阵的标准形式。

在线性代数中,矩阵的标准形式通常指的是特殊的形式,通过一系列的变换,可以将任意的矩阵转化为标准形式,从而更好地研究其性质和特征。

常见的矩阵标准形式包括行阶梯形、列阶梯形、对角形和标准型等。

首先,我们来介绍行阶梯形。

一个矩阵被称为行阶梯形,如果满足以下条件,首先,非零行(如果存在)在零行的上面;其次,每个非零行的首个非零元素为1;最后,每个非零行的首个非零元素所在的列,除了该元素外,其余元素都为0。

行阶梯形的矩阵可以帮助我们更好地理解矩阵的线性相关性和线性无关性。

其次,是列阶梯形。

一个矩阵被称为列阶梯形,如果其转置矩阵为行阶梯形。

列阶梯形的矩阵同样具有重要的性质,可以帮助我们进行矩阵的分解和求解。

接着,是对角形。

一个矩阵被称为对角形,如果除了对角线上的元素外,其余元素都为0。

对角形的矩阵在矩阵的对角化和特征值分解中有着重要的应用。

最后,是标准型。

一个矩阵被称为标准型,如果它是行阶梯形并且满足一定的特定条件。

标准型的矩阵可以帮助我们更好地理解矩阵的相似性和等价性。

总的来说,矩阵的标准形式是通过一系列的变换,将矩阵转化为特定的形式,以便更好地研究其性质和特征。

不同的标准形式在不同的领域和问题中有着重要的应用,对于深入理解矩阵的性质和特征具有重要的意义。

在实际应用中,我们常常需要将矩阵转化为其标准形式,以便进行进一步的分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
9 r4 r3 4 3 r3 ( ) 4
1 0 0 0
1 2
1
1 1 1 3 0 0 1 0 0 0
4 2 B 3 0
一般地,对任何矩阵均可类似上例进行, 从而有以下定理 定理1 任何非零矩阵A (aij )mn可以只用
2.矩阵等价
如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A ~ B.
等价关系的性质: (1)反身性
A~ A
(2)对称性 若A~B,则B~A (3)传递性 若A~B, B~A则A~C 具有上述三条性质的关系称为等价.
2.2初等变换的应用与标准形
例1.对下列矩阵A实施初等行变换把A化成阶梯形矩 阵.
化成标准形。
从定理2可以看出,若A B, 则A与B有相同的标 准形.设A是n阶方阵,经初等变换后化成B,据行 列式的性质及初等变换的定义可知,当 | A | 0时
必有 | B | 0,当 | A | 0时必有 | B | 0,即初等变换 不改变矩阵的可逆性因此,对于 . n阶可逆方阵A, 它的标准形I 也可逆,故I 是n阶单位矩阵En;反之 若n阶方阵A的标准形I En,则A可逆,故我们又 有如下定理
2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7
2 r1 r2 4 r3 2 4 9 1 1 2
1 2 1 1 1 2 3 1 1 Байду номын сангаас 6 9 7
4 2 2 9
1 1 2 1 2 1 1 1 2 3 1 1 3 6 9 7
2.1初等变换与矩阵等价
一. 初等(行/列)变换
定义1 下面三种变换称为矩阵的初等行变换:
ri rj 1 对调两行(对调i , j 两行, 记作ri rj); ; kri 2 以数 k 0 乘以某一行的所有元素 r kr (第 i 行乘 k , 记作 ri k) i j 3 把某一行所有元素的k 倍加到另一行
初等行变换化成阶梯形矩阵。
例1中所得到的矩阵B,如再经过初等列变换, 还可将A化成更简单形式
例如, c2 c1
c3 2c1 c4 c1
B
1 0 0 0
c5 4c1
1 0 0 0
0
0
0
1 1 1 3 0 0 1 0 0 0
0 c3 c2 1 2 c4 c2 3 3 c5 2c2 0
1 4 1 1 2 r 5r 1 2 0 1 1 2 3 3 r 3r 2 0 5 5 3 6 4 0 3 3 4 3
1 0 0 0
1 4 1 1 1 2 3 4 0 0 4 3 0 0 3 9
定理3 n阶方阵A可逆的充分必要条件 是A的标准形是n阶单位矩阵,即A~E.
三、小结
1. 矩阵秩的概念
2. 求矩阵秩的方法 (1)利用定义 (即寻找矩阵中非零子式的最高阶数); (2)初等变换法
(把矩阵用初等行变换变成为行阶梯形矩阵,行 阶梯形矩阵中非零行的行数就是矩阵的秩).
思考题
设 A 为任一实矩阵 , R( A A)与R( A)是否相等?
矩阵 I 称为矩阵 A 的标准形.
特点: I的左上角是一个单位矩阵,其余元素全
为零.
m n 矩阵 A 总可经过初等变换化为 标准形
Er I O
O O mn
此标准形由m , n, r 三个数唯一确定,其中r 就是 行阶梯形矩阵中非零行 的行数.
因此,我们有下面定理
定理2 任何非零矩阵A (aij )mn可以用初等变换
0 1 0 0
0 0 0 0
0 0 0 0 1 3 0 0
1 0 c5 3c4 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
c3 c4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 I 0 0
T
思考题解答
答 相等.
因为对于任一实向量 x 0, 当Ax 0时,
必有AT Ax 0, 反之当AT Ax 0时, 有x T AT Ax 0

Ax Ax 0 Ax 0;
T
由此可知
T
Ax 0与AT Ax 0同解,
故 RA A R A.
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj) .
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
ci c j kci c kc j i
定义2 矩阵的初等列变换与初等行变换统称为 初等变换. 初等变换的逆变换仍为初等变换, 且变换类型 相同. ri rj 逆变换 ri rj ; ri k 逆变换 ri ( 1 ) 或 ri k ; k ri krj 逆变换 r ( k )r 或 r kr . i j i j
4 2 2 9
r2 2 r1 1 1 2 1 4 r3 2 r1 0 3 3 1 6 r4 3r1 0 5 5 3 6
0 3 3 4 3
1 4 1 1 2 1 r2 (3) 0 1 1 2 3 0 5 5 3 6 0 3 3 4 3
相关文档
最新文档