金属表面热处理渗碳工艺对比
钢的五种热处理工艺

钢的五种热处理工艺热处理工艺——表面淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。
2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。
3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油)快速冷却叫淬火。
◆表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。
在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。
由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。
感应表面淬火后的性能:1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3单位(HRC)。
2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。
这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。
3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。
对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。
一般硬化层深δ=(10~20)%D。
较为合适,其中D。
为工件的有效直径。
◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。
金属材料热处理方法有几种

金属材料热处理方法有几种?各有什么特点?金属材料热处理方法有退火、谇火及回火,渗碳、氮化及氰化等。
(1) 退火处理退火处理按工艺温度条件的不同,可分为完全退火、低温退火和正火处理。
①完全退火是把钢材加热到Ac3 (此时铁素体开始溶解到奥氏体中,指铁碳合金平衡图中Ac3,即临界温度)以上20〜30℃,保温一段时间后,随炉温缓冷到400〜500(,然后在空气中冷却。
完全退火适用于含碳量小于0.83%的铸造、锻造和焊接件。
目的是为了通过相变发生重结晶,使晶粒细化,减少或消除组织的不均匀性,适当降低硬度,改善切削加工性,提高材料的韧性和塑性,消除内应力。
② 低温退火是一种消除内应力的退火方法。
对钢材进行低温退火时.先以缓慢速度加热升温至500〜600匸,然后经充分的保温后缓慢降温冷却。
低温退火(消除内应力退火)主要适用于铸件和焊接件,是为了消除零件铸造和焊接过程中产生的内应力,以防止零件在使用工作中变形。
采用这种退火方法,钢材的结晶组织不发生变化。
③ 正火是退火处理中的一种变态,它与完全退火不同之处在于零件的冷却是在静止的空气中,而不是随炉缓慢降温冷却。
正火处理后的晶粒比完全退火更细,增加了材料的强度和韧性,减少内应力,改善低碳钢的切削性能。
正火处理主要适合那些无需调质和淬火处理的一般零件和不能进行淬火和调质处理的大型结构零件。
正火时钢的加热温度为753〜900°C。
(2) 淬火及回火处理淬火可分整体淬火和表面淬火,淬火后的钢一般都要进行回火。
回火是为了消除或降低淬火钢的残余应力,以使淬火后的钢内纟且织趋于稳定。
钢材淬火后为了得到不同的硬度,回火温度可采用几种温度段。
① 淬火后低温回火目的是为了降低钢中残余应力和脆性、而保持钢淬火后的高硬度和耐磨性,硬度在HRC58〜64范围内。
适合于各种工具、渗碳零件和滚动轴承。
回火温度为150〜250匸。
② 淬火后中温回火目的是为了保持钢材有一定的韧性、在此基础上提高其弹性和屈服极限。
机械加工常见热处理工艺

渗碳渗碳热处理渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。
相似的还有低温渗氮处理。
这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
概述渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。
也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。
渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。
渗碳后﹐钢件表面的化学成分可接近高碳钢。
工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。
渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。
渗碳工艺在中国可以上溯到2000年以前。
最早是用固体渗碳介质渗碳。
液体和气体渗碳是在20世纪出现并得到广泛应用的。
美国在20年代开始采用转筒炉进行气体渗碳。
30年代﹐连续式气体渗碳炉开始在工业上应用。
60年代高温(960~1100℃)气体渗碳得到发展。
至70年代﹐出现了真空渗碳和离子渗碳。
分类按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。
气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。
固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。
液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,―603‖渗碳剂等。
渗碳常用工艺

渗碳常用工艺
渗碳是一种提高钢件表面硬度和耐磨性能的热处理工艺,其常用工艺包括气体渗碳、盐浴渗碳和真空渗碳。
气体渗碳主要是将钢件置于渗碳气氛中进行处理,温度一般在850℃~950℃之间。
常用的渗碳气氛有氨气、乙炔等,可以根据不同的要求进行选择。
盐浴渗碳是将钢件浸入含有渗碳剂的盐浴中进行处理,温度一般在820℃~950℃之间。
盐浴渗碳有助于提高渗碳深度和均匀性,但需要注意防止盐浴的腐蚀性对钢件造成损害。
真空渗碳则是在真空环境下进行处理,温度一般在900℃~1050℃之间。
真空渗碳可以保证渗碳剂的纯净性和均匀性,有利于提高钢件表面的耐磨性和疲劳寿命。
以上三种渗碳工艺各有特点,可以根据具体的钢件材料和使用环境进行选择。
在实际应用中,还需要注意渗碳剂的选择、渗碳时间和渗碳深度等因素,以确保钢件表面硬度和耐磨性能的提高。
- 1 -。
表面化学热处理技术

化学热处理渗碳:为了获得高硬度、高耐磨的表面及强韧的心部,渗碳后必须进行淬火加低温回火处理。
按渗碳介质可分为:气体渗碳、液体渗碳、固体渗碳。
渗氮:①渗氮层具有高硬度、高耐磨性;②渗氮层比热容打,在钢件表面形成压应力层可显著提高耐疲劳性能,渗氮层的耐疲劳性优于渗碳层;③渗氮层表面有化学稳定性高的ε相,能显著提高耐腐蚀性。
渗氮能形成性能优越的渗氮层,但由于工艺时间太长,使得生产率太低,成本高,应尽量少采用。
渗氮一般用在强烈磨损、耐疲劳性要求非常高的零件,有的场合是除要求机械性能外还要求耐腐蚀的零件。
碳氮共渗(俗称“氰化”):按工艺温度分:低温碳氮共渗(520-580℃),工艺温度低,共渗过程是以氮原子为主、碳原子为辅的渗入过程,俗称“软氮化”;中温碳氮共渗(780-880℃);高温碳氮共渗(880-930℃)。
优点:①与渗碳相比处理温度低,渗后可直接淬火,工艺简单,晶粒不易长大,变形裂倾向小,能源消耗少,共渗层的疲劳性和抗回火稳定性好;②与渗氮相比,生产周期大大缩短,对材料适用广。
氮碳共渗:氮碳共渗起源于西德,是在液体渗氮基础上发展起来的。
早期氮碳共渗是在含氰化物的盐浴中进行的。
由于处理温度低,一般在500-600℃,过程以渗氮为主,渗碳为辅,所以又称为“软氮化”。
氮碳共渗工艺的优点如下:①氮碳共渗有优良的性能:渗层硬度高,碳钢氮碳共渗处理后渗层硬度可达HV570-680;渗氮钢、高速钢、模具钢共渗后硬度可达HV850-1200;脆性低,有优良的耐磨性、耐疲劳性、抗咬合性和耐腐蚀性。
②工艺温度低,且不淬火,工件变形小。
③处理时间短,经济性好。
④设备简单,工艺易掌握。
存在问题是:渗层浅,承受重载荷零件不宜采用。
渗硼:渗硼是一种有效地表面硬化工艺。
将工件置于能产生活性硼的介质中,经过加热、保温,使硼原子渗入工件表面形成硼化物层的过程称为渗硼。
金属零件渗硼后,表面形成的硼化物(FeB、Fe2B、TiB2、ZrB2、VB2、CrB2)及碳化硼等化合物的硬度极高,热稳定性。
表面渗碳处理工艺

表面渗碳处理工艺渗碳与渗氮一般是指钢的表面化学热处理渗碳必须用低碳钢或低碳合金钢。
可分为固体、液体、气体渗碳三种。
应用较广泛的气体渗碳,加热温度900-950℃。
渗碳深度主要取决于保温时间,一般按每小时0.2-0.25mm估算。
表面含碳量可达百分之0.85-1.05。
渗碳后必须热处理,常用淬火后低温回火。
得到表面高硬度心部高韧性的耐磨抗冲击零件。
渗氮应用最广泛的气体渗氮,加热温度500-600℃。
氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6mm,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650℃。
工件变形小,可防止水、蒸气、碱性溶液的腐蚀。
但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。
主要用来处理重要和复杂的精密零件。
涂层、镀膜是物理的方法。
“渗”是化学变化,本质不同。
钢的渗碳---就是将低碳钢在富碳的介质中加热到高温(一般为900--950℃),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。
随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。
渗碳钢的化学成分特点1)渗碳钢的含碳量一般都在0.15--0.25%范围内,对于重载的渗碳体,可以提高到0.25--0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。
但含碳量不能太低,否则就不能保证一定的强度。
2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。
在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。
常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56--62HRC。
但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。
2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。
碳氮共渗和渗碳

碳氮共渗和渗碳
碳氮共渗和渗碳是热处理中常见的两种工艺。
这两种工艺都是为
了在金属材料表面形成一层淬火硬化层,提高材料的硬度和耐磨性。
下面将介绍这两种工艺的基本原理和应用。
碳氮共渗是指同时在金属材料表面扩散一定浓度的碳和氮原子。
在热处理过程中,一定温度下将金属件浸入含有碳和氮的混合气体中,使得碳和氮原子渗入金属表面,与金属原子共同形成一层淬火硬化层。
这种工艺适用于低碳合金钢、工具钢等材料的淬火处理,可以提高材
料的硬度和耐磨性,延长材料的使用寿命。
渗碳是指在金属材料表面扩散一定浓度的碳原子。
在热处理过程中,将金属件浸入含有碳的气体中,使得碳原子渗入金属表面形成一
层淬火硬化层。
渗碳工艺适用于低碳合金钢、铬钼钢等材料的淬火处理。
与碳氮共渗相比,渗碳工艺更加经济实惠,但硬化层的厚度相对
较薄,且耐热性能较差。
在实际应用中,选择碳氮共渗或渗碳工艺需要考虑许多因素,例
如金属种类、加工要求、环境污染等。
因此,发展新型热处理工艺和
选择可持续发展的材料成为了热处理技术研究的重要方向。
总的来说,碳氮共渗和渗碳是热处理工艺中常用的两种硬化工艺,适用范围较广。
在实际应用中,需要根据具体情况选择合适的工艺,
并注重环境保护,推动热处理技术的可持续发展。
金属热处理及表面处理工艺

一、热处理工艺简解1、退火操作方法:将钢件加热到Ac3+30~50°C或Acl+30~50°C或Acl以下的温度(能够查阅有关材料)后,通常随炉温缓慢冷却。
意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能;2.细化晶粒,改进力学功能,为下一步工序做准备:3.消除冷、热加工所发生的内应力。
运用关键:1.适用于合金布局钢、碳素东西钢、合金东西钢、高速钢的锻件、焊接件以及供给状况不合格的原材料;2.通常在毛坯状况进行退火。
2、正火操作方法:将钢件加热到Ac3或Accm以上30~50"C,保温后以稍大于退火的冷却速度冷却。
意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能:2.细化晶粒,改进力学功能,为下步工序做准备:3.消除冷、热加工所发生的内应力。
运用关键:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
关于功能需求不高的低碳的和中碳的碳素布局钢及低合金钢件,也可作为最终热处理。
关于通常中、高合金钢,空冷可致使彻底或部分淬火,因而不能作为最终热处理工序。
3、淬火操作方法:将钢件加热到相变温度Ac3或Acl以上,保温-段吋刻,然后在水、硝盐、油、或空气中疾速冷却。
意图:淬火通常是为了得到高硬度的马氏体安排,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单-•均匀的奥氏体安排,以进步耐磨性和耐蚀性。
运用关键:1.通常用于含碳量大于百分Z零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但一起会构成很大的内应力,下降钢的塑性和冲击韧度,故要进行回火以得到较好的归纳力学功能。
4、回火操作方法:将淬火后的钢件从头加热到Acl以下某■温度,经保温后,于空气或油、热水、水中冷却。
意图:1.下降或消除淬火后的内应力,削减工件的变形和开裂;2.调整硬度,进步塑性和耐性,取得作业所需求的力学功能;3.安稳工件尺度。
运用关键:1.坚持钢在淬火后的高硬度和耐磨性时用低温回火;在坚持必定韧度的条件下进步钢的弹性和屈从强度时用中温回火:以坚持高的冲击韧度和塑性为主,又有满足的强度时用高温回火:2.通常钢尽量防止在230-280 °C >不锈钢在400~450°C 之间回火,因为这时会发生一次回火脆性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属表面热处理渗碳工艺的对比一、热处理发展历史在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。
②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。
③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。
④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。
⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。
⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。
⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。
与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。
⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。
⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。
⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。
最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。
20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。
随后又有一系列其它类别的合成淬火剂商品问世。
⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。
各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。
•⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。
•⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。
近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。
二、氨气的作用:提高淬透性渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。
普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。
非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。
在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。
尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。
对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件产生开裂或严重的变形。
因此在零件变形允许的条件下,尽可能采用激烈的冷却介质和采取剧烈的冷却方式。
例如对大的轴齿类零件采用强力搅拌的冷却方式,可以有效地提高齿轮心部硬度及减少非马氏体组织。
在渗碳工艺的扩散段,当炉温降至860℃左右时,开始通入氨气(流量为0.3m3/h),一直到零件淬火关闭。
该方法的原理是,通入氨气给零件渗氮,由于氮原子的渗入,可以补充由于内氧化减少的合金元素,在一定程度上提高了零件表层的淬透性,因此减少了非马氏体组织。
(参考文献:李新斌,齿轮渗碳淬火表层非马氏体组织产生的原因及对策[J].热加工工艺,2010,39(04):161-172.)三、各种渗碳方法的比较四、铝合金淬火介质的分类及特性实际使用的淬火介质种类繁多,一般可分为液体(水、无机物水溶液、有机聚合物水溶液、淬火油、熔融金属、熔盐、熔碱等)、气体(空气、压缩空气、液化气等)、固体(流态床、金属板等)三大类。
其中,水、无机物水溶液、有机聚合物水溶液、各种淬火油等,在淬火时要发生物态转变,而气体、熔盐金属、熔碱、熔盐等,在淬火时则不发生物态变化.工件淬火希望的理想效果是获得高而均匀的表面硬度和足够的淬硬深度,消除淬火裂纹和减小淬火变形。
即实现“高温阶段快冷,低温阶段慢冷”的理想冷却。
通常对淬火介质特性的要求是应满足冷却转变曲线对冷却速度的要求,避免工件变形和开裂;淬火后工件表面应保持清洁;在使用过程中性能稳定,不分解、不变质、不老化、易于控制;工件浸入时不产生大量烟雾和有害气体,以保持良好的劳动条件;便于配置、运输和存储,使用安全:原材料易得,成本廉价。
淬火介质的冷却能力,主要取决于该介质的组成及其物理化学性能。
在实际运用中,要注意淬火介质冷却特性对淬火工件的质量影响,并根据工件的合金成分多少、淬透性高低、有效厚度和形状复杂程度等因素,来选择合适的淬火介质。
采用同一种淬火介质,如果能够改进冷却方法和适当调整工艺参数,则可以获得最佳淬火效果。
例如,对淬火介质进行循环、搅拌或施以一定的压力通过工件表面时,可提高淬火介质的冷却能力和工件冷却的均匀性,这对于避免形成淬火软点、减少变形和开裂具有良好的作用。
(1)水水是应用最早、最广泛、最经济的淬火介质[55,561,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力很强。
通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场等作用,均可改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。
由于这些方法需增加专门设备,且工件淬火后的性能不太稳定,故未能推广应用。
所以说,纯水只适合于少数淬透性低且形状简单的工件淬火。
(2)淬火油用于淬火的矿物油通常以精制程度高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少、油垢少,抗氧化性与热稳定性好,使用寿命长等优点,适合淬火使用。
淬火油只适合于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。
淬火油对周围环境污染大,淬火时易引起火灾,需配备必要的清洗、通风和防火安全设施。
影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。
适当提高淬火油使用温度,也能使油的冷却能力提高。
普通机油的使用温度一般都控制在60摄氏度-80摄氏度,最高不超过120摄氏度,以保证使用安全。
另外,淬火油在使用过程中,因形成的炭黑及残渣等会使粘度增加,闪点升高,降低其冷却能力,使得淬火油老化和失效。
淬火油的闪点、粘度、酸值、皂化值的变化是其临近老化的重要数据,因此,必须进行定期的检测和维护,定期沉降过滤,适时补充新油,这对于延长淬火油的使用寿命是很重要的。
由于各种淬火油的组成不同,其密度、粘度和闪点也不相同,因而具有不同的种类和使用范围。
在油中加入各种不同的添加剂(如催化剂、光亮剂、抗氧化剂等),再配合搅拌、喷淋、超声强化和改进淬火设备等,能大幅度提高淬火油的冷却速度,改善冷却的均匀性,或使工件表面光亮洁净,或延长淬火油的使用寿命。
随着热处理技术的发展,各种淬火油也得到发展和广泛应用。
(3)NaC1水溶液氯化钠加入水中,能显著提高水的冷却能力。
氯化钠溶于水中,降低了蒸气膜的稳定性,提高了特性温度。
当水中含有5%的氯化钠时,工件进入溶液以后,蒸气膜几乎立即破坏。
这是因为氯化钠水溶液与灼热的工件接触,水被蒸发,氯化钠微粒附着在工件表面上,这些氯化钠微粒即刻激烈爆炸成云雾状,使蒸气膜遭到破坏。
工件表面上的氧化铁皮也被炸掉,使工件表面与水能直接接触,工件的冷却速度急剧增加,而且冷却进行得也比较均匀。
氯化钠水溶液冷却能力强,价格便宜,应用广泛。
浓度为5-15%的氯化钠溶液冷却能力大。
应用5-15%氯化钠溶液,工件不但得到高的硬度,而且硬度均匀,它多被用于淬透性比较低的钢种。
高浓度的氯化钠水溶液,冷却速度变得比较低,可应用于要求变形和开裂倾向的小的工件。
氯化钠水溶液淬火介质的缺点是催火后易生锈。
淬火后要进行仔细清洗。
(4)熔盐、熔碱这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透性强,淬火变形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多、成本高,常用于形状复杂、截面尺寸变化大的工件和工模具的淬火。
熔盐有氯化盐、硝酸盐、亚硝酸盐等,工件在盐浴中淬火可以获得较高的硬度,变形极小,不易开裂,通常用作等温淬火或分级淬火。
其缺点是熔盐易老化,对工件有氧化腐蚀作用。
熔碱有氢氧化钠、氢氧化钾等,具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,有一定的应用。
但熔碱蒸汽具有腐蚀性,对皮肤有刺激作用,使用时应注意通风和采取防护措施。
五、常用炉型的选择炉型应依据不同的工艺要求及工件的类型来决定:1.对于不能成批定型生产的,工件大小不相等的,种类较多的,要求工艺上具有通用性、多用性的,可选用箱式炉。
2.加热长轴类及长的丝杆,管子等工件时,可选用深井式电炉。
3.小批量的渗碳零件,可选用井式气体渗碳炉。
4.对于大批量的汽车、拖拉机齿轮等零件的生产可选连续式渗碳生产线或箱式多用炉。
5.对冲压件板材坯料的加热大批量生产时,最好选用滚动炉,辊底炉。
6.对成批的定型零件,生产上可选用推杆式或传送带式电阻炉(推杆炉或铸带炉)。
7.小型机械零件如:螺钉,螺母等可选用振底式炉或网带式炉。
8.钢球及滚柱热处理可选用内螺旋的回转管炉。
9.有色金属锭坯在大批量生产时可用推杆式炉,而对有色金属小零件及材料可用空气循环加热炉。