蒙特卡罗模拟在_计量经济学_教学中的应用_卢二坡

合集下载

蒙特卡洛模拟在金融中的作用

蒙特卡洛模拟在金融中的作用

蒙特卡洛模拟在金融中的作用蒙特卡洛模拟是一种基于随机抽样的数值计算方法,通过随机抽样的方式来模拟实际系统的不确定性因素,从而进行风险评估、决策分析和价格计算。

在金融领域,蒙特卡洛模拟被广泛运用于风险管理、资产定价、投资组合优化等方面,发挥着重要的作用。

本文将探讨蒙特卡洛模拟在金融中的作用,并介绍其在不同领域的具体应用。

一、风险管理在金融市场中,风险管理是至关重要的。

蒙特卡洛模拟可以帮助金融机构和投资者评估和管理各种风险,包括市场风险、信用风险、操作风险等。

通过模拟大量的随机路径,可以更准确地估计资产组合的价值变动范围,从而制定相应的风险控制策略。

例如,在衍生品定价中,可以利用蒙特卡洛模拟来评估期权的价格,同时考虑到不确定性因素对价格的影响,帮助投资者更好地管理风险。

二、资产定价资产定价是金融领域的核心问题之一。

蒙特卡洛模拟可以用来估计资产的未来价格走势,帮助投资者制定合理的投资策略。

通过模拟大量的随机路径,可以得到资产价格的概率分布,进而计算期望收益和风险指标,为投资决策提供参考依据。

在股票、债券、商品等各类资产的定价中,蒙特卡洛模拟都可以发挥重要作用,帮助投资者更好地把握市场机会。

三、投资组合优化投资组合优化是指在给定风险偏好的情况下,选择最佳的资产配置方案,以实现投资组合的最优化。

蒙特卡洛模拟可以帮助投资者评估不同资产配置方案的风险和收益特征,找到最优的投资组合。

通过模拟大量的随机路径,可以得到不同资产配置方案的效果分布,进而选择最适合自己需求的投资组合。

在资产配置、风险分散、收益最大化等方面,蒙特卡洛模拟都可以提供有力支持。

四、金融工程金融工程是金融学与工程学相结合的交叉学科,旨在开发新的金融产品和金融工具,以满足市场的需求。

蒙特卡洛模拟在金融工程中有着广泛的应用,可以用来设计和定价各种复杂的金融产品,如期权、衍生品、结构化产品等。

通过模拟不同的市场情景和价格变动,可以更好地理解金融产品的特性,为金融创新提供技术支持。

蒙特卡罗方法及应用

蒙特卡罗方法及应用

蒙特卡罗方法及应用一、本文概述《蒙特卡罗方法及应用》是一篇深入研究和探讨蒙特卡罗方法及其在多个领域中应用的重要性的文章。

蒙特卡罗方法,又称随机抽样或统计试验方法,是一种基于概率统计理论的数值计算方法。

它通过模拟随机过程,以大量的样本数据来估计求解问题的解,特别适用于处理复杂系统中的不确定性问题。

本文首先介绍了蒙特卡罗方法的基本原理和核心概念,包括随机变量的生成、概率分布的模拟以及随机过程的模拟等。

然后,文章详细阐述了蒙特卡罗方法在各种领域中的应用,如物理学、工程学、金融学、生物学等。

在这些领域中,蒙特卡罗方法被广泛应用于求解复杂系统的数学模型,预测和评估系统的性能,以及优化决策方案等。

本文还讨论了蒙特卡罗方法的优缺点,包括其计算效率高、适用范围广等优点,以及计算精度受样本数量影响、对随机性要求高等缺点。

文章还探讨了蒙特卡罗方法的未来发展趋势,包括与、大数据等前沿技术的结合,以及在新兴领域如量子计算中的应用等。

《蒙特卡罗方法及应用》这篇文章旨在全面介绍蒙特卡罗方法的基本原理、应用领域以及发展前景,为读者提供一个深入理解和学习蒙特卡罗方法的平台。

通过本文的阅读,读者可以更好地理解蒙特卡罗方法的本质和应用价值,为相关领域的研究和实践提供有益的参考和启示。

二、蒙特卡罗方法的基本原理蒙特卡罗方法,又称统计模拟方法或随机抽样技术,是一种以概率统计理论为指导的数值计算方法。

该方法通过模拟随机过程,求解数学、物理、工程以及金融等领域的问题。

蒙特卡罗方法的基本原理可以概括为以下几点:随机抽样:蒙特卡罗方法的核心思想是通过随机抽样来获取问题的数值解。

它根据问题的概率模型,在概率空间中进行随机抽样,以获得问题的近似解。

这种随机抽样可以是简单的均匀抽样,也可以是复杂的概率分布抽样。

大数定律:蒙特卡罗方法基于大数定律,即当试验次数足够多时,相对频率趋于概率。

通过大量的随机抽样,蒙特卡罗方法可以得到问题的近似解,并且随着抽样次数的增加,这个近似解会逐渐接近真实解。

蒙特卡罗模拟在《计量经济学》教学中的应用

蒙特卡罗模拟在《计量经济学》教学中的应用

参数估计量 的统计特性进行评价 。 在教学过程 中 . 如果 能够结合 统计软件使用蒙特卡罗模拟 方法讲 授相关概
念 和 原 理 . 进 一 步 通 过 图形 展 示 模 拟 结 果 . 但 可 以 并 不
收 稿 日期 : 0 1 2 2 2 1 —1 — 7 修 稿 日期 :0 2 0 —1 21— 1 2
关 键 词 :蒙特 卡 罗模 拟 ; 量 经 济 学 ; 列 相 关 ; t a 件 计 序 S t软 a
0 引 言
《 量 经 济 学 》 高 等 学 校 经 济 学 门类 本 科 各 专 业 计 是 核 心 课 程 之 一 .该 课 程 的 主 要 特 点 是 理 论 与 实 际 应 用 并 重 .既 要 突 出学 生 对 计 量 经 济 学 方 法 理 论 基 础 的 理
在 计 量 经 济 学 里 . 特 卡 罗 ( neC r ) 拟 是 蒙 Mot al 模 o
指 从 已知 总体 中 ( 者从设 定 的数 据生 成过程 ( G ) 或 D P 中)反 复生成随机样本 。 . 并计算参数估计 量和统计量 ,
进 而 研 究 其 分 布 特 征 的 方 法 。 在 大 学 本 科 《 量 经 济 计 学 》 学 过 程 中 . 以通 过 蒙 特 卡 罗 模 拟 向学 生 讲 解 怎 教 可 样 理 解 统 计 量 的 无 偏 性 、 效 性 和一 致 性 等 基 本 概 念 ; 有
足上述 假设 的情况下 .回归系数 的 O S估计量是最优 L
线性 无 偏 估 计 量 ( L E 。 B U )
作 者 简介 : "3 17 - , , 南 焦 作 人 , 教 授 , 士 , 究 方 向 为 统 计 理 论 方 法 与 应 用 卢  ̄(9 6 ) 男 河 副 博 研

蒙特卡罗方法的应用【文献综述】

蒙特卡罗方法的应用【文献综述】

文献综述信息与计算科学蒙特卡罗方法的应用在解决实际问题的时候, 为了模拟某一过程, 产生各种概率分布的随机变量和对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题, 我们应该怎么办? 蒙特·卡罗是一种十分有效的求出数值解的方法.蒙特卡罗法( monte-carlo method )简称M -C 法 通过构造概率模型并对它进行随机试验来解算数学问题的方法. 以计算函数的定积分()()10I f x d x =⎰, ()01f x ≤≤为例, 首先构造一个概率模型: 取一个边长分别为和-的矩形, 并在矩形内随机投点M , 假设随机点均匀地落在整个矩形之内, 当点的掷点数N 充分大时, 则落在图中阴影区内的随机点数与投点总数N 之比M N 就近似等于积分值I .蒙特卡罗法历史悠久. 1773年法国G.-L.L.von 布丰曾通过随机投针试验来确定圆周率π的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年 J.von 诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一.蒙特卡罗法的步骤是: 构造实际问题的概率模型; ②根据概率模型的特点, 设计和使用降低方差的各类方法, 加速试验的收敛; ③给出概率模型中各种不同分布随机变量的抽样方法; ④统计试验结果, 给出问题的解和精度估计.概率模型用概率统计的方法对实际问题或系统作出的一种数学描述. 例如对离散事件系统中临时实体的到达时间、永久实体的服务时间的描述(见离散事件系统仿真方法)就是采用概率模型. 虽然由这些模型所确定的到达时间、服务时间可能与具体某一段时间内实际到达时间、服务时间有出入, 但它是通过多次统计获得的结果, 所以从概率分布的规律来说还是相符的. 概率模型不仅可用来描述本身就具有随机特性的问题或系统, 也可用来描述一个确定型问题. 例如参数寻优中的随机搜索法(见动力学系统参数寻优)就是将参数最优化问题构造为一个概率模型, 然后用随机投点、统计分析的方法来进行搜索.随机数的产生用蒙特卡罗法进行仿真时, 需要应用各种不同分布的随机变量. 只要有一种连续分布的随机变量, 就可设法得到任意分布的随机变量. 在()0,1上均匀的分布函数是一种最简单的连续分布函数. 因此在蒙特卡罗法中, 多是先产生均匀分布随机变量 R 的抽样值()1,2,3,k =L , 称为随机数. 在计算机中产生随机数的方法有: ①把已有的随机数表输入计算机; ②用物理方法, 如噪声型随机数发生器产生出真正的随机数; ③用数学方法根据递推公式, 由程序来产生. 这种方法速度高, 占用机器的内存少, 使用最为普遍. 在计算机中表示一个数字的字长有限, 因此只能表示有限个不同的数, 而且用递推方法产生的数值序列是完全确定的, 到一定长度便周而复始, 这些都与随机数的基本性质相矛盾. 但是只要产生的数值序列能够通过随机数的各种统计检验, 仍可以把它当作随机数来使用.我们采用蒙特卡罗法的目的是为了得到各种估计量. 在实际应用中, 当所要求的问题是某种事件出现的概率, 或者是某个随机变量的期望值时, 我们通过某种“试验”的方法, 得到这种事件出现的频率, 或者这个随机变数的平均值, 并用它们作为问题的解.随着现代计算机技术的发展,蒙特卡罗方法已经在自然科学研究中发挥了重要的作用. 鉴于的重要性, 使得蒙特卡罗方法不仅在传统的应用领域如核物理、统计物理、分子动力学等领域得到广泛的应用,而且还在诸如经济学、人口学、医学等领域得到了推广和发展. 统计物理学中蒙特卡罗方法是用随机抽样的计算机模拟来研究平衡或非平衡热动力学系统的模型. 蒙特卡罗的抽样有两种:简单抽样和重要性抽样. Metropolis 方法就是最早的一种重要性抽样方法. 后来人们对此方法进行了一系列的改进,衍生出诸如Swenden-Wang 方法、Wolff 方法等团簇算法,随着人们对蒙特卡罗方法认识的进一步加深,新的更有效的方法必将越来越多的出现.以蒙特卡罗法模拟晶粒生长过程的研究进展为例, 自20世纪40年代中期, 由于科学技术的发展和电子计算机的发明, 23法作为一种独立的方法被提出来, 并且在核武器的研制中首先得到了应用. 直到80年代初由美国EXXON 研究组开发出二维算法后, 很快引起重视并应用于再结晶、多晶材料的晶粒长大、有序-无序畴转变等多种金属学和物理学仿真过程.1983年, Anderson 提出一个新型的MC 程序, 将其应用于二维的晶粒长大动力学模拟, 后来又将MC 法应用于模拟晶粒生长的尺寸分布、拓扑学和局部动力学的研究.1992年, Anderson 使用蒙特卡罗法结合晶粒间的相互作用能, 模拟晶粒边界能量和点缺陷浓度的最小值来驱动的微观结构的进化, 模拟结果与试验值复合很好.此后, 蒙特卡罗法在材料领域中得到了迅速的发展. 1994年, Paillard 等人应用MC 技术在二维网格上模拟铁硅合金的正常和异常晶粒的生长. 在模拟中, 他们提出不同结晶倾向的两个晶粒之间存在能量变化和不同的边界迁移率, 总结出蒙特卡罗法模拟晶粒长大可能性. 同年, Radhakrishnan和Zacharia提出了一个修正的MC算法, 该算法考虑了蒙特卡罗法模拟时间和真实时间的线性关系, 得出了两个修正的模型, 模拟出了晶粒长大的动力学曲线.1995年, 他们使用修正的MC模型研究了焊接热影响区晶粒边界的钉扎作用, 并获得了晶粒尺寸、MC模拟时间步和真实参数之间的关系.1995年, Gao等人提出了焊接热影响区晶粒长大的3个模型, 使MC模拟能够应用于整个焊接过程中.1999年, S Jahanian等人利用晶粒边界迁移的方法, 对0.5Mo-Cr-V焊接热影响区晶粒长大进行模拟, 主要模拟了距融合线120μm处晶粒长大的动力学和晶粒结构. 所使用的MC算法形成了进一步研究焊接热影响区晶粒尺寸生长模拟的研究基础.同样, 国内学者对晶粒长大的各种过程也有了不少的研究. 1994年, 陈礼清等利用平面三角形点阵及MC方法模拟二维多晶体晶粒的长大规律. 钟晓征等以MC方法为基础, 使用改进的A-Statepotts算法, 对多晶材料的正常和异常晶粒长大过程进行可视化模拟, 并对正常晶粒生长形貌演化也进行了可视化研究. 宋晓艳等利用三维技术模拟了较完整的单晶材料正常晶粒长大的过程, 获得了晶粒长大动力学和拓扑学的全面信息, 逼真地再现了晶粒长大过程, 是二维模拟难以比拟的. 但是由于焊接热影响区存在温度的梯度的急剧变化, 影响了动力学模拟的准确性.近年来, 学术界对蒙特卡罗法的关注度呈逐年上升的趋势.因其广泛的实用性, 它正以学术界的理论成果为基础, 在人们的劳动实践中扮演着越来越重要的角色. 它帮助着人们在实际的生产生活中更科学地做出决策. 例如,将蒙特卡罗模拟应用到收益法评估中, 扩大了收益法参数分析的覆盖范围, 提高评估计算的精确度可以通过确定参数恰当的波动范围, 从而提高评估结果的说服力和可信度.当然, 由于蒙特卡罗法的广泛适用性, 在进行实际问题的分析时, 需要结合具体问题和有关专业知识才能给出合理的解释. 虽然利用本身可对所研究的问题在一定程度上作分析, 但蒙特卡罗法估计量本身往往并不是最终目的, 更重要的是利用原始变量的信息, 然后对数据作进一步的分析, 从而对实际问题作出科学准确的决策.参考文献[1]王梓坤. 概率论基础与其应用[M]. 北京: 科学出版社, 1979.[2]李贤平. 概率论基础[M]. 北京: 高等教育出版社, 1997.[3]盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2001-6.[4]徐钟济. 蒙特卡罗方法[M]. 上海: 上海科学技术文献出版社, 1989.[5]刘军. 科学计算中的蒙特卡罗决策[M]. 北京: 高等教育出版社, 2009.[6]A. Lazopoulos. Error estimates in monte carlo and quasi-monte carlo integration. October. 11. 2004.[7]A. Lazopoulos. Application of the Monte Carlo method to solving mixed problems in the theory of harmonic functions. Springer New York, 1978, 2 .[8] P.C. Robert, G. Casella. 蒙特卡罗统计方法(第2版)(英文版) [M]. 北京: 世界图书出版公司北京公司, 2009.[9]Н.П. 布斯连科, А. 施廖盖尔著, 王毓云, 杜淑敏译: 统计试验法(蒙特卡罗法)及其在电子数字计算机上的实现[M]. 上海科学技术出版社, 上海, 1964.[10]朱力行, 许王莉. 非参数蒙特卡罗检验及其应用[M]. 北京: 科学出版社, 2008.。

蒙特卡罗方法讲解

蒙特卡罗方法讲解

蒙特卡罗方法讲解
蒙特卡洛方法(Monte Carlo Method)又称几何表面积法,是用来解决统计及数值分析问题的一种算法。

蒙特卡洛方法利用了随机数,其特点是算法简单,可以解决复杂的统计问题,并得到较好的结果。

蒙特卡洛方法可以被认为是统计学中一种具体的模拟技术,可以通过模拟仿真的方式来估算一个问题的可能解。

它首先利用穷举或随机的方法获得随机变量的统计数据,然后针对该统计数据利用数理统计学的方法获得解决问题的推断性结果,例如积分、概率等。

蒙特卡洛方法在计算机科学中的应用非常广泛,可以用来模拟统计物理、金融工程、统计数据反演、运行时参数优化以及系统可靠性计算等问题,因此广泛被用于许多不同的领域。

蒙特卡洛方法的基本思想是:将一个难以解决的复杂问题,通过把它分解成多个简单的子问题,再用数学方法求解这些子问题,最后综合这些简单问题的结果得到整个问题的解。

蒙特卡洛方法的这种思路,也称作“积分”,即将一个复杂的问题,分解成若干小问题,求解它们的结果,再综合起来,得到整体的结果。

蒙特卡洛方法以蒙特卡罗游戏为基础,用统计学的方法对游戏进行建模。

蒙特卡罗模拟在金融风险管理中的应用

蒙特卡罗模拟在金融风险管理中的应用

蒙特卡罗模拟在金融风险管理中的应用过去几年,蒙特卡罗模拟在金融风险管理中得到了越来越广泛的应用。

它是一种计算金融风险并制定决策的数学方法。

蒙特卡罗模拟是通过多次观察平均值来进行计算。

在金融市场中,它可以用来衡量投资组合的风险和收益,以及估计各种金融产品的未来变化趋势。

本文将详细介绍蒙特卡罗模拟在金融风险管理中的应用。

一、什么是蒙特卡罗模拟蒙特卡罗模拟是一种通过模拟反复实验来进行统计估计的方法。

它最初是由苏联武器工厂工程师冯·诺伊曼和斯坦尼斯拉夫·乌拉姆在20世纪40年代末创建的。

它的基本思想是通过多次实验,观察一些随机量的平均值和高均值的概率,以确定真正值。

在金融市场中,蒙特卡罗模拟可以用来估计未来的收益率、价格波动性和投资组合的价值风险。

二、利用蒙特卡罗模拟评估金融风险在金融市场中,蒙特卡罗模拟最常用的应用是场景分析和风险度量。

场景分析是一种模拟未来情景的方法,它可以通过构建一个基于历史数据和未来预期的模型来模拟数据集。

将数据集作为蒙特卡罗模拟的输入,可以估计在一组特定条件下未来收益和损失的可能性。

它可以帮助投资者制定各种决策,如购买保险产品或制定投资策略。

风险度量是指通过模拟随机变量的统计分布,来计算可能出现的承受风险的损失,以此确定投资者在特定风险承受范围内的最大收益。

三、蒙特卡罗模拟的优点蒙特卡罗模拟有许多优点,比如它可以帮助投资者制定理性的决策,减少不必要的失误,以及防止投资风险。

它的另一个优点是预测未来收益和损失的概率,可以为投资者提供更好的风险管理策略。

蒙特卡罗模拟可以有效地处理各种情况下的信息,并考虑多种输入变量的影响,例如不同的经济状况、利率变化和市场波动性等。

四、蒙特卡罗模拟的限制蒙特卡罗模拟也有其自身的限制。

首先,它需要考虑许多变量,这使得系统复杂性增加,有时难以解释。

其次,对于预测精度的限制,模拟的输入变量仅受到数据样本的描述,可能无法准确地反映未来环境中的变化。

基于Monte Carlo模拟的数值计算技术研究与应用

基于Monte Carlo模拟的数值计算技术研究与应用

基于Monte Carlo模拟的数值计算技术研究与应用随着计算机的发展,数值计算已经成为不可避免的一种方法。

而Monte Carlo模拟作为一种常见的数值计算技术,其在物理、化学、医学等领域中得到广泛应用。

本文将从Monte Carlo模拟的基本原理、算法以及应用等多个方面进行探讨。

一、Monte Carlo模拟的基本原理Monte Carlo模拟是一种随机模拟方法,其主要基于概率论、统计学以及数值计算理论。

通过对概率分布的数值积分、随机过程的模拟以及随机函数的优化等方面的技术,Monte Carlo模拟可以对复杂的物理问题进行计算分析,从而得到更为准确的结果。

在Monte Carlo模拟中,一般采用随机数的计算方法来得到结果。

例如,我们可以通过在一定范围内随机采样,来获取一个数值的期望值。

而期望值是通过数值计算进行估算的,因此可以得到该问题的近似解。

二、Monte Carlo模拟的算法及实现方法Monte Carlo模拟的算法主要包括:抽样、统计、设置采样区间、设置模型和计算估算错误等。

其中,抽样是Monte Carlo模拟算法中最为关键的一步。

它需要根据随机数的分布情况,构造一个合适的取样方法,从而使得样本能够覆盖整个可能的取值区间。

统计可以是带权重的平均值、方差等,也可以是比较复杂的统计量。

设置采样区间是需要将随机数的取值区间设置在一个适当的范围内,使得其能够符合实际情况。

设置模型可以帮助我们构建Monte Carlo模拟的计算模型,从而使得计算更准确。

计算估算错误是对结果的优化分析,通过误差分析来确定估算结果的准确性。

Monte Carlo模拟的实现方法可以通过MATLAB、Python、C++等编程语言进行实现。

一般来说,程序的实现需要包括随机数生成器、随机采样器以及结果的统计分析等功能。

不同的编程语言拥有不同的优势和适用范围,而Python具有代码简洁、易于学习和使用的优点,因此被广泛应用于Monte Carlo模拟的实现中。

蒙特卡罗方法及应用

蒙特卡罗方法及应用

蒙特卡罗方法及应用蒙特卡罗方法是一种基于概率统计的数值计算方法,它在许多实际问题中具有广泛的应用。

本文将介绍如何在没有明确思路的情况下,使用蒙特卡罗方法来解决实际问题,并概述其基本原理、实现步骤、优缺点及应用实例。

当遇到一些复杂的问题,比如在无法列出方程求解的数学问题,或者在需要大量计算的概率统计问题中,我们可能会感到无从下手。

此时,蒙特卡罗方法提供了一种有效的解决方案。

通过使用随机数和概率模型,我们可以对问题进行模拟,并从模拟结果中得出结论。

蒙特卡罗方法的基本原理是利用随机数生成器,产生一组符合特定概率分布的随机数,然后通过这组随机数对问题进行模拟。

具体实现步骤包括:首先,确定问题的概率模型;其次,使用随机数生成器生成一组随机数;然后,通过模拟大量可能情况,得到问题的近似解;最后,对模拟结果进行统计分析,得出结论。

蒙特卡罗方法的优点在于,它可以在一定程度上解决难以列出方程的问题,提供一种可行的计算方法。

此外,蒙特卡罗方法可以处理多维度的问题,并且可以给出近似解,具有一定的鲁棒性。

然而,蒙特卡罗方法也存在一些缺点,比如模拟次数过多可能会导致计算效率低下,而且有时难以确定问题的概率模型。

蒙特卡罗方法在概率领域有广泛的应用,比如在期权定价、估计数学期望、计算积分等领域。

以估计数学期望为例,我们可以通过蒙特卡罗方法生成一组符合特定概率分布的随机数,并计算这些随机数的平均值来估计数学期望。

总之,蒙特卡罗方法为我们提供了一种有效的数值计算方法,可以在没有明确思路的情况下解决许多实际问题。

通过了解蒙特卡罗方法的基本原理、实现步骤、优缺点及应用实例,我们可以更好地理解并应用这种方法。

在实际问题中,我们可以根据具体的情况选择合适的概率模型和随机数生成器,以得到更精确的结果。

我们也需要注意蒙特卡罗方法的局限性,例如在处理高维度问题时可能会出现计算效率低下的问题。

针对这些问题,我们可以尝试使用一些优化技巧或者和其他计算方法结合使用,以提高计算效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 存在误差序列相关时的蒙特卡罗模拟
1.1 误差序列相关性影响及克服办法
经典的线性回归模型包含了一组关于数据生成过 程的基本假定,包括线性性、自变量外生性、样本矩阵 满列秩、随机扰动项同方差、无自相关以及随机扰动项 服从条件正态分布等。 根据高斯-马尔可夫定理,在满 足上述假设的情况下, 回归系数的 OLS 估计量是最优 线性无偏估计量(BLUE)。
(1/999)


2
(β
- 1ols β
1ols)2, 这 是 真 实 方 差
σ∧ β 1ols
=

var(β
1ols)









,s

β 1ols

σ∧ β 1ols
的模拟估计。
由“summarize”命令运行结果可以看出:直接由 1000 次

OLS
估计得到的点估计量β
1ols
的标准差为
1.3 模拟结果分析
使用 stata 软件的“summarize”命令,可以对得到各
变量的均值、标准差、最小值、最大值等描述性统计量,
命令及运行结果如下:
. summarize b1ols se1ols b1fgls se1fgls
进 一 步 地 , 还 可 以 使 用 “mean” 命 令 得 到 各 变 量 均 值的 95%的置信区间,命令及运行结果如下:
设的问题,称为“误差序列相关性”,经济行为自身的惯
性、 模型中的随机扰动项包含有存在自相关的解释变
量、 统计资料的特定生成方式例如移动平均等都会导
致误差序列出现自相关性。 此时, 会产生三种影响:
①回归系数的 OLS 估计量仍然是无偏的, 也就是说系
数估计量的均值仍然等于参数的真值; ②OLS 估计量
该 命 令 将 程 序 serialcorr.do 反 复 运 行 1000 次 , 每
趥趭 现代计算机 2012.01
教学园地




次 模 拟 得 到 估 计 量β 1ols、se(β 1ols)、β 1fgls 以 及 se(β ) 1fgls 都
保存于 b1ols、se1ols、b1fgls 和 se1fgls 四个变量中。
在 计 量 经 济 学 里 ,蒙 特 卡 罗 (Monte Carlo)模 拟 是 指 从 已 知 总 体 中 (或 者 从 设 定 的 数 据 生 成 过 程 (DGP) 中),反复生成随机样本,并计算参数估计量和统计量, 进而研究其分布特征的方法。 在大学本科《计量经济 学》教学过程中,可以通过蒙特卡罗模拟向学生讲解怎 样理解统计量的无偏性、有效性和一致性等基本概念; 也可以解释参数 OLS 估计量的抽样分布, 从而支持高 斯-马尔可夫定理的证明结论;当存在违背经典假定情 形(例如存在序列相关性、异方差性、多重共线性、随机 扰动项非正态性等)以及联立方程模型、动态分布滞后 模型等情形时, 还可以用蒙特卡罗模拟方法对不同的 参数估计量的统计特性进行评价。 在教学过程中,如果 能够结合统计软件使用蒙特卡罗模拟方法讲授相关概 念和原理,并进一步通过图形展示模拟结果,不但可以
不再是有效的估计, 基至也不是渐近有效估计。 或者
说,OLS 估计量的方差是有偏估计,并且这一偏误不会
随着样本容量的增大而消失。 当误差序列存在常见的
正的自相关性时,通常的 OLS 方差公式会低估 OLS 估
计量的真实方差, 会把 OLS 估计量想象得比实际上更
为精确,从而会使参数的显著性检验失效,可能会导致
—— 1ols 的均值为:β 1ols=(1/1000) β 1ols=0.8018,

其作为 E(β 1ols)的估计,非常接近于真实数据生成过程
的参数真值 β1=0.8,二者之间细小的差异只是一种随机
误差。 这一点可进一步由“mean”命令输出结果看出:由

模 拟 结 果 产 生 的 E (β 1ols)95% 的 置 信 区 间 为 [0.7993,

(3)用 OLS 估 计 方 程 (1),并 返 回 估 计 的 参 数 β 1ols

及其对应的标准误 se(β 1ols);
(4)使 用 FGLS 估 计 (科 克 伦-奥 克 特 法 ),并 返 回


估计的参数β 1fgls 及其对应的标准误估计 se(β 1fgls)。
接下来,需要对上述程序重复 M 次(例如 1000次),
s∧ β 1ols

—— —
姨 Σ∧

(1/999)
(β
1ols-β
)2
1ols
=0.0399986(见
b1ols
的标准

差 ), 而 由 OLS 估 计 得 到 的 点 估 计 量β 1ols 的 标 准 误 差

se (β 1ols) 的 均 值 为 0.03934 ( 见 se1ols 的 均 值 , 其 也 是
并将模拟产生的结果保存下来。 Stata 软件提供了重复
上述模拟程序的命令“simulate”,运行程序 serialcorr.do
之后,执行下述命令:
. simulate b1ols=r(b1ols) se1ols=r(se1ols) b1fgls=r(b1fgls)
se1fgls=r(se1fgls), reps(1000):serialcorr
存中已有的名为 serialcorr 的程序以及所有的变量和观
测值, 然后模拟产生数据生成过程, 并分别用 OLS 和
FGLS 估计模拟产生的数据,其具体思路如下:
(1) 设 定 样 本 容 量 为 n=150, 并 产 生 时 间 变 量 t=
1,2,3…;
(2)模拟生成数据生成过程,数据生成过程如下:
7. gen u=0
8. replace u=0.7*l.u+e if t>1 //生 成 具 有 一 阶 自 相 关
的残差序列
9. gen x=runiform ()*99+1
//生 成 取 值 范 围 1~100
之间的均匀分布
10. generate y=1+0.8*x+u
//数据生成过程 DGP
蒙特卡罗模拟需要通过计算机编程来实现, 大多 数统计软件例如 R、MatLab、Gauss、Eviews、Stata 等都提 供了进行蒙特卡罗模拟编程的功能,其中,Stata 软件提 供了非常便捷的蒙特卡洛模拟环境和命令。 本文以存 在违背经典假定的残差序列相关性情形时为例, 运用 Stata 软件进行编程,说明蒙特卡罗模拟实验在《计量经 济学》教学中的应用。
//运用 FGLS 估计模型参数
15. return scalar b1fgls=_b[x] //返回 FGLS 估 计的 回 归
系数
16. return scalar se1fgls=_se [x] //返 回 回 归 系 数 的 标 准

17. end
上述程序命名为 serialcorr.do, 该程序首先清除内
rialcorr 的程序
. program serialcorr, rclass //定义程序名
1. version 11.2
2. drop _all
3. set obs 150
4. gen t=_n
//生 成 时 间 变 量
5. tsset t
6. generate e=rnormal(0,10) //生成正态随机误差项
σ∧ β 1ols
的估计),但前者明显大于后者。进一步由“mean”命

令 输 出 结 果 看 出 :se(β 1ols)均 值 的 95%的 置 信 区 间 为
[0.03907,0.03961],而
s∧ β 1ols
=0.399986
明显在这一置信区
关键词: 蒙特卡罗模拟; 计量经济学; 序列相关; Stata 软件
0 引言
《计量经济学》是高等学校经济学门类本科各专业 核心课程之一, 该课程的主要特点是理论与实际应用 并重, 既要突出学生对计量经济学方法理论基础的理 解和掌握, 又要着重培养学生在解决实际经济问题中 运用计量经济学的能力。 然而,在当前教学过程中,教 师大量使用数学公式推导和定理证明, 会使得学生对 计量经济学里的基本概念和原理难以有真正的理解, 感到课程学习压力大,容易产生厌学情绪,很大程度上 影响了教学效果。
原本不显著的变量变得显著; ③通常的 OLS 估计量不
再是 BLUE。
通常有两种方法来克服误差序列相关性产生的问
题:①直接对 OLS 估计的标准误差的偏差进行修正,例
如使用 Newey-West 标准误,从而得到标准误差的一致
估 计 ;②使 用 广 义 最 小 二 乘 (GLS)或 可 行 的 广 度 最 小 二
. mean b1ols se1ols b1fgls se1fgls
上述运行结果中的观测值数目(obs) 指的是模拟 的 次数 M(1000)而不是每次模拟的样本容量 n(150), 根据上述命令输出结果,可得到如下分析结论:

(1)由 OLS 估计得到的点估计量β 1ols 具有无偏性。 由“summarize”命令运行结果可以看出,由 1000 次 OLS
收稿日期:2011-12-27 修稿日期:2012-01-12 作 者 简 介 :卢 二 坡 (1976-),男 ,河 南 焦 作 人 ,副 教 授 ,博 士 ,研 究 方 向 为 统 计 理 论 方 法 与 应 用
现代计算机 2012.01 趤趽
教学园地
线性回归模型随机扰动项违反序列无自相关性假
yt=β0+β1xt+ut
相关文档
最新文档