新人教版八年级下册第17章 勾股定理 单元测试试卷(A卷) (2)

合集下载

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

第17章勾股定理单元检测卷姓名:__________ 班级:__________一、选择题(每小题3分;共33分)1.下列各组数中,属于勾股数的是()A. 2.5,6,6.5B. 5,7,10C. ,,D. 6,8,102.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或253.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A. (4+)cmB. 9cmC. 4cmD. 6cm5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、66.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定7.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A. B. C. D. 28.如图,有一只棱长为20厘米的正方形盒子,一只蚂蚁从A点出发,沿着正方体木箱的外表面爬行到C′D′的中点P的最短路线长为()A. 10厘米B. 50厘米C. 10厘米D. 30厘米9.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 3πC. 4πD. 8π10.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米11.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=3,b=4,c=5C. a=6,b=8,c=10D. a=7,b=24,c=25二、填空题(共11题;共33分)12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:________14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.15.等腰△ABC,其中AB=AC=17cm,BC=16cm,则三角形的面积为________ cm2.16.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.17.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________18.在Rt△ABC中,AC=9,BC=12,则AB=________.19.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.20.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为________ 米.21.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.三、解答题(共4题;共34分)23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2 ,求:(1)AB的长为________;(2)S△ABC=________.26.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、选择题D D C C C A C C A B A二、填空题12. 2 d 13. 13、84、85 14. 415. 120 16. 4.8 17.18. 15或3 19. 10 20. 1521. 22. 12三、解答题23.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.24.解:∵AD⊥AC,AC=20,AD=15,∴CD= =25∴BD=BC﹣CD=32﹣25=725.(1)4(2)2+226.(1)解:由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE= =1.5(米),∴BD=0.8米。

人教新版八年级数学下册《第17章 勾股定理》 单元训练卷 含答案

人教新版八年级数学下册《第17章 勾股定理》 单元训练卷  含答案

第17章勾股定理一.选择题(共7小题)1.如图,直角三角形三边上的等边三角形的面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S1+S2>S3B.S1+S2<S3C.S1+S2=S3D.S12+S22>S322.在△ABC中,若∠ABC=90°,则下列正确的是()A.BC=AB+AC B.BC2=AB2+AC2C.AB2=AC2+BC2D.AC2=AB2+BC23.Rt△ABC中,斜边BC=2,则AB2+BC2+CA2=()A.8 B.6 C.4 D.无法计算4.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.3 B.2C.4 D.5.在△ABC中,AB=AC=10,BD是AC边上的高,DC=2,则BD等于()A.2B.4 C.6 D.86.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或257.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=3+k,b=4+k,c=5+k(k>0)二.填空题(共6小题)8.下列各组数据是勾股数的有组.(填写数量即可)(1)6,8,10 (2)1.5,2,2.5 (3)32,42,52(4)7,24,25 (5),,9.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.10.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于平方厘米.11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.矩形纸片ABCD中,AD=10cm,AB=4cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.13.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少米.三.解答题(共3小题)14.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的底端B在水平方向上向右滑动了多远?15.如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?16.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案一.选择题(共7小题)1.C.2.D.3.A.4.A.5.C.6.D.7.D.二.填空题(共6小题)8.2.9.79.10..11.10.12.13.5m.三.解答题(共3小题)14.解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.15.解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,∴AO⊥BO,∵甲轮船以16海里/小时的速度航行了一个半小时,∴OB=16×1.5=24海里,AB=30海里,∴在Rt△AOB中,AO===18,∴乙轮船每小时航行18÷1.5=12海里.16.(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。

数学八年级下册 第十七章 勾股定理(A卷)

数学八年级下册 第十七章 勾股定理(A卷)

数学八年级下册第十七章勾股定理(A卷)试卷一、选择题(共14题;共84分)1.一棵大树被台风刮断,如图所示,若树离地面3米处折断,树顶端落在离树底部4米处,则树折断之前有( )A.5米B.7米C.8米D.10米【答案】C【考点】勾股定理【解析】抽象出几何图形,由题意可知,AB=3m,BC=4m,在Rt△ABC中,,所以树折断之前的高度为AC+AB=5+3=8m。

2.一个三角形的三边,以下各组数为边长,能组成直角三角形的是()A.5,6,7B.4,8,10C.7,24,25D.9,15,17【答案】C【考点】勾股定理逆定理【解析】根据勾股定理的逆定理可知,只有C选项中.3.若直角三角形两直角边的比是3:4,斜边长是20cm,则直角三角形的面积是()A.B.C.D.【答案】B【考点】勾股定理【解析】本题可以利用方程解决,设两条直角边分别为3x,4x,根据勾股定理可得得x=4,则两条直角边为12cm,16cm,直角三角形的面积为12×16÷2=96。

4.下列各命题的逆命题不成立的是()A.两直线平行,内错角相等B.两个数的绝对值相等,则这两个数相等C.对顶角相等D.若或,则【答案】C【考点】原命题和逆命题【解析】A逆命题为“内错角相等,两直线平行”正确.B逆命题为“如果两个数相等,那么这两个数的绝对值相等”正确.C逆命题为“如果两个角相等,那么这两个角是对顶角”错误D.逆命题为“若,则或”正确.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h. 如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?A.超速,速度为80km/hB.超速,速度为72km/hC.未超速,速度为65km/hD.未超速,速度为60km/h【答案】B【考点】勾股定理逆定理【解析】由题意可知AC=30m,AB=50m,由勾股定理可知BC=40m.速度v=40÷2=20m/s=72km/h,所以超速.6.如果一个直角三角形的两条直角边分别为6和8,则斜边的长为( )A.6B.8C.10D.14【答案】C【考点】勾股定理【解析】根据勾股定理.7.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍【答案】A【考点】勾股定理【解析】设直角三角形三边长分别为a,b,c根据勾股定理可知,两直角边扩大两倍,,所以斜边也扩大为原来的两倍。

人教版八年级数学下册单元测试《第17章 勾股定理》(A卷)(解析版)

人教版八年级数学下册单元测试《第17章 勾股定理》(A卷)(解析版)

《第17章勾股定理》(A卷)一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= .2.△ABC,AC=6,BC=8,当AB= 时,∠C=90度.3.等边三角形的边长为6cm,则它的高为cm.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= .5.直角三角形两直角边长分别为5和12,则它斜边上的高为.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为.8.等腰三角形的两边长为2和4,则底边上的高为.9.若等腰直角三角形斜边长为2,则它的直角边长为.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,1216.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.417.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)27.如图,△ABC中,CD⊥AB于D.(1)图中有个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?30.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较=a2+b2c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a2+b2c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:,类比勾股定理的验证方法,相信你能说明其能否成立的理由.《第17章勾股定理》(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= 15 .【考点】勾股定理.【分析】根据勾股定理即可解决.【解答】解:根据勾股定理,得c==15.【点评】主要是考查了勾股定理,熟记9,12,15勾股数.2.△ABC,AC=6,BC=8,当AB= 10 时,∠C=90度.【考点】勾股定理.【分析】由已知得,这是一个直角三角形,则根据勾股定理即可求解.【解答】解:∵∠C=90°∴AB为斜边∴AC2+BC2=AB2,∴AB=10【点评】本题利用了勾股定理来求解,是基础知识比较简单.3.等边三角形的边长为6cm,则它的高为3cm.【考点】等边三角形的性质;勾股定理.【分析】作底边上的高.根据等腰三角形的三线合一,以及勾股定即可求解.【解答】解:底边的一半是3.再根据勾股定理,得它的高为=3cm.【点评】考查了等腰三角形的三线合一性质以及勾股定理.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= 1::2 .【考点】勾股定理.【分析】根据直角三角形各角的度数判断出其所对边的长短,再根据直角三角形的性质及勾股定理解答.【解答】解:∵∠A=30°,∴BC为最短边,设其为1,∵∠C=90°,∴AB为最长边,∴AB=2BC=2,∴AC==,∴BC:AC:AB=1::2.【点评】需注意:在求30°的直角三角形的各边之比时,应设最短边为1,再根据勾股定理解答.5.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为12+6.【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.【解答】解:∵等腰三角形的顶角为120°,底边上的高为3,∴腰长=6,底边的一半=3,∴周长=6+6+2×3=12+6.故答案为:12+6.【点评】本题考查勾股定理及等腰三角形的性质的综合运用.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为96 .【考点】勾股定理.【分析】首先根据比值设出两直角边,利用勾股定理即可求出直角边的长,代入面积公式求解即可.【解答】解:根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16;×12×16=96,所以它的面积是96.【点评】根据比值设出两直角边利用勾股定理求解是本题的考查点.8.等腰三角形的两边长为2和4,则底边上的高为.【考点】勾股定理;等腰三角形的性质.【分析】根据已知确定底边与腰,从而根据勾股定理求得底边上的高.【解答】解:∵等腰三角形底边上的高与底边上的中线互相重合,∴底边上的高与腰长,底边的一半构成直角三角形,∵底边长是2,∴底边的一半是1,∴底边上的高==.【点评】本题应根据三角形三边关系先得到此等腰三角形的腰长与底边的值.然后利用勾股定理求解.9.若等腰直角三角形斜边长为2,则它的直角边长为.【考点】等腰直角三角形.【分析】利用勾股定理,设直角边为a,则2a2=4求解即可.【解答】解:∵三角形为等腰直角三角形,∴设两直角边为a,则a2+a2=22解得a=【点评】本题需注意根据等腰直角三角形的特点,利用勾股定理进行解答,还要注意,三角形的边长是正值.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30 cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是直角三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方.【分析】根据给出的条件求出三角形的三边长,再根据勾股定理的逆定理来判定三角形的形状.【解答】解:∵(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,∴(a﹣5)2+(b﹣12)2+(c2﹣26c+169)=0,∴(a﹣5)2+(b﹣12)2+(c﹣13)2=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形.【点评】本题考查了特殊方程的解法与及勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是5或.【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,12【考点】勾股定理的逆定理.【分析】符合勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.【点评】本题考查了勾股定理的逆定理的应用,是基础知识,要熟练掌握.16.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.【点评】本题需先求出AD长,利用了两次勾股定理进行推理计算.17.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【考点】勾股定理的逆定理.【分析】由已知得其有两条边相等,并且符合勾股定理的逆定理,从而可判断三角形的形状.【解答】解:由题意设三边长分别为:x,x, x∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.故选D.【点评】本题考查了勾股定理的逆定理,三角形三边关系满足a2+b2=c2,三角形为直角三角形.18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm【考点】勾股定理.【分析】设斜边长为x,表示出一直角边为(x﹣2)cm,然后利用勾股定理列出方程求解即可.【解答】解:设斜边长为x,则直角边为(x﹣2)cm,由勾股定理得,x2=(x﹣2)2+62,解得x=10,所以,它的斜边长为10cm.故选C.【点评】本题考查了勾股定理,熟记定理并列出方程是解题的关键.三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.【考点】作图—代数计算作图.【分析】面积是2的直角三角形只需两直角边长为2,2即可;面积是2的正方形的边长为,是直角边长为1,1的两个直角三角形的斜边长.【解答】解:.【点评】直角三角形的两直角边的积等于面积的2倍;边长为无理数应先找到所求的无理数是直角边长为哪两个有理数的直角三角形的斜边长.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?【考点】勾股定理的应用.【专题】探究型.【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC即可解答.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC===10m,∴旗杆的高=AB+BC=2.8+10=12.8m.答:这根旗杆被吹断裂前至少有12.8米高.【点评】本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).【考点】勾股定理的应用.【专题】应用题.【分析】首先根据三角形的内角和定理的推论求得∠BCD=90°;再根据直角三角形的性质求得CD的长,最后运用勾股定理求得BC的长即可.【解答】解:在直角△BCD中,∵∠ABD=150°,∠D=60°,∴∠BCD=90°∠CBD=30°,∴CD=BD=16,∴BC===16≈16×1.732≈27.7km.【点评】综合运用了三角形的内角和定理的推论“30°角所对的直角边是斜边的一半”及勾股定理.23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.【考点】勾股定理.【分析】在解决三角形问题时常需构成直角三角形来解决.∠A=60°应在这个直角三角形中.然后利用勾股定理来进行解答.【解答】解:过B作BD⊥AC于D.∴∠BDA=∠BDC=90°∵∠A=60°∴∠ABD=30°∵AB=15 cm∴AD=AB=cm,∴BD=cm,CD=AC﹣AD=cm,∴BC===21cm【点评】本题的难点在于作辅助线,要求是构造直角三角形,所给的特殊角在直角三角形中.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【考点】勾股定理.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,所以有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【考点】勾股定理的应用.【专题】应用题.【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.27.如图,△ABC中,CD⊥AB于D.(1)图中有 C 个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= 5 ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.【考点】勾股定理的逆定理.【专题】计算题;证明题.【分析】(1)根据直角三角形的判定定理,△ACD和△BCD是直角三角形;(2)根据勾股定理求出CD的值;(3)再通过给出的条件CD2=AD•DB,推出△ABC的三边关系,判定它是直角三角形.【解答】解:(1)C;(2)CD==5;(3)AC2=AD2+CD2①BC2=CD2+BD2②①+②得AC2+BC2=2CD2+AD2+BD2=2AD•BD+AD2+BD2=(AD+BD)2=AB2∴△ABC是直角三角形.【点评】本题考查了直角三角形的判定与及勾股定理等内容.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?【考点】勾股定理的应用.【分析】设出腰的长,则底边的长可表示出来,又已知等腰三角形的高,在Rt△ABD中运用勾股定理可解得腰长.【解答】解:设腰长AB=AC=xcm,则BC=160﹣2x,BD=BC=80﹣x,在Rt△ABD中,AB2=BD2+AD2,即x2=(80﹣x)2+402,解之得:x=50,∴AB=AC=50cm,BC=160﹣2×50=60cm.所以小明在先量取铁丝50cm弯折一次,再量取60cm弯折一次,然后与铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.【点评】本题考查正确运用勾股定理.29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【考点】解直角三角形的应用﹣方向角问题.【专题】应用题.【分析】本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.【解答】解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.【点评】解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.30.学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 9 mm.比较=a2+b2>c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 11 mm.比较a2+b2<c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:若△ABC是锐角三角形,则有a2+b2>c2若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2,类比勾股定理的验证方法,相信你能说明其能否成立的理由.【考点】勾股定理的证明.【专题】阅读型.【分析】熟悉勾股数,然后根据大边对大角,小边对小角,确定第三边的长,从而保证三角形的形状.如取较小的两边是6,8,若是直角三角形,则第三边应是10.故要保证它是锐角三角形,只需取9.要保证它是钝角三角形,只需取11.证明的时候,充分运用勾股定理结合完全平方公式即可分析证明.【解答】解:(1)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=9mm.比较=a2+b2>c2;(2)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=11mm.比较a2+b2<c2;(3)若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.当△ABC是锐角三角形时,理由:过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a﹣x.根据勾股定理,得b2﹣x2=AD2=c2﹣(a﹣x)2,即b2﹣x2=c2﹣a2+2ax﹣x2.∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0;∴a2+b2>c2.当△ABC是钝角三角形时,理由:过B作BD⊥AC,交AC的延长线于D.设CD为x,则有BD2=a2﹣x2,根据勾股定理,得(b+x)2+a2﹣x2=c2,即a2+b2+2bx=c2.∵b>0,x>0,∴2bx>0,∴a2+b2<c2.【点评】本题考查了勾股定理的证明,在给定三角形的三边的时候,还要注意三角形的三边关系.注意勾股定理的熟练运用以及完全平方公式的灵活变形.。

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)班级 姓名 学号一、选择题:1.设一个直角三角形的两直角边分别是a ,b ,斜边是c .若用一把最大刻度是20cm 的直尺,可一次直接测得c 的长度,则a ,b 的长可能是( )A .a =12,b =16B .a =11,b =17C .a =10,b =18D .a =9,b =192.在△ABC 中,AC=9,BC=12,AB=15,则AB 边上的高是( )A .365B .1225C .94D 3.已知,一轮船以16海里/时的速度从港口A 出发向北偏东63?方向航行,另一轮船以8海里/时的速度同时从港口A 出发向南偏东27 方向航行,则离开港口1小时后,两船相距( )A .B .海里C .16海里D .24海里4.如图,一根木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处,木杆折断之前的高度是( )A .5mB .6mC .7mD .8m5.如图,牧童在 A 处放牛,牧童家在 B 处, A , B 处距河岸 DC 的距离 AC 、 BD 的长分别为5km 和10km ,且 C , D 两点的距离为8km ,天黑前牧童从 A 处将牛牵到河边饮水再回家,那么牧童最少要走的距离为( ).A .15kmB .16kmC .17kmD .18km6.如图,点A ,B 是棱长为1的立方体的两个顶点,若将该立方体按图中所示展开,则在展开图中,A ,B 两点间的距离是( )AB C D7.如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A .2B .3C .4D .58.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .B .C .D .7二、填空题: 9.在Rt ABC 中90C ∠=︒,4AB =则222AB AC BC ++= .10.如果△ABC 的三边长a 、b 、c 满足关系式(a+2b ﹣60)2+|b ﹣18|+|c ﹣30|=0,则△ABC 的形状是 .11.将一根长为17cm 的筷子,置于内径为6cm 高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为x cm ,则x 的取值范围是 .12.如图,等腰ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm ,则AD= cm .13.Rt △ABC 中,∠B =90°,D 为BC 上的一点,若DC =DA =5,△ACD 的面积为10,则BD 的长为 .14.如图,在ABC 中,90301ABC A BC M N ︒︒∠=∠==,,,,分别是AB AC ,上的任意一点,求MN NB +的最小值为 .三、解答题:15.如图,小丽想知道自家门前小河的宽度,于是她测出如下数据:在河岸选取A点,A点对岸选取参照点C,测得∠A=30°;她沿河岸向前走了30米选取点B,并测得∠CBD=60°.根据数据能否测得小河宽度?若能请算出小河宽度,若不能请说明理由.16.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.17.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2﹣BD2=AC2.18.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙OB=7米,这个梯子的顶端距地面AO有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了BB´几米?19.如图,ABC 是等边三角形,D 是边AB 上一点,以CD 为边作E 等边CDE ,DE 交AC 于点F ,连接AE(1)求证:BCD ≌.ACE(2)若6BC =,2AE =求CD 的长.20.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?参考答案:1.A 2.A 3.B 4.D 5.C 6.C 7.B 8.A9.3210.直角三角形11.7≤x ≤912.413.314.1.515.解:能测出小河的宽度.原因如下:过C 作CE ⊥AD 于点E∵∠CBD=60°∴∠ABC=120°∴A=∠ACB=∠ECB=30°∴BC=AB=30,BE=15.根据勾股定理得: 22CB BE -223015-3 .综上,小河宽度为3米.16.解:连接BD ,作OB ⊥CD 于点O∵在直角三角形BCO 中,∠BCD=60°,AB 长为4m ,C 为AB 的中点∴OC= 112BC = m ,33 m在直角三角形BOD 中,设CD 为x ,OD=DC-OC=x-1,BD=CD-0.5=x-0.5,3可得: 222(0.5)(1)3)x x -=-+解得:x=3.75答:CD 的长为3.75m .17.解:证明:连接AP ,如图所示AD 2﹣BD 2=AP 2﹣PD 2﹣(BP 2﹣PD 2)=AC 2+CP 2﹣PD 2﹣BP 2+PD 2=AC 2+CP 2﹣BP2 ∵P 为BC 中点∴CP=BP∴CP 2﹣BP 2=0∴AD 2﹣BD 2=AC 2.18.(1)解:在Rt △AOB 中,AB=25米,OB=7米,OA 2222257AB OB =-=-= 24(米). 答:梯子的顶端距地面24米;(2)解:在Rt △AOB 中,A'O=24﹣4=20米,OB' 2222'''2520A B OA =--= 15(米),BB'=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.19.(1)证明:ABC 与CDE 是等边三角形 AC BC ∴=,CD CE =和60ACB DCE ∠=∠=BCD ACE ∴∠=∠BCD ∴≌()ACE SAS(2)解:如图,作DG BC ⊥于点GBCD ≌ACE2.BD AE ∴==60B ∠=1BG ∴= 3DG =615CG BC BG ∴=-=-=222827.CD CG DG ∴=+==20.(1)解:∵出发2秒后AP=2cm∴BP=8-2=6(cm ),BQ=2×2=4(cm )在Rt △PQB 中,由勾股定理得:22PB BQ +=13cm ),即出发2秒后,PQ 的长为13(2)解:在运动过程中,△PQB 能形成等腰三角形AP=t ,BP=AB-AP=8-t ,BQ=2t由PB=BQ 得:8-t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形. (3)解:在Rt △ABC 中,由勾股定理得:22AB BC +=10=10(cm );∵AP=t ,BP=AB-AP=8-t ,BQ=2t ,QC=6-2t ,线段PQ 第一次把直角三角形周长分成相等的两部分 ∴AC+AP+QC=PB+BQ∴10+t+(6-2t)=8-t+2t解得t=4(cm ),即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分。

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷三个大题,24个小题。

满分100分,考试时间120分钟。

) 学校 班级 姓名 学号一、选择题(本大题共有10个小题,每小题3分,共30分)1. 如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )A .5米B .6米C .7米D .8米2 . 在ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,则由下列条件:(1)A B C ∠∠=∠+;(2)123A B C ∠∠∠=::::;(3)222a c b =-;(4)::1:2:3a b c = 能判定ABC 为直角三角形的有( )A .1个B .2个C .3个D .4个3 . 开学之际,为了欢迎同学们,学校打算在主楼前的楼梯上铺地毯.如图,这是一段楼梯的侧面,它的高BC 是3米,斜边AB 是5米,则该段楼梯铺上地毯至少需要的长度为( )A .8米B .7米C .6米D .5米4. 如图,一圆柱高12cm ,底面半径为3cm ,一只蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程(π取3)是( )A.15cm B.21cm C.24cm D.28 cm5.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.2.7米 B.2.5米C.2米D.1.8米6 . 如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cm B.12cm C.13cm D.14cm7 . 如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕则△BDE的周长为()A.6 B.8 C.12 D.148. 如图,秋千静止时,踏板离地的垂直高度1m =BE ,将它往前推6m 至C 处时(即水平距离6m CD =),踏板离地的垂直高度4m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .21m 2B .15m 2C .6mD .9m 2如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图” 其中90ABC ∠=︒,AC=13cm ,AB=5cm ,则阴影部分的面积是( )2cm .A .169B .25C .49D .6410.勾股定理与黄金分割并称为几何学中的两大瑰宝勾股定理的发现可以称为是数学史上的里程碑,2000多年来,人们对它进行了大量的研究,至今已有几百种证法.利用图形中有关面积的等量关系可以证明勾股定理,利用如图①的直角三角形纸片拼成的②③④⑤四个图形中,可以证明勾股定理的图形有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有8个小题,每小题3分,共24分)走“捷径”,仅仅少走了米.11.如图,某处有一块长方形草坪,有极少数人为了避开拐角AOB12.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺,如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',示意图如图,则水深为尺13 . 如图,数轴上的点C所表示的数为________14 . 如图,有一个圆柱体,它的高为20,底面周长为30,如果一只蚂蚁要从圆柱体下底面的A点沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为.15.荡秋千(图1)是中国古代北方少数民族创造的一种运动.有一天,赵彬在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度 0.5m DE =,将它往前推送 1.8m (水平距离 18m .=BC )时,秋千的踏板离地的垂直高度 1.1m BF CE ==,秋千的绳索始终拉得很直,则绳索AD 的长度是_______.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧 两弧相交于点M 和N ,②作直线MN 交边AB 于点E ,若5,4AC BE ==,∠B=45°,则AB = .17. 如图,在ABC 中::3:4:5AB BC CA =,且周长为36cm ,点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿BC 边向点C 以每秒2cm 的速度移动.若同时出发,则过3秒时,BPQ 的面积为 2cm .18. 如图,在ABC 中90C ∠=︒,点D 为BC 边上一点,将ACD 沿AD 翻折得到AC D ',若点C '在AB 边上,68AC BC ==,则AD 的长为 .三、解答题(本大题共有6个小题,共46分)19.如图,四边形ABCD 中,∠B =90°,AB=3,BC=4,CD=13,AD=12,求四边形ABCD 的面积.20 . 如图,小丽发现,秋千静止时踏板离地面的垂直高度0.5m DE =,将它往前推送至点B ,测得秋千的踏板离地面的垂直高度 1.1m BF =,此时水平距离 1.8m BC EF ==,秋千的绳索始终拉的很直,求绳索AD 的长度.21 .如图,在5×5的方格纸中,每一个小正方形的边长都为1.(1)∠BCD 是不是直角?请说明理由.(2)求四边形ABCD 的面积.22.一架云梯长25米,如图,靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距离地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了多少米?23 .如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,BPE是直角三角形?24.课本再现如图1,有一个圆柱,它的高为12cm,底面圆的周长为18cm.在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,蚂蚁沿圆柱侧面爬行的最短路程是多少?方法探究对于立体图形中求最短路程问题,应把立体图形展开成平面图形,再确定A,B两点的位置依据“两点之间线段最短”,结合勾股定理,解决相应的问题.如图2,在圆柱的侧面展开图中点A,B对应的位置如图所示,利用勾股定理求出蚂蚁爬行的最短路程是______cm.方法应用(2)如图3,直四棱柱的上下底面是正方形,底面边长为3cm,高为10cm.在其侧面从点A开始,绕侧面两周,嵌入装饰彩条至点B停止.求彩条的最短长度.(1)如图4,圆柱形玻璃杯底面周长为30cm ,高为35cm ,杯底厚1cm .在玻璃杯外壁距杯口2cm 的点A 处有一只蚂蚁,蚂蚁相对面的内壁底部B 处有一滴蜂蜜,蚂蚁沿杯口爬入内壁去吃蜂蜜,求蚂蚁爬行的最短路径长.(玻璃杯的壁厚忽略不计)参考答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】D 【分析】由题意得:在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】∵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处 ∴折断的部分长为2234+=5∴折断前高度为5+3=8(米).故选:D .2 .【答案】C 【分析】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.利用勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【详解】解:(1)A B C ∠+∠=∠ 180A B C ∠+∠+∠=︒180C C ∴∠+∠=︒90C ∴∠=︒ABC ∴为直角三角形;(2)::1:2:3A B C ∠∠∠= 180A B C ∠+∠+∠=︒318090123C ∴∠=⨯︒=︒++ ABC ∴为直角三角形;(3)222a c b222a b c ∴+=ABC ∴为直角三角形;(4)::1:2:3a b c =∴设a k = 2b k = 3c k =(其中0)k ≠222a b c ∴+≠ABC ∴不是直角三角形故选:C3 .【答案】B 【分析】本题考查的是勾股定理的应用,以及利用平移可知地毯的长为AC BC +的和,解题的关键是能熟练掌握勾股定理以及数形结合的方法;先根据勾股定理求出AC 的长,进而可得出结论.【详解】解:ABC 是直角三角形 3m 5m BC AB ==,224m AC AB BC ∴-=∴如果在楼梯上铺地毯,那么至少需要地毯为7m AC BC +=故选:B .4.【答案】A 【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图∵圆柱高12cm ,底面半径为3cm ∴2312cm,392BC AC ππ⨯==== ∴在Rt △ACB 中,由勾股定理得2215cm AB AC BC +=∴蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程为15cm ;故选A .5.【答案】A 【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】由题意可得:2220.7 2.4 6.25AD =+=在Rt ABC 中90ABC ∠=︒ 1.5BC =米 222BC AB AC +=∴221.5 6.25AB +=∴2AB =±0AB >∴2AB =∴小巷的宽度为0.72 2.7+=(米).故选A .6 .【答案】C 【详解】解:∵侧面对角线BC 2=32+42=52∴CB =5(cm)∵AC =12(cm)∴AB 22125+(cm )∴空木箱能放的最大长度为13cm故选:C .7 .【答案】C 【分析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt △ABC 中∵AC =6,BC =8,∠C =90°∴AB 2268+10由翻折的性质可知:AE =AC =6,CD =DE∴BE =4∴△BDE 的周长=DE +BD +BE =CD +BD +E =BC +BE =8+4=12.故选:C .8.【答案】B 【分析】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.设绳索AC 的长是x m ,则AB x =m ,求出(3)m AD AB BE DE x =+-=-,然后在Rt ACD △中,由勾股定理得出方程,解方程即可.【详解】解:设绳索AC 的长是x m ,则AB x =m4m DE FC == 1m =BE14(3)m AD AB BE DE x x ∴=+-=+-=-在Rt ACD △中,由勾股定理得:222AC AD CD =+即222(3)6x x =-+ 解得:152x = 即绳索AC 的长是15m 2 故选:B .9.【答案】C 【分析】本题考查了勾股定理的应用,解题的关键是掌握直角三角形中两直角边的平方和等于斜边的平方.在Rt ABC △中,先根据勾股定理求出BC 的长,然后用大正方形的面积减去4个小三角形的面积即可求出阴影部分的面积.【详解】解:90ABC ∠=︒ 13cm AC = 5cm AB =2212(cm)BC AC AB ∴- 则阴影部分的面积是()211313451249cm 2⨯-⨯⨯⨯= 故选:C .10.【答案】C 【分析】利用面积与恒等式,②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理; ③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即可求解.【详解】解:根据题意得:②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理;③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和,即 ()221112222a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142c ab b a =⨯+- 整理得:222+=a b c ,可以证得勾股定理;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;所以可以证明勾股定理的图形有③④⑤,共3个.故选:C四、填空题(本大题共有8个小题,每小题3分,共24分)11.【答案】4【分析】利用勾股定理求出AB 的长即可得到答案.【详解】解:∵在AOB 中6m 8m 90OA OB AOB ===︒,,∠ ∴2210m AB OA OB +=∴4m OA OB AB +-=∴仅仅少走了4米故答案为:4.12.【答案】12【分析】此题主要考查了勾股定理的应用.我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则5B C '=尺,设出AB AB x '==尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:依题意画出图形,设芦苇长AB AB x ='=尺,则水深()1AC x =-尺因为10B E '=尺,所以5B C '=尺在Rt AB C '△中()22251x x +-=解之得13x =即水深12尺,芦苇长13尺.故答案为:12.13 .【答案】10AB 的长,再根据数形结合即可求解. 【详解】解:∵221310AB +=∴点C 所表示的数为10- 故答案为:10-14 .【答案】25【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理即可求解.【详解】解:将圆柱体侧面沿A 点所在直线展开,点A ,B 的最短距离为线段AB 的长由上图可知:30152AC == 20BC = ∴AB 为最短路径22201525+.则蚂蚁爬的最短路线长约为25.故答案为:25.15.【答案】3m 【分析】本题考查了勾股定理的应用,设绳索AD 的长度为m x ,则()0.6m AC x =-,在Rt ACB中,由勾股定理得出方程,解方程即可.由勾股定理得出方程是解题的关键.【详解】解:由题意得:90ACB ∠=︒在Rt ACB 中,由勾股定理得:222AC BC AB +=设绳索AD 的长度为m x ,则()()1.10.50.6m AC AD DE CE x x =+-=-+=-∴()2221.80.6x x =+-解得:3x =答:绳索AD 的长度是3m .16.【答案】 7 【分析】本题考查中垂线的性质,勾股定理.连接CE ,得到BE CE =,进而得到45BCE B ∠=∠=︒,推出90BEC ∠=︒,勾股定理求出AE 的长,再用AE BE +进行求解即可.【详解】解:连接CE ,由作图可知:MN 垂直平分BC∴BE CE =∴45BCE B ∠=∠=︒∴90BEC ∠=︒∴90AEC ∠=︒ ∴223AE AC CE -∴7AB AE BE =+=;故答案为:7.17.【答案】18 【分析】首先设AB 为3x cm ,BC 为4x cm ,AC 为5x cm ,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP ,BQ 的长,利用三角形的面积公式计算求解.【详解】解:设AB 为3x cm ,BC 为4x cm ,AC 为5x cm∵周长为36cm则AB +BC +AC =36cm∴3x +4x +5x =36解得x =3∴AB =9cm ,BC =12cm ,AC =15cm∵AB 2+BC 2=AC 2∴△ABC 是直角三角形过3秒时,BP =9﹣3×1=6(cm ),BQ =2×3=6(cm )∴S △PBQ =12BP •BQ =12×(9﹣3)×6=18(cm 2).故答案为:18.18.【答案】35【分析】本题考查了翻折变换的性质,勾股定理等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.由勾股定理求出10AB =,由折叠的性质得出CD DC '= 906C AC D AC AC ''∠=∠=︒==, 得出490BC AB AC BC D '''=-=∠=︒, 设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得出方程,可求BD 长,由勾股定理可求AD 的长.【详解】解:由折叠可知:CD DC '= 906C AC D AC AC ''∠=∠=︒==,在Rt ABC △中,由勾股定理得:2210AB AC BC +=∴490BC AB AC BC D '''=-=∠=︒,设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得:()22248x x =+-∴5x =∴53BD CD ==, ∴2236935AD AC CD =+=+=故答案为:35三、解答题(本大题共有6个小题,共46分)19.【答案】36【分析】连接AC ,首先根据勾股定理求出5AC =,然后根据勾股定理的逆定理得到ACD 是直角三角形,最后根据三角形面积公式求解即可.【详解】解:连接AC ,在ABC 中∵∠B =90° 3AB = 4BC = ∴2222435AC AB BC ++=1143622ABCS AB BC =⋅=⨯⨯= 在ACD 中 ∵13CD = 12AD = 5AC =∴222AD AC CD +=∴ACD 是直角三角形 ∴115123022ACD S AC AD =⋅=⨯⨯=. ∴四边形ABCD 的面积63036ABC ACD S S =+=+=.20.【答案】3m 【分析】设绳索AD 的长度为m x ,则(0.6)m AC x =-,在Rt ABC △中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD 长为m x ,则AB 为m x∵四边形BCEF 是矩形1.1m BF CE ∴==0.5m DE =0.6m CD ∴=则AC 为()0.6m x -在Rt ABC △中,由勾股定理得:222AC BC AB +=,即:()2220.6 1.8x x -+=解得:3x =∴绳索AD 的长度为3m .21 .【答案】(1)∠BCD =90°,理由见解析;(2)14.5.【分析】(1)连接BD ,由于每一个小正方形的边长都为1,根据勾股定理可分别求出△BCD 的三边长,根据勾股定理的逆定理即可判断出△BCD 的形状;(2)BCE ABH ADI DCFAHEJ DFJI ABCD S S S S S S S =-----正方形正方形四边形. 【详解】解:(1)∠BCD 是直角,理由如下:连接BD∵BC 2242+5CD 2221+5BD 2243+∴BC 2+CD 2=BD 2∴△BCD 为直角(2)S 四边形ABCD =S 正方形AHEJ -S △BCE -S △ABH -S △ADI -S △DCF -S 正方形DFJI所以S 四边形ABCD =5×5-12×4×2-12×2×1-1×1-12×4×1-12×5×1 =25-4-1-1-2-52=292.22.【答案】(1)这个梯子的顶端距离地面有24米高(2)梯子的底端在水平方向滑动了8米【分析】本题考查勾股定理的实际应用.(1)在Rt AOC 中,直接利用勾股定理进行求解即可;(2)在Rt BOD 中,利用勾股定理求出OB 的长,用OB 的长减去OA 的长,求解即可;掌握勾股定理,是解题的关键.【详解】(1)解:在Rt AOC 中25m AC = 7m AO = ∴2224m CO AC AO -=;答:这个梯子的顶端距离地面有24米高;(2)∵24420m OD CO CD =-=-=在Rt BOD 中25m BD AC == ∴2215m BO BD OD -=∴8m AB BO AO =-=.答:梯子的底端在水平方向滑动了8米.23 .【答案】(1)5;(2)当t =7或53秒时,△BPE 为直角三角形.【分析】(1)根据勾股定理计算即可; (2)分∠BPE =90°、∠BEP =90°两种情况,根据勾股定理计算.【详解】解:(1)由题意知,CD =AB =10,DE =7,BC =4CE =CD -DE =10﹣7=3在Rt △CBE 中,BE 2222435BC CE +=+;(2)①当以P 为直角顶点时,即∠BPE =90°AP =10﹣3=7,则t =7÷1=7(秒)②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得BE 2+PE 2=BP 2设AP =t10BP t =- 2224(7)PE t =+-即52+42+(7﹣t )2=(10﹣t )2解得,t =53当t =7或53秒时,△BPE 为直角三角形. 24.【答案】(1)15;(2)26cm (3)39cm【分析】本题考查勾股定理、几何体的展开图.根据题意得出蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长求出AC ,BC ,根据勾股定理求出AB 即可.根据绕两圈到B ,则展开后相当于求出Rt ABC △的斜边长,并且24cm,10cm AC BC == 根据勾股定理求出即可.(3)将杯子侧面展开,建立A 关于MN 的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】解:(1)根据题意得出:蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长 由题意得:9cm,12cm AC BC ==.在Rt ABC △中,由勾股定理得:()222212915cm AB AC BC ++所以,蚂蚁沿圆柱侧面爬行的最短路程是15cm故答案为:15.(2)如图所示∵从点A 开始经过4个侧面缠绕2圈到达点B∴展开后()3cm 824cm 10cm,AC BC =⨯==, 由勾股定理得:2222241026cm AB AC BC ++所以彩条的最短长度是26cm .(3)展开玻璃杯的侧面,如图作点A 关于MN 的对称点A ',连接A B ',作BC A A '⊥于点C ,则 15BC = 2A M AM '== 35134CM =-= 36CA CM A M ''=+=. 在Rt A BC '中,2222153639cm A B BC CA ''=++= 所以蚂蚁爬行的最短路径长为39cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级下册第17章勾股定理
单元测试试卷(A卷)
(时间90分钟满分100分)
班级学号姓名得分
一、填空题(共14小题,每题2分,共28分)
1.△ABC,∠C=90°,a=9,b=12,则c=__________.
2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.
3.等边三角形的边长为6 cm,则它的高为__________.
4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.
5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.
6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.
7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.
8.等腰三角形的两边长为2和4,则底边上的高为__________.
9.若等腰直角三角形斜边长为2,则它的直角边长为_______.
10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC是三角三角形.
12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .
A B C D
13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.

19
题②
第19题①
二、选择题(共4小题,每题3分,共12分)
15.下列各组数中,不能构成直角三角形的一组是 ( )
A .1,2,5
B .1,2,3
C .3,4,5
D .6,8,12
16.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于 ( )
A .6
B .6
C .
5
D .4
17.已知三角形的三边长之比为1∶1∶2,则此三角形一定是 ( )
A .锐角三角形
B .钝角三角形
C .等边三角形
D .等腰直角三角形
18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )
A .4 cm
B .8 cm
C .10 cm
D .12 cm
三、解答题(共60分) 19.(5分)如图,每个小正方形的边长是1.
①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.
第13题 第16题
20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?
21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 k m,请根据上述数据,求出隧道BC的长(精确到0.1 k m).
2.8米
9.6米
22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.
23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .
B
C
A
D
24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方30米B处,过了2秒后,测得小汽车C与车速检测仪A间距离为50米,这辆小汽车超速了吗?
25.(6分)如图,△ABC中,CD⊥AB于D.
(1)图中有__________
个直角三角形;
A.0B.1C.2D.3 (2)若AD=12,AC=13则CD=__________.
(3)若CD2=AD·DB,求证:△ABC是直角三角形.
26.(6分)小明把一根长为160 cm的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?
27.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B 两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?
28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:
(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).
(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).
(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论
是:.
(1)(2)
参考答案
一、填空题
1.15 2.10 3.33cm 4.1∶3∶2 5.
13
60
6.12+63 7. 96 8.15 9 10.30cm 2 11.直角 12.A A 不是直角三角形,B 、C 、D 是直角三角形 13.2+23 14. 5或7
二、选择题
15.D 16.B 17.D 18.C 三、解答题
19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²。

相关文档
最新文档