人教版八年级数学第一单元测试题

合集下载

(人教版)天津市八年级数学上册第一单元《三角形》测试(包含答案解析)

(人教版)天津市八年级数学上册第一单元《三角形》测试(包含答案解析)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 4.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 5.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( ) A .7B .8C .9D .10 6.下列长度的三条线段能组成三角形的是( ) A .3,3,4 B .7,4,2 C .3,4,8 D .2,3,5 7.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°8.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm9.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°10.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90° 11.下列长度的三条线段,能组成三角形的是( ) A .3,5,6B .3,2,1C .2,2,4D .3,6,10 12.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒ 二、填空题13.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.14.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.15.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.16.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____. 17.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.18.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 19.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.20.如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ //BC ,交DE 于点Q ,则∠EPQ 的度数为_____.三、解答题21.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.22.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.23.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由.(2)若50A ∠=︒,求出DEG ∠的度数.24.如图,在ABC 中,点E 在AC 边上,连结BE ,过点E 作//DF BC ,交AB 与点D .若BE 平分ABC ∠,EC 平分BEF ∠.设AED β∠=.(1)当80β=︒时,求DEB ∠的度数.(2)试用含α的代数式表示β.(3)若=k βα(k 为常数),求α的度数(用含k 的代数式表示).25.如图,PB 和PC 是ABC 的两条外角平分线. 求证:1902BPC BAC ∠=︒-∠.26.如图,在ABC 中,40B ∠=,80C ∠=.(1)求BAC ∠的度数;(2)AE 平分BAC ∠交BC 于E ,AD BC ⊥于D ,求EAD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D=∠A+∠ADB′=∠A+20°,∴∠A+∠A+20°=90°,解得∠A=35°.故选:C.【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.3.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.4.C解析:C【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,故选C.【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.5.D解析:D【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和4倍可得方程180(n﹣2)=360×4,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n﹣2)=360×4,解得:n=10,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).6.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、3+3>4,能构成三角形,故此选项正确;B、4+2<7,不能构成三角形,故此选项错误;C、3+4<8,不能构成三角形,故此选项错误;D、2+3=5,不能构成三角形,故此选项错误.故选:A.【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.8.C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.9.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.10.D解析:D【分析】由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D.【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.11.A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意,故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.12.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4-2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.二、填空题13.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.14.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;15.5度【分析】由∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A而A1BA1C分别平分∠ABC和∠ACD得到∠ACD=2∠A1CD∠ABC=2∠A1BC于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=80°,即可求出∠A5.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.16.2<a<12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(解析:2<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.17.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABCS AB CE BC AD =⨯=⨯,∵AB=3,BC=6,CE=5,∴11356 22AD⨯⨯=⨯⨯,解得 2.5AD=.故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.18.1【分析】先根据多边形内角和公式求出它是几边形就可以得到结果【详解】解:设这个多边形是n 边形解得∴是四边形∴从一个顶点出发的对角线有1条故答案是:1【点睛】本题考查多边形内角和公式解题的关键是掌握多 解析:1【分析】先根据多边形内角和公式求出它是几边形,就可以得到结果.【详解】解:设这个多边形是n 边形,()180290n n ︒-=︒,解得4n =,∴是四边形,∴从一个顶点出发的对角线有1条.故答案是:1.【点睛】本题考查多边形内角和公式,解题的关键是掌握多边形的内角和公式.19.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.20.36°【分析】连接AD 由正五边形的性质可得∠B =∠BAE =∠E ∠EDC =∠C =108°AE =DE 由等腰三角形的性质可求∠AED =∠EDA =36°可证AD ∥PQ 由平行线的性质可求解【详解】解:连接AD解析:36°【分析】连接AD ,由正五边形的性质可得∠B =∠BAE =∠E ∠EDC =∠C =108°,AE =DE ,由等腰三角形的性质可求∠AED =∠EDA =36°,可证AD ∥PQ ,由平行线的性质可求解.【详解】解:连接AD ,∵五边形ABCDE 是正五边形,∴∠B =∠BAE =∠E=∠EDC =∠C =108°,AE =DE ,∴∠AED =∠EDA =36°,∴∠BAD =72°,∵∠BAD +∠ABC =180°,∴BC ∥AD ,∵PQ ∥BC ,∴AD ∥PQ ,∴∠EPQ =∠EAD =36°,故答案为:36°.【点睛】本题考查了多边形的内角和外角,等腰三角形的性质,平行线的性质,灵活运用这些性质解决问题是本题的关键.三、解答题21.(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.22.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+=3302t -,∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.23.(1)//CD AB ,证明见解析;(2)40°【分析】(1)先求证D DFB ∠=∠,再根据平行线判定得到//CD AB ;(2)先求出B 的度数,再根据平行线的性质得到DEG ∠的度数.【详解】(1)//CD AB ;理由如下:∵BE DF ⊥,∴90FGB ∠=︒,∴18090DFB B FGB ∠+∠=︒-∠=︒,∵190B ∠+∠=︒,∴1DFB ∠=∠,∵//AE DF ,∴1D ∠=∠,∴D DFB ∠=∠,∴//CD AB .(2)∵//AE DF ,50A ∠=︒,∴50DFB A ∠=∠=︒,∵90DFB B ∠+∠=︒,∴40B ∠=︒,∵//CD AB ,∴40DEG B ∠=∠=︒.【点睛】考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a ∥b ,b ∥c ⇒a ∥c .24.(1)20︒;(2)1=904βα︒-;(3)360=41k α︒+. 【分析】(1)根据对顶角的性质得到∠CEF =∠AED =80°,根据角平分线的定义即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)∵β=80°,∴∠CEF =∠AED =80°,∵EC 平分∠BEF ,∴∠BEC =∠CEF =80°,∴∠DEB =180°﹣80°﹣80°=20°;(2)∵DF ∥BC ,∴∠ADE =∠ABC =α,∵BE 平分∠ABC ,∴∠DEB =∠EBC =12α,∵EC 平分∠BEF ,∴β=∠CEF =12(180°﹣12α) =90°﹣14α; (3)∵β=k α, ∴90°﹣14α=k α, 解得:α=36041k ︒+. 【点睛】本题考查了三角形的内角和定理,平行线的性质,熟练掌握三角形的内角和定理是解题的关键.【分析】 根据外角的性质和角平分线的性质证明1902PBC BCP BAC ∠+∠=︒+∠,再根据三角形内角和定理得到180PBC BCP BPC ∠+∠=︒-∠,就可以证明结论.【详解】 解:∵180DBC ABC ∠=︒-∠,180BCE ACB ∠=︒-∠,∴()()360360180180DBC BCE ABC ACB BAC BAC ∠+∠=︒-∠+∠=︒-︒-∠=︒+∠,∵BP 平分DBC ∠,CP 平分BCE ∠, ∴12PBC DBC ∠=∠,12BCP BCE ∠=∠, ∴()119022PBC BCP DBC BCE BAC ∠+∠=∠+∠=︒+∠, ∵180PBC BCP BPC ∠+∠=︒-∠, ∴1180902BPC BAC ︒-∠=︒+∠,即1902BPC BAC ∠=︒-∠. 【点睛】本题考查三角形的内角和定理和角平分线的性质,解题的关键是掌握这些性质定理进行角度求解.26.(1)60BAC ∠=;(2)20EAD ∠=【分析】(1)根据三角形的内角和定理求解即可;(2)根据垂直定义和三角形内角和定理求得∠DAC=10°,再根据角平分线的定义求得∠CAE=30°,两角作差即可求解.【详解】解:(1)∵180B BAC C ∠+∠+∠=,40B ∠=,80C ∠=,∴180408060BAC ∠=--=;(2)∵AD BC ⊥,∴90ADC ∠=,∵180,80DAC ADC C C ∠=-∠-∠∠=,∴180908010DAC ∠=--=,∵AE 平分BAC ∠, ∴1302BAE CAE BAC ∠=∠=∠=, ∵EAD CAE DAC ∠=∠-∠,∴20EAD ∠=.本题考查了三角形的内角和定理、角平分线的定义、垂直定义,熟练掌握角平分线的定义和三角形的内角和定理是解答的关键.。

最新人教版初中数学八年级数学上册第一单元《三角形》测试题(含答案解析)(1)

最新人教版初中数学八年级数学上册第一单元《三角形》测试题(含答案解析)(1)

一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 4.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( )A .2B .9C .13D .155.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 6.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,107.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形8.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm9.在ABC 中,若一个内角等于另两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60°D .必有一个内角等于90°10.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 11.内角和与外角和相等的多边形是( ) A .六边形B .五边形C .四边形D .三角形12.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤二、填空题13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.14.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.15.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.17.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.18.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.19.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.20.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______; (2)若110ABC ACB ∠+∠=︒,则BPC ∠=______; (3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).22.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E . (1)若∠C=80°,∠B=40°,求∠DAE 的度数; (2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).25.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|. 26.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数 【详解】 解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒ ∴45E ∠=︒ 又∵60ABC ∠=︒ ∴120FBE ∠=︒ 由三角形的外角性质得DFB E FBE ∠=∠+∠ 45120=︒+︒165=︒故选:C 【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.B解析:B 【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】解:如图,由平行线的性质可得∠2=30°, ∠1=∠3-∠2=45°-30°=15°. 故选:B .【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.3.D解析:D 【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解. 【详解】 解:∵AD 是∠CAE 的平分线,60=︒∠DAC , ∴∠DAC =∠DAE =60°, 又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°, ∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°. 故选:D . 【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.B解析:B 【分析】根据三角形三边关系得出a 的取值范围,即可得出答案. 【详解】 解:8-5<a <8+5 3<a <13, 故a 的值可能是9, 故选:B . 【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.5.A解析:A 【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论. 【详解】解:∵∠ADC 是△ABD 的外角, ∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE ∵∠AED 是△CDE 的外角, ∴∠AED=∠C+∠EDC , ∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC , ∵∠B=∠C , ∴∠BAD=2∠EDC , ∵10CDE ∠=︒ ∴∠BAD=20°; 故选:A 【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.C解析:C 【分析】根据三角形三边关系逐一进行判断即可. 【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意, 故选:C . 【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.7.B解析:B 【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案. 【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒, 180A B C ∠+∠+∠=︒, 90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意, 故选:B . 【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.8.B解析:B 【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解. 【详解】解:根据三角形的三边关系,知: A 中,4+5=9,排除; B 中,4+5>6,满足; C 中,5+6<12,排除;D中,2+2=4,排除.故选:B.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.10.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.C解析:C 【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解. 【详解】解:设这个多边形为n 边形,由题意得 (n-2)180°=360°, 解得n=4,所以这个多边形是四边形. 故选:C 【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键.12.A解析:A 【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断. 【详解】①过两点有且只有一条直线,故①正确; ②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确; ⑤各角都相等且各边相等的多边形是正多边形,故⑤错误. ∴正确的有①②④, 故选:A . 【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题13.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18 【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解. 【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.14.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠,∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.15.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠,∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 16.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 17.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA 然后再根据角平分线的定义求得∠EAD+∠EDA 最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD 中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA ,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD 中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD ,∠EDA=12∠CAD ∴∠EAD+∠EDA=12(∠BAD+∠CDA )=105° ∴∠AED=180°-(∠EAD+∠EDA )=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.18.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7,1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线, ∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.19.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A1同理可得∠A1=2∠A2即∠A=22∠A2因此找出规律【详解】由三角形的外角性质得∠ACD=∠A+∠ABC∠A1CD=∠A解析:6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∴n=6.故答案为:6.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键. 20.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.三、解答题21.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】(1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A .【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.22.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求得∠BAD 的度数,在△ABE 中,利用直角三角形的性质求出∠BAE 的度数,从而可得∠DAE 的度数. (2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B 和∠C 表示出∠A′DE ,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B). 【详解】(1)∵∠C=80°,∠B=40°, ∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=30°, ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C , ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=90°-∠B ,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C ) =12∠C-12∠B =12(∠C-∠B); (3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C ; 在△DA′E 中,∠DA′E=180°-∠A′ED -∠A′DE=180°-90°-(90°+12∠B-12∠C) =12(∠C-∠B). 【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠,ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.(1)140°;(2)是定值;(3)∠BFC=90°12-α 【分析】(1)首先证明∠CEB 12=∠CAB ,求出∠CEB 即可解决问题. (2)利用三角形的外角的性质解决问题即可.(3)利用是菱形内角和定理以及(1)中结论解决问题即可.【详解】由题意,可以假设∠ACE=∠ECB=x ,∠ABP=∠PBD=y .(1)由三角形的外角的性质可知:2y BAC 2x y CEB x =∠+⎧⎨=∠+⎩, 可得∠CEB 12=∠CAB=40°, ∴∠PEC=180°-40°=140°;(2)由三角形的外角的性质可知,∠BAC=∠P+y ,y=∠P+2x , ∴∠BAC=2∠P+2x ,∴∠BAC -∠ACB=∠BAC-2x=2∠P=40°,∴∠BAC -∠ACB=40°,是定值;(3)∵CF ⊥CE ,∴∠ECF=90°,由(1)得:∠CEB 12=∠CAB , ∴∠BFC=90°-∠CEB=90°12-∠CAB=90°12-α. 【点评】 本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.26.12.5【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC的度数,再根据垂直定义以及三角形的内角和即可得出∠G的度数.【详解】解:∵∠B=45°,∠ACB=70°,AD是ABC的角平分线,∴∠BAC=2∠CAD=65°,∴∠ADC=180°﹣70°﹣32.5°=77.5°,∵EF⊥AD,∴∠G=180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.。

人教版八年级上数学第一单元测试题

人教版八年级上数学第一单元测试题

人教版八年级上数学第一单元测试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 2,2,4C. 3,4,5D. 3,4,8解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。

A选项,1 + 2 = 3,不满足两边之和大于第三边,不能组成三角形;B选项,2+2 = 4,不满足两边之和大于第三边,不能组成三角形;C选项,3 + 4>5,4 + 5>3,3+5>4,且5 3<4,5 4<3,4 3<5,可以组成三角形;D选项,3+4<8,不满足两边之和大于第三边,不能组成三角形。

所以答案是C。

2. 一个三角形的内角和是()A. 90°B. 180°C. 360°D. 720°解析:三角形内角和定理:三角形的内角和等于180°,所以答案是B。

3. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()A. 50°B. 60°C. 70°D. 80°解析:因为三角形内角和为180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°50° 60° = 70°,答案是C。

4. 等腰三角形的一个角是80°,则它的底角是()A. 80°B. 50°C. 80°或50°D. 20°解析:当80°角为等腰三角形的顶角时,底角=(180° 80°)÷2 = 50°;当80°角为底角时,底角就是80°,所以答案是C。

5. 下列图形具有稳定性的是()A. 正方形B. 长方形C. 三角形D. 平行四边形解析:三角形具有稳定性,四边形具有不稳定性,正方形、长方形、平行四边形都是四边形,所以答案是C。

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。

数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。

-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。

人教版八年级数学上册第1章三角形单元测试(含答案)

人教版八年级数学上册第1章三角形单元测试(含答案)

第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.全等三角形的性质1.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.二.全等三角形的判定2.(2019•兴安盟)如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC第2题第3题第4题4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.第5题第6题三.直角三角形全等的判定7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.四.全等三角形的判定与性质第7题8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.19.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2第8题第9题10.(2020•菏泽)如图,在△ABC 中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.第10题11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.第11题12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.第12题13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.第13题14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.第14题15.(2018秋•溧水区期末)如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.第15题五.全等三角形的应用16.(2019•南通)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?第16题六.角平分线的性质17.(2019•陕西)如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为( ) A .22+ B .32+ C .32+ D .318.(2019•张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =31AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .1第17题第18题第19题19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42参考答案一.全等三角形的性质(共1小题)1.(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,由△ACD ≌△C 1A 1D 1,所以可以将A 1点放在左图的C 点上,C 1点放在左图的A 点上,D 1点对应左图的D 点,从而得出BC ∥B 1C 1,根据其性质得出=2,解得求出AD 的长.【解答】解:∵△ACD ≌△C 1A 1D 1,可以将△C 1A 1D 1与△ACD 重合,如图,∵∠C =∠C 1=90°,∴BC ∥B 1C 1,∴, ∵AC =3,BC =4,∴AB =5, ,解得AD ,∴AD , .二.全等三角形的判定(共5小题)2.(2019•兴安盟)如图,已知AB =AC ,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O ,添加以下哪个条件仍不能判定△ABE ≌△ACD ( )AD AD -5BCC B BD AD 11A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD【分析】根据全等三角形的判定定理判断.【解答】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC ≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是AD=AC(∠D=∠C或∠ABD=∠ABC等).(只填一个即可)【分析】利用全等三角形的判定方法添加条件.【解答】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,∠B=∠EBC=EF∠ACB=∠DFE,∴△ABC≌△DEF(ASA).三.直角三角形全等的判定(共1小题)7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件AB=ED(BC=DF或AC=EF或AE=CF等),使Rt△ABC和Rt△EDF全等.【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:AB=ED,理由是:∵在△ABC和△EDF中∠B=∠DAB=ED∠A=∠DEF,∴△ABC≌△EDF(ASA),故答案为:AB=ED.四.全等三角形的判定与性质(共9小题)8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠B0DOC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵∠0GA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS),∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,∠AOM=∠DOMOM=OM∠AMD=∠DMO,∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.9.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∠A=∠FCE∠ADE=∠FDE=FE,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.10.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.【分析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.【解答】证明:∵ED⊥AB,∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【分析】由“SAS”可证△ABC≌△ADC,可得BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵AB=CD∠B=∠CBF=CE,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD =AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.15.(2018秋•溧水区期末)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD(180°﹣40°)=70°.五.全等三角形的应用(共1小题)16.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,BD=CE∠ACB=∠DCECA=CD,∴△ABC≌△DEC(SAS),∴AB=DE.六.角平分线的性质(共3小题)17.(2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.B.C D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF,∴BC=BD+CD=,故选:A.18.(2019•张家界)如图,在△ABC中,∠C=90°,AC=8,DC AD,BD平分∠ABC,则点D到AB 的距离等于()A.4B.3C.2D.1【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D作DE⊥AB于E,∵AC=8,DC AD,∴CD=8=2,∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6××9×4=30,故选:B.。

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。

下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学第一单元试卷
题序 一 二 三
总分
17 18 19 20 21 22 23 24 25
得分
一、 选择(每小4分,共40分) 1、2-等于( ) A .2 B .-2 C .
21 D .2
1
- 2.如图四个图形中,线段BE 是△ABC 的高的图是( )
3.下列长度的三条线段中,能组成三角形的是 ( ) A 、3cm ,5cm ,8cm B 、8cm ,8cm ,18cm C 、,, D 、3cm ,40cm ,8cm
4.若三角形两边长分别是4、5,则周长c 的范围是( ) A. 1<c<9 B. 9<c<14 C. 10<c<18 D. 无法确定
5、三角形中,有一个外角是79º,则这个三角形的形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法确定形状 6. 下列角度中,不能成为多边形内角和的是( ) ° ° °
7. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个
8. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌(每个公共点的各内角和为3600
)地面,可供选用的地砖共有( )
A. 1种
B. 2种
C. 3种
D. 4种 9. 下列图形中有稳定性的是( )
A. 正方形
B. 长方形
C. 直角三角形
D. 平行四边形 10. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,
则∠BOC 等于( ) 12
图1
B
A
O
班级: 姓名: 学号:
A B C D
(D)E
C
B A (C)E B
A
(B)E
C
B A
(A)E
C
B
A
A. 95°
B. 120°
C. 135°
D. 无法确定
二. 填空题。

(每空5分,共60分)
11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是__________________。

12、一个多边形,除一个内角外,其余各内角之和等于1000°,这个内角的度数是 多边形的边数是 。

13锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

14. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

15.如图2,若∠A =70°,∠ABD =120°,则∠ACE = .
16. 若正n 边形的每个内角都等于150°,则n= ,其内角和为 。

三. 解答题一(共3题,每题7分共21分)
17、已知,△ABC 三个内角的度数之比为1∶2∶3,求这个三角形是什么三角形?
18. 已知:D , E 分别是△ABC 的边BC 和边AC 的中点,连接DE,AD 若S ABC △=24cm 2
,求△DEC 的面积。

19. 若a ,b ,c 分别为三角形的三边,化简 :
图2
A
D
C
B
E
四: 解答题二(共3题,每题9分共27分)
20、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

21.如图,BE 平分∠ABD ,DE 平分∠CDB ,BE 和DE 相交于AC 上一点E ,如果∠BED=900,试说明AB ∥CD .
22已知在△ABC 中,∠A =2∠B-10°,∠B =∠C+20°。

求三角形的各内角的度数。

五: 解答题三(共3题,第23,24题各11分,第25题10分共27分)
23.如图,在△ABC 中,∠A =60º,∠B =70º,∠ACB 的平分线交AB 于D , DE ∥BC 交AC 于E ,求∠BDC 、∠EDC .
A
C
D B
第20题图
24、如图,在△ABC 中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,
求∠CDE 的度数.
25、已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,. (1)若∠B=30°,∠C=50°求∠DAE 的度数。

(2)试写出 ∠DAE 与∠C-∠B 有何关系? 并证明
八年级数学第一次月考试卷答题卡
学校 班级 姓名 考号 成绩
一.选择题:(本大题共10小题,每小题4分,共40分.)
1 2
3
4
5
6
7
8
9
10
D
C
B
E
A
第24题图
A
E C
B 第25题图
二.填空题(每小题5分,共30分)
11、 12、13、
14、 15、∠ACE= .16 ,
三. 解答题一(共3题,每题7分共21分)
17,
18,
19,
四: 解答题二(共3题,每题9分共27分) 20,
A
D C
B
E
A
C
D
B
第20题图
21, 22,
五:解答题三(共3题,第23,24题各11分,第25题10分共27分) 23,
24,
D E
A
第24题图
25,
A
B
E C
D
第25题图。

相关文档
最新文档