牛顿环思考题

合集下载

实验十九用牛顿环测透镜的曲率半径思考题

实验十九用牛顿环测透镜的曲率半径思考题

六思考题
1. 通过测量计算透镜的曲率半径R时为什么不用(3)式,而用(5)式
答:透镜和玻璃板间的相互挤压,使得中心暗纹不是零级。

因而条纹的级数难以确定。

2. 在牛顿环实验中,假如平板玻璃不是一个光学平面,局部有微小的凸起,则凸起处空气薄膜的厚度将减小,导致等厚干涉条纹发生畸变,试问这时牛顿环纹将局部内凹还是局部外凸为什么
答:向外凸。

等厚干涉的条纹和厚度是一一对应的。

凸起处空气膜的厚度较小,与靠近中心处的空气膜等厚,这些位置处的干涉条纹和凸起处的同级相连。

3. 若纸的厚度增大,则条纹将向什么方向移动,条纹间距如何变化
答:向劈尖移动,间距变小。

1。

大学物理实验(光学部分)思考题

大学物理实验(光学部分)思考题

大学物理实验(光学部分)思考题大学物理实验(光学部分)思考题一、《用牛顿环干涉测透镜的曲率半径》实验1、牛顿环实验的主要注意事项有哪些?视差。

竖直叉丝要与测量方向想垂直。

为防止回程误差。

在实验过程中读数显微镜的叉丝始终沿一个方向前进。

干涉环两侧的序数不能出错,要防止仪器瘦震动而引起的误差。

2、牛顿环实验中读数显微镜物镜下方的玻璃片G有何作用?实验时应如何调节?如果G的方向错误将会如何?3、哪些情况会使干涉条纹的中心出现亮斑?牛顿环接触点上有灰尘或者油渍。

在薄膜厚度为半波长的半整数倍什么情况下是亮的4、牛顿环实验中读数显微镜载物台下方的反光镜要作如何调节?为什么?关掉、因为本实验不需要光源从下射入。

5、牛顿环仪为什么要调节至松紧程度适当?太紧。

透镜将发生形变,测得的曲率半径将偏大,太松。

受震动时,接触点会跑动。

无法实验。

6、视差对实验结果有何影响?你是如何消除视差的?视差的存在会增大标尺读数的误差若待测像与标尺(分划板)之间有视差时,说明两者不共面,应稍稍调节像或标尺(分划板)的位置,并同时微微晃动眼睛,直到待测像与标尺之间无相对移动即无视差。

7、在实验过程中你是如何避免回程误差的?显微镜下旋后再上旋,由于齿轮没有紧密咬合,造成刻度出现偏差。

避免回程误差就是说一次测量内只能一直向上或向下二、《用掠入射法测定液体的折射率》实验1、分光计的调节主要分为哪些步骤?2、分光计的望远镜应作何调节?3、分光计为什么要设置两个游标?测量之前应将刻度盘及游标盘作何调节?为什么?4、用分光计测定液体的折射率实验,有哪些注意事项?5、调节分光计时,请说明三棱镜应如何如何放置,为什么要这样做?6、用分光计测量液体的折射率的过程中,哪些部件(或器件)应固定不能动?7、分光计的调节要求是什么?。

物理实验牛顿环思考题

物理实验牛顿环思考题

一、等厚干涉的特征
等厚干涉是因为平行光入射到厚度有变化的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成相同级数的明暗干涉条纹,故称等厚干涉。

条纹特点是对于劈尖干涉,条纹是明暗相间的平行的等间距的干涉条纹。

对于牛顿环,干涉条纹则是不等间距的环状条纹。

二、测量波长的方法
1、衍射光栅测波长
2、双棱镜测波长
3、驻波法测波长
4、牛顿环测波长
牛顿环实验测光波波长,当知道球面的曲率半径时可根据公式λ=(r²m-r²n)/(m-n)R算出。

5、分光计测光波波长
5、迈克尔逊干涉仪测光波波长
牛顿如何发明牛顿环一种光的干涉图样.是牛顿在1675年首先观察到
的.将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环.圆环分布是中间疏、边缘密,
圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉.牛顿在光学中的一项重要发现就是"牛顿环"。

这是他在进一步考察胡克研究的肥皂泡薄膜的色彩问题时提出来的。

牛顿环实验思考题

牛顿环实验思考题

1、等厚干涉的特征答:a.由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹。

b.薄膜厚度相同的地方形成同条干涉条纹。

c.厚度相等,也就意味着从前后面发生的两次反射的路程差是一个定值,因此不会出现干涉条纹,但是同样会有干涉现象,比如路程差恰好是某种波的半波长的奇数倍,则会出现此波在薄膜的表面被减弱为零,就像近视镜的镀膜一个道理。

2、5-10种测波长的方法(简述)答:(1)用双棱镜干涉测波长(2)用衍射光栅测光波波长光栅是一种重要的分光元件,它可以把入射光中不同波长的光分开,衍射光栅有透射光栅和反射光栅两种,常用的是平面透射光栅,它是由许多相互平行等距的透明狭缝组成,其中任意相邻两条狭缝的中心距离d称为光栅常数。

根据夫琅和费衍射理论,当一束平行光垂直地投射到光栅平面上时,每条狭缝对光波都会发生衍射,所有狭缝的衍射光又彼此发生干涉。

衍射角符合条件dsinθ=kλ,(k = 0、1、2、3 …)时,在该衍射角方向上的光相叠加将会加强,其它方向光相抵消。

如果用会聚透2/4镜把这些衍射后的平行光会聚起来,则在透镜的焦平面上将出现一系列亮纹,形成衍射图样。

如图所示,式(9–1)称为光栅方程,其中λ为入射光波波长,θ为衍射角,k为衍射亮纹的级数。

在θ为0的方向上可以观察到中央亮纹。

其它各级亮纹对称分布在中央亮纹两侧。

若已知光栅常数d,测出相应的衍射条纹与0级条纹间的夹角θ,便可求出光波波长(3)双缝干涉测波长a.光通过双缝干涉仪上的单缝和双缝后,得到振动情况完全相同的光,它们在双缝后面的空间互相叠加会发生干涉现象。

如果用单色光照射,在屏上会得到明暗相间的条纹;如果用白光射,可在屏上观察到彩色条纹。

b.本实验要测单色光的波长,单色光通过双缝干涉后产生明暗相同的等间距直条纹,条纹的间距与相干光源的波长有关。

设双缝宽d,双缝到屏的距离为L,相干光源的波长为λ,则产生干涉图样中相邻两条亮(或暗)条纹之间的距离△x,由此得;λ=L△x /d,因此只要测得d,L,△x即可测得波长。

牛顿环实验思考题

牛顿环实验思考题

实验十五用牛顿环测量球面的曲率半径课后思考题一.等厚干涉的特征等厚干涉:是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.光路图:特征:1.干涉条纹的级数序列:薄膜越厚,级数越高。

2.相邻条纹的间距:正比于波长,并且入射光的入射角愈大则条纹的间隔愈大。

越靠近接触点,相邻条纹的间隔愈大比如劈尖干涉为明暗条纹均匀分布的直条纹;牛顿环为明暗相间内疏外密的圆环纹。

3.干涉条纹的移动规律:增加薄膜厚度,条纹向楞点方向移动。

4.白色光投射到牛顿环上时u,可见中心为暗斑,而外围有彩色的几个环状条纹。

二.测波长的方法(1)牛顿环测量法;在牛顿环试验中,透镜的曲率半径设为R,则对于第k 级条纹,根据光的干涉条件,它应该满足一个等式,也就是λ。

其中D就是第k 级条纹的直径。

只要用牛顿环仪器测出条纹直径,就可以通过这个公式求出波长。

(2)单色仪测量法;器材:单色仪定标的仪器和单色光源。

原理:主光线在棱镜上的入射和出射总是满足最小偏向条件。

从而单色仪可出设单色光,且出射的单色光波长与鼓轮示数対应。

完成单色仪定标后,令待测光源入射,找到出射时的鼓轮读数即可通过定标曲线确定其波长。

(3)小型棱镜射谱仪法;器材:射谱仪、低压汞灯、电弧电源、底片、显影液、定影液、应谱仪。

原理:利用哈德曼光阑把已知铁谱线和待测谱线拍摄在同一底片上,然后于标准铁谱线对照,利用内插法便可计算出光波长。

说明:这种方法基于色散是线性的,存在系统误差。

实验时应选尽量接近的铁谱线进行估算。

(4)杨氏双缝干涉法;器材:光具座、底片夹、单缝、双缝、测微观察屏、测量显微镜、待测光源。

原理:杨氏双缝干涉原理:双缝干涉的两个相邻亮(暗)条纹的距离△x与波长λ、双缝的间距d及双缝到屏的距离L满足Δx=λz/d。

(5) 双棱镜分光干涉法;器材:光具座、双棱镜、扩束透镜及镜架、成像透镜、测微透视观察屏、卷尺、待测光源等。

牛顿环思考题

牛顿环思考题

牛顿环思考题一.等厚干涉的特点:等厚干涉是薄膜干涉的一种。

当薄膜层的上下表面有一很小的倾角时,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉,与接触点等距离处空气厚度是相同的。

二.关于牛顿环的发现:牛顿曾致力于颜色的现象和光的本性的研究。

1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。

在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。

牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。

牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈。

后人把这一现象称为“牛顿环”。

他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度。

牛顿设计并进行了“牛顿环”实验,研究了薄膜干涉问题,从而发现了“牛顿环”现象.牛顿亲自制造了仪器进行实验,他把一块平凸透镜放在一块双凸透镜上面,使平凸透镜的平面向下,然后慢慢压紧,围绕中心便陆续冒出各种颜色的圆环;如果使上面的平凸透镜慢慢抬起离开下面的双凸透镜,则带有颜色的圆环又在中心相继消失,这就是著名的“牛顿环”现象.牛顿还发现色环的颜色有一定的排列次序;当压紧两透镜时,色环的直径会不断增大,其周边的宽度则减小,若是抬起上面的透镜,色环的直径就会缩小,其周边的宽度则增大.牛顿还测量了环的半径,发现它和透镜的曲率半径、空气膜的厚度有一定关系.“牛顿环”现象实际上是两束光发生“干涉”的结果.但是由于牛顿是倾向于光的微粒说的观点,因此对这种光的波动性的表现没有作进一步的实验探索和理论研究.三.测量波长的方法1.双棱镜测量光波的波长如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的相位差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在某些地方表现为减弱(甚至可能为零),这种现象称为光的干涉。

2023大学_牛顿环课后思考题答案

2023大学_牛顿环课后思考题答案

2023牛顿环课后思考题答案篇一:2023牛顿环课后思考题答案实验一霍尔效应及其应用【预习思考题】1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。

霍尔系数,载流子浓度,电导率,迁移率。

2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型?以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。

3.本实验为什么要用3个换向开关?为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。

总之,一共需要3个换向开关。

【分析讨论题】1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行?若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。

要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。

2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些________?误差________有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。

实验二声速的测量【预习思考题】1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。

在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。

牛顿环思考题及答案

牛顿环思考题及答案

牛顿环思考题及答案 Final approval draft on November 22, 2020(1)牛顿环的中心在什么情况下是暗的,在什么情况下是亮的中心处是暗斑,这是因为中心接触处的空气厚度,而光在平面玻璃面上反射时有半波损失,所以形成牛顿环中心处为暗斑(用反射光观察时)。

当没有半波损失时则为亮斑。

(2)实验中为什么用测量式关系式求出R 值因为用后面个关系式时往往误差较大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触点成为一个圆面,干涉环中心为一暗斑,所以无法确定环的几何中心。

所以比较准确的方法是测量干涉环的直径。

测出个对应k 环环直径Dk ,由rk 2 =k λR 可知Dk 2=4R λk,又由于灰尘等存在,是接触点的dk ≠0,其级数也是未知的,则是任意暗环的级数和直径Dk 难以确定,故取任意两个不相邻的暗环,记其直径分别为Dm 和Dn(m>n),求其平方差即为Dm2-Dn2=4(m-n)R λ,则R=(Dm2-Dn2)/4(m-n) λ(3) 在本实验中若遇到下列情况,对实验结果是否有影响为什么①牛顿环中心是亮斑而非暗斑。

②测各个D m 时,叉丝交点未通过圆环的中心,因而测量的是弦长而非真正的直径。

1. 环中心出现亮斑是因为球面和平面之间没有紧密接触(接触处有尘埃,或有破损或磨毛),从而产生了附加光程差。

这对测量结果并无影响(可作数学证明)。

2.( 提示:从左图A ,看能否证明:2222n m n m D D d d -=-) 没有影响.可能的附加光程差会导致中心不是暗点而是亮斑,但在整个测量过程中附加光程差是恒定的,因此可以采用不同暗环逐差的方式消除 (4)在测量过程中,读数显微镜为什么只准单方向前进,而不准后退会产生回程误差,即测量器具对同一个尺寸进行正向和反向测量时,由于结构上的原因,其指示值不可能完全相同,从而产生误差.图A图B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.等厚干涉的特征:等厚干涉是因为平行光入射到厚度有变化的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成相同级数的明暗干涉条纹,故称等厚干涉。

条纹特点是对于劈尖干涉,条纹是明暗相间的平行的等间距的干涉条纹。

如果是牛顿环,干涉条纹则是不等间距的环状条纹。

2.测λ的方法
1)分光计测量光波波长
当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹,原理如图所示,其夫朗和费衍射主极大下式决定:
dsin Φ= m λ (9 — 1)
式中:d :光栅常数 d = a + b θ:衍射角 m :主极大级次 m = 0 , 1, 2 此式称光栅方程
由(9 — 1)式得 :
由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该光波长。

2)用双缝干涉测量光的波长
如图所示,电灯发生的光,经过滤光片后变成单色光,再经过单缝S 时
发生衍射,这时单缝S 相当于一单色光源,衍射光波同时到达双缝S1
和S2之后,再次发生衍射,S1、S2双缝相当于二个步调完全一致的单
色相干光源透过S1、S2双缝的单色光波在屏上相遇并叠加,S1、S2到
屏上P 点的路程分别是rl 、r2,两列光波传到P 的路程差Δr=21r r ,
设光波波长为λ。

(1)若Δr=nλ (n=0,±1,±2,…),两列波传到P 点同相,互相加强,出现明条纹.
(2)若Δr=(2n -1)λ (n=±1,±2,±3,…),两列波传到P 点反相,互相减弱,出现暗纹. 这样就在屏上得到了平行于双缝S1、S2的明暗相间的干涉条纹.相邻两条明条纹间的距离
Δx 与入射光波长λ,双缝S1、S2间距离d 及双缝与屏的距离L 有关,其关系式为:Δx=d L
λ,由此,只要测出Δx 、d 、L 即可测出波长λ.
3)双棱镜测量光波波长
菲涅耳双棱镜(简称双棱镜)实际上是一个顶角极大的等腰三棱镜,如图1所示。

它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。

当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S ′1和S ′2两个虚光源。

与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。

图1
其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。

用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x 值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即
△ λχd D =
, λ=△xd/D (1)
测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为ƒ的凸透镜L ,当D >4ƒ时,可移动L 而在测微目镜中看到两虚光源的缩
则由几何光学可知:
d=21d d (2)
4)迈克尔逊干涉仪测波长
M2平行M1’且相距为d ,S 发出的光对M2来说,如S’
发出的光,而对于E 处的观察者来说,S’如位于S2’又由于半反射膜G 的作用,M1如同处于S1’E 处观察到的干涉条纹,犹如S1’、S2’发出的球面波,在空间处处相干,把观察屏放在E 空间不同位置,都
可以看到干涉花纹,因此这一干涉为非定域干涉。

如果把观察屏放在垂直于S1’、S2’一组同心圆,而圆心就是S1’,、S2’的连线与屏的交点E 。

设E 处(ES2’=L )的观察屏上,离中心E 点远处某一点P ,EP 的距离为R ,则两束光的光程差为
2222)2(R L R d L L +-++=∆
L>>d 时,展开上式并略去d ²/L ²,则有
ϕcos 2/222d R L Ld L =+=∆
式中φ是圆形干涉条纹的倾角。

所以亮纹条件为
2dcos φ=k λ (k=0,1,2,…) ①
由此式可知,当k 、φ一定时,如果d
逐渐减小,则cos φ将增大,即φ角逐渐减小。

也就是说,同一k 级条纹,当d 减小时,该圆环半径减小,看到的现象是干涉圆环内缩;如果d 逐渐增大,同理看到的现象是干涉条纹外扩。

对于中央条纹,若内缩或外扩N 次,则光程差变化为2Δd=Nλ.式中,Δd 为d 的变化量,所以有
λ=2Δd/N ②
通过此式则能有变化的条纹数目求出光源的波长。

5)衍射光栅测波长
如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产
生衍射;出射光夹角为ϕ。

从B 点引两条垂线到入射光和出射光。

如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即
()sin sin d i m ϕλ±= (1)
m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λϕ,,,i d 中的三个量,可以推出另外一个。

若光线为正入射,0=i ,则上式变为
λ
ϕm d m =sin (2) 其中m ϕ为第m 级谱线的衍射角。

据此,可用分光计测出衍射角m ϕ,已知光栅常数可求波长。

3.历史
牛顿曾致力于颜色的现象和光的本性的研究。

牛顿环是他在进一步考察胡克研究的肥皂泡薄膜的色彩问题时提出来的。

他把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈,这一现象后来被称为“牛顿环”。

按理说,牛顿环乃是光的波动性的最好证明之一,可牛顿却不从实际出发,而是从他所信奉的微粒说出发来解释牛顿环的形成。

他认为光是一束通过窨高速运动的粒子流,因此为了解释牛顿环的出现,他提出了一个“一阵容易反射,一阵容易透射”的复杂理论。

根据这一理论,他认为;“每条光线在通过任何折射面时都要进入某种短暂的状态,这种状态在光线得进过程中每隔一定时间又复原,并在每次复原时倾向于使光线容易透过下一个折射面,在两次复原之间,则容易被下一个折射面的反射。

”他还把每次返回和下一次返回之间所经过的距离称为“阵发的间隔”。

实际上,牛顿在这里所说的“阵发的间隔”就是波动中所说的“波长”。

为什么会这样呢?牛顿却含糊地说:“至于这是什么作用或倾向,它就是光线的圆圈运动或振动,还是介质或别的什么东西的圆圈运动或振动,我这里就不去探讨了。


因此,牛顿虽然发现了牛顿环,并做了精确的定量测定,可以说已经走到了光的波动说的边缘,但由于过分偏爱他的微粒说,始终无法正确解释这个现象。

事实一,这个实验倒可以成为光的波动说的有力证据之一。

直到19世纪初,英国科学家托马斯·杨才用光的波动说完满地解释了牛顿环实验。

牛顿环是典型的等厚薄膜干涉.平凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状。

相关文档
最新文档