上海交通大学线性代数试卷A卷

合集下载

线性代数-091001(A)

线性代数-091001(A)

班级号 上海交通大学试卷(A 卷)(2009 至2010 学年 第1学期) ____________________ 号 . ___ ■生名 ________________ 课程名称 _____ 线_性_代_数_ (B 类) _______ 成绩 _________________________ xX 22 X3 0X 1xX 3 0为Ax 0,若存在二阶矩阵 B 0,使得AB 0,贝U ( X 1 X 2 X 3 0单项选择题(每题3分,共18分) 1 •记方程组 (B) 2,且 B 0; (A) 2,且 B 0 ; (C) 1,且 B 0 ; (D)1,且 B 0。

2•设A 是m n 的矩阵,1 0 0(A) 0 3 0 ; 0 0 33 0 0(C) 0 3 0 ; 0 0 1 4.设 A, B 为 n 阶矩阵,且AB(B) 当nm 时必有非零解;(D) 当m n 时必有非零解。

0 1 01 0 0,则矩阵 B 42A 2 =(0 013 0 0(B) 0 3 0 ;0 0 11 0 0(D)0 3 0。

0 0 30,B 0, 则必有(B 是n m 的矩阵,则齐次线性方程组(AB)x 0((A )当n m 时仅有零解; (C )当m n 时仅有零解; 3•设矩阵A 与B 相似,其中A 2 2 2(A) (A B) A B ; (B) |B|0 ;(C) | B * | 0 ; (D) | A * | 0。

5•设A , B 为n 阶正交矩阵,则以下一定是正交矩阵的是(其中 k 1, k 2为任意常数)(A) A B ;(B) A B ;(B) 1, 2 , , s 中任意一个向量都不能用其余向量线性表示; (C) 1,2,, s 中任意两个向量都线性无关;(D)1, 2 , , s 中存在一个向量,它不能用其余向量线性表示。

填空题(每题3分,共18分)11 1 17.设 Aa 1a 2a 3 , bb ,其中a i 互不相同,i i 1,2,3,则线性方程组 Ax b 的解222.2a 1 a 2 a 3 b是:x 1 ,X 9,X3。

17-18线性代数第一学期考试卷A - 答案

17-18线性代数第一学期考试卷A - 答案

第 1 页 共 4 页 背面有试题华东交通大学2017—2018学年第一学期考试卷课程名称: 线性代数A 考试时间: 120 分钟 考试方式:闭卷 (A )卷一、填空题(每题 3 分,共 15 分)1、设矩阵A =⎪⎭⎫ ⎝⎛--4321,则矩阵A 的伴随矩阵A *= ⎪⎪⎭⎫ ⎝⎛13242、设方阵A 满足A 3-2A+E=0,则21(A 2E)-- = -A .3、已知向量),,(211-=α与向量),,(x 22-=β正交,则=x -2. 4、如果n 元齐次线性方程组0=Ax 的基础解系含有)(n s s <个解向量, 那么矩阵的秩为()=A R s n - 5、设 123,,λλλ为方阵270056004A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的三个特征值,则123λλλ= 40 二、选择题(每题3 分,共15 分)6、若⎪⎪⎪⎭⎫⎝⎛λ--=05021311A 为奇异矩阵,则=λ( C ).(A) 1 (B) 2 (C) -3 (D) -4 7、B A ,是n 阶方阵,则下列结论成立的是( C ).(A)000==⇔=B A AB 或 (B)00=⇔=A A (C)000==⇔=B A AB 或 (D).1=⇔=A E A 8、若向量组s ααα,,, 21的秩为r ,则( D ).(A)必定s r < (B)向量组中任意小于r 个向量的部分组线性无关(C)向量组中任意r 个向量线性无关 (D)向量组中任意1+r 个向量必定线性相关9、设B A ,为同阶可逆矩阵,则下列等式成立的是(B ) (A)111)(---+=+B A B A (B)111)(---=A B AB(C)111---=)()(T T B A AB (D)11--=kA kA )((其中k 为非零常数)第 2 页 共 4 页 背面有试题2装O订O线O10、设1234,,,αααα都是3维向量,则必有( B )(A) 1234,,,αααα线性无关 (B) 1234,,,αααα线性相关 (C) 1α可由234,,ααα线性表示 (D) 1α不可由234,,ααα线性表示三、解答题(每题8分,共40分)11、求行列式21021001201002。

2000-2001学年第二学期线性代数期末考试A试卷解答

2000-2001学年第二学期线性代数期末考试A试卷解答

北 方 交 通 大 学2000-2001学年第二学期线性代数期末考试试卷(A 卷)一.填空题(本题共10道小题,每小题3分,满分30分)1.设矩阵⎥⎦⎤⎢⎣⎡-=121xA ,⎥⎦⎤⎢⎣⎡=012y B ,且BA AB =,则=x _______;=y _______. 解:由BA AB =,得⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121012012121xy y x , 即 ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-2142124y xy xy x y . 即112,4=--=x y y ,解方程组,得2,1==y x .且当2,1==y x 时,矩阵⎥⎦⎤⎢⎣⎡-=1121A , ⎥⎦⎤⎢⎣⎡=0122B , 验证:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=212401221121AB ,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=212411210122BA 此时有BA AB =. 应填:2,1==y x .2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=332313322212312111b a b a b a b a b a b a b a b a b a A ,其中0,0≠≠i i b a ()3,2,1=i ,则()=A r _______.解:由该矩阵的构造,以及行列式的运算性质,可知该矩阵的任意一个1阶子式均不为0,而任意一个二阶子式都为0.因此该矩阵的秩()1=A r . 应填:()1=A r .3.设n 阶方阵A 的伴随矩阵为*A ,且0≠=a A ,则=*A _______.解: 由E A AA=*,两端取行列式,得nAE A AA==*.由于两个n 阶矩阵乘积的行列式等于它们行列式的乘积,因此有 nA A A =*,即na a =*A.由题设,0≠=a A ,得11*--==n n aA A.应填:1-n a . 4.设向量()3,2,11-=α,()5,2,02-=α,()2,0,13-=α,()8,5,44=α,则4321,,,αααα线性_______关.解:根据向量线性相关的性质:1+n 个n 维向量必然线性相关.可知4321,,,αααα线性相关.应填:相关.5.设A 是3阶矩阵,A 有特征值1,1,0321=-==λλλ,其对应的特征向量分别为1ξ,2ξ,和3ξ,设[]321,,ξξξP =,则=-AP P 1___________.解:根据矩阵的相似标准形的理论,我们有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1101AP P 应填:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11. 6.设A 是n m ⨯矩阵,则齐次线性方程组0AX =仅有零解的充分必要条件是___________. 解:根据齐次线性方程组解的结构理论,得齐次线性方程组0AX =仅有零解的充分必要条件是()n r =A .应填:()n r =A . 7.已知:()()3122232132124,,x x x x x x x x f +++=β是正定二次型,则β的取值范围是___________. 解:此二次型所对应的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=40001βββA . 则此二次型为正定二次型的充分必要条件为矩阵A 是正定二次型.而A 是正定二次型的充分必要条件是A 的各阶顺序主子式皆大于零.即001>=ββ; ()04400012>-=βββββ.因此有不等式组⎩⎨⎧>->0402ββ,解之得20<<β. 应填:20<<β.8.设3阶方阵A 的列分块矩阵为[]321,,αααA =,a 、b 是数,若213αααb a +=,则=A ___________.解:根据行列式的运算性质,得 [][]2121321,,,,αααααααA b a +==[][][]0,,,,,,2211212121=+=+=ααααααααααb a b a .应填:0.9.设不含零向量的n 元向量组m ααα,,,21 是正交向量组,则m 与n 的大小关系为______. 解:因为n 元向量组m ααα,,,21 是正交向量组,所以向量组m ααα,,,21 是线性无关的向量组.因此n m ≤. 应填:n m ≤.10.设有一个四元非齐次线性方程组 b AX =,()3=A r ,321,,ααα为其解向量,且⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=79911α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+899132αα, 则此方程组的一般解为____________. 解:由于四元非齐次线性方程组b AX =的系数矩阵的秩()3=A r ,因此齐次线性方程组b AX =的导出组0AX =的基础解系中有一个解向量.由于2α与3α都是非齐次线性方程组b AX =的解向量,所以()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=+42929212132αα也是非齐次线性方程组b AX =的解向量.因此()13221ααα-+是齐次线性方程组0AX =的解向量.所以()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-+69917991289912132ααα或者⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡6991是齐次线性方程组0AX =的基础解系中的一个解向量.因此,非齐次线性方程组b AX =的通解为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡79916991k , (其中k 是任意常数). 应填:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡79916991k .二.(本题满分8分)计算n 阶行列式1111111332211------=n n a a a a a a a a D .解:将行列式按第1列展开,得1111111332211------=n n n a a a a a a a a D ()1211114433221111111-+---+-----=n n n n a a a a a a a a a a a a()1211111-+--+-=n n n a a a D a由此得递推公式:()1211111-+--+-=n n n n a a a D a D于是,()[]()121113222111-+---+-+--=n n n nn n a a a a a a D a a D()()12112212121-+--+-=n n n a a a D a a== ()()()121122212121-+----+-=n n n n a a a n D a a a而1112211----=-=n n n a a a D所以,()()()()1211122121221-+-----+-⋅-=n n n n n n a a a n a a a a D()()122111221111--+----=-=n n n n n n a a a na a a a na .三.(本题满分8分)已知矩阵X 满足关系式:X B XA 3+=T ,其中⎥⎦⎤⎢⎣⎡-=1234A ,⎥⎦⎤⎢⎣⎡-=41032B , 求X . 解:由X B XA 3+=T ,得T B X XA =-3,即()T B E A X =-3 而 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=-2231300312343E A , 所以 ()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=---1232412231311E A . 在等式()T B E A X =-3两端右乘()13--E A ,得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=-12212314884644112324140130231E A BX T. 四.(本题满分10分)设向量组[]Tk ,1,0,01=α,[]Tk 0,1,,02=α,[]T0,0,1,13=α,[]Tk 1,0,0,4=α,问:⑴ k 为何值时,向量组4321,,,αααα线性无关.⑵ k 为何值时,向量组4321,,,αααα线性相关,并求其秩及一个极大无关组.解:⑴ 4维向量组4321,,,αααα线性无关当且仅当4阶行列式0,,,4321≠αααα.而 11000100011101000100011100011010100,,,4321kk k kk k kk k --=-==αααα()1101000100011111000100011-=--=-=k k kk k k k所以,当且仅当0≠k 而且1≠k 时,0,,,4321≠αααα此时向量组4321,,,αααα线性无关.⑵ 当0=k 或者1=k 时,向量组4321,,,αααα线性相关.当0=k 时,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10001101000100,,,4321αααα, 此时向量组4321,,,αααα的秩为3,432,,ααα是其一个极大线性无关组.当1=k 时,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=101001101101100,,,4321αααα, 此时向量组4321,,,αααα的秩为3,432,,ααα是其一个极大线性无关组.五.(本题满分14分)对参数λ,讨论方程组⎪⎩⎪⎨⎧=-+=++=-+λλλλλ3213213211x x x x x x x x x 的解.在有解时,求出其无穷多解. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0110111011111100110111111111122λλλλλλλλλλλλλλλλλ()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+----→λλλλλλλλ11101110111⑴ 若0=λ,则有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--10111011011111111λλλλλ此时方程组的系数矩阵的秩为2,而其增广矩阵的秩为3,故此时线性方程组无解. ⑵ 若1=λ,则有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000100101102020011111111111λλλλλ此时线性方程组有无穷多组解.其解为⎩⎨⎧=-=01321x x x .⑶ 若1-=λ,则有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--001010010100202011111111111λλλλλ 此时线性方程组有无穷多组解.其解为⎩⎨⎧-=-=1231x x x .⑷ 若0≠λ,且1±≠λ,线性方程组的系数矩阵与增广矩阵的秩都是3,其秩与未知变量的个数相等,故此时线性方程组有唯一解.六.(本题满分16分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=122232221A ,求可逆矩阵P ,使得AP P Λ1-=为对角矩阵,并求kA . 解:⑴ 矩阵A 的特征多项式为()1221102211122110221122232221---+=--++-=--+--=-λλλλλλλλλλλA E()()()111221002112-+=+--+=λλλλλ所以,矩阵A 的特征值为1,1321=-==λλλ.对121-==λλ,由⎪⎩⎪⎨⎧=--=++-=++-022202220222321321321x x x x x x x x x ,得解向量[][]TT0,1,1,1,0,121==αα.对13=λ,由⎪⎩⎪⎨⎧=-=++-=+02202420222132132x x x x x x x ,得解向量[]T1,1,13-=α.令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101110111P ,则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1111AP P . ⑵ 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1111AP P ,得1111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=P P A 所以,()()111111111111---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=P P P PP PAkk kkk若k 是奇数,则 A P PA=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1111k; 若k 是偶数,则 E P PA=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1111k. 七.(本题满分8分)设321,,ααα为线性空间V 的一个基, 3213321221123,232,αααβαααβααβ++=++=-=.证明:321,,βββ也是线性空间V 的一个基.并求32132αααα+-=在基321,,βββ下的坐标向量.解:⑴ 由3213321221123,232,αααβαααβααβ++=++=-=,得[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=22331121,,,,321321αααβββ 由于022245012122331121≠==-,所以矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-220331121是可逆矩阵,因此向量组321,,ααα与321,,βββ等价.这表明,321,,βββ也是线性空间V 的一个基.⑵ []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+-=312,,32321321ααααααα.由[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=220331121,,,,321321αααβββ,得 [][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⋅=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-52242232021,,22331121,,,,3211321321ββββββααα 所以,[][][]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⋅=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2135211,,31252242232021,,312,,321321321ββββββαααα即32132αααα+-=在基321,,βββ下的坐标向量为T⎥⎦⎤⎢⎣⎡-213,5,211. 八.(本题满分6分)已知矩阵A 与B 相似,其中2000-2001学年第二学期线性代数期末考试A 卷解答 第 11 页 共 11 页 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x 10100002A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10010002y B , 求x 和y .解:由于相似矩阵有相等的行列式,即100100021*******-===y x B A因此,有y 22-=-,所以有1=y . 再由相似的矩阵有相等的迹,即有 1202-+=++y x ,因此,有0=x .由此得1,0==y x .。

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4

上海交通学期中考试试卷(A卷)-MaJia-Jun

上海交通学期中考试试卷(A卷)-MaJia-Jun

果 φA,α ̸= φA, 令 M 为 φA,α(A) 的化零子空间. 取一个不在 M 中的向量 β. 考虑 φA,α+cβ 让 c
在 C 中变动. { φA,α+cβ | c ∈ C } 是整除 φA 的无穷多个首项系数为 1 的多项式, 所以必有
c1
̸=
c2
使得
φA,α+c1β
=
φA,α+c2β
上 海 交 通 大 学 期 中 考 试 试 卷 (A 卷)
( 2016 至 2017 学年 第 2 学期)
班级号 课程名称
学号 高等代数与解析几何 (二)
姓名 成绩
我承诺,我将 严格遵守考试纪律。
题号
得分
批阅人 (流水阅)
一二三四五六
记号
• 矩阵用大写字母记, 对应小写字母代表矩阵中的元素. 例如矩阵 A 中的第 (i, j) 个元素为 aij. AT 和 A∗ 分别代表矩阵 A 的转置和共轭转置.
构造出向量 α, 使得 φA,ξ(A) = 0. 由 (a) 和 (b), 我们得 φA 整除 φA,ξ 且 φA,ξ 整除 φA. 所以
φA,ξ = φA.
五、 [共 15 分] 假设 V 是 C 上的一个有限维的线性空间, { Aj ∈ End(V) | j ∈ J } 是 V 上 的一族可交换的线性变换. 证明: (可假设 { Aj } 是有限集)
(b) 我们就 dim V 作归纳法.
如果 dim V = 1, 命题显然成立.
现假设命题对维数小于 n 的线性空间都成立.
取 V 中任意一个 { Aj } 的共同特征向量, 记为 ε1. 考虑商空间 Q = V/ Span { ε1 }. 则 Ai 诱

06-07-1线代(A)及答案-A

06-07-1线代(A)及答案-A

由 β2 ,β3 线性表示, 3 = r(α1 ,α 2 ,α3 ) ≤ r(β 2 ,β3 ) = 2 ,矛盾。
2.(1) 因为 ( A − 3E)( A − 5E) = 0
r( A − 3E) + r(A − 5E) ≤ n ,且 r( A − 3E) + r( A − 5E) ≥ r(E) = n
⎛1⎞

6.
(1) C
=
⎜0 ⎜⋯
1 ⋯
⋯ ⋯

⎜⎟
1⎟ ⋯⎟
;(2)
y
=
⎜1⎟ ⎜⋯⎟

⎜⎜ ⎝
0
0

1
⎟⎟ ⎠
⎜⎜ ⎝
1
⎟⎟ ⎠
(3) A = C ,
⎛n⎞
⎜⎟
A (α )
=
(β1
,
β2
,
⋯,
β
n
)⎜⎜
n −1⎟ ⋯⎟
=
(β1
,
β2
,⋯
,
βn
)y

⎜⎜ ⎝
1
⎟⎟ ⎠
四 证明题
1.(1) 3 = r(α1 ,α 2 ,α3 ) ≤ r(β1 ,β 2 ,β3 ) ≤ 3 ,故 r(β1 ,β 2 ,β3 ) = 3。

1⎟⎟
+

+
k
n
−1
⎜ ⎜
0
⎟; ⎟
⎜⋮⎟ ⎜⋮⎟
⎜⋮⎟
⎜ ⎝
0
⎟ ⎠
⎜ ⎝
0
⎟ ⎠
⎜ ⎝

1⎟⎠
⎜⎛1⎟⎞ ⎜1⎟ α = k⎜⎜1⎟⎟ ⎜⋮⎟ ⎜⎝1⎟⎠
(线代-A 卷) 第 7 页 共 6 页

线性代数第3版习题全解(上海交通大学)

线性代数第3版习题全解(上海交通大学)

习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s xy z x x zx y x x yzx-; ()2cos 1412cos 1012cos x x x;(5)xy x y yx y x x yxy+++。

解:(1)7415=7×5−1×4=31;(2) 1D =;(3) ()111x y zy zyz D x y zx y x y z x y x y zz x z x++=++=++++ ()3331030yzx y z x yy z x y z xyz z yx z=++--=++---。

(4)22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x xx--=2314cos 2cos 8cos 4cos 12cos x xx x x--=-=-。

(5) xy x y y x y x x yx y+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2)1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。

解:(1) 123111311,10,29528258D D D --====-==, 121210,29D Dx x D D==-== (2) 12131134253,42527,10131D D --==-==- 242132114453,42418131103D D -====,3121239,1,6D D Dx x x D D D====-==-。

3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名
题号 得分
上海交通大学线性代数试卷 A 卷
2006
-06-21
学号
得分




总分
一 单项选择题 (每题 3 分,共 18 分)
1.已知矩阵


a. 当
时,必有秩


c. 当
时,必有秩


,且

b. 当
时,必有秩
d. 当
时,必有秩
2. 已知
为 3 维列向量组,行列式

,则行列
式 a. -
6; c. -
18;
3. 设线性空间 中向量组 数为 3 的生成子空间是
a. L
b. 6 ; d. 18 。 线性无关, 则 的下列生成子空间中, 维

b. L

c. L

d. L

4.设 是
a. 若
为 维列向量组,矩阵 线性相关,则
,下列选项中正确的 线性无关;
b. 若
线性相关,则
线性相关;
c. 若
线性无关,则
(2) 定
2. ( 1)
, 实对称,且特征值大于零,所以正
,故
的充要条件为

(2) 由( 1)得
,若 可逆,
,则
,矛盾。
线性无关,
。已知向量
,试求
线性方程组
的通解。
5. 已知
是 3 维线性空间 的一个基,且



(1)求由基
到基
的过渡矩阵 ;
(2)设向量
,求
在基
下的坐标
6. 设列向量
是矩阵
的对应特征值 的一个特
征向量 . (1)求常数 为什么?
; (2)试问:矩阵 能否相似于对角矩阵?
四 证明题 (每题 8 分,共 16 分)


,则
的相似对角阵
2. 设
,
,其中
是非齐次线性方程组

解, 为 为
矩阵 , 且
, 则线性方程组 ;
的通解
3. 设实对称矩阵

可化为标准形
满足
,则二次型 ;
经正交变
4.已知矩阵
满足
,且
,则行列式

5.设 4 阶矩阵 满足行列式 必有一个特征值为


,则其伴随矩阵

6. 已知 4 阶矩阵
的秩
,则齐次线性方程组
的基
础解系 含
个线性无关的解向量。
三 计算题 (每题 8 分,共 48 分)
1.已知 阶矩阵
且满足方程
,其中

求矩阵 。
2. 已知非齐次线性方程组 试求:常数 的值,以及该方程组的通解。
,其系数矩阵 的秩
3. 求正交变换
, 将实二次型

为标准型 , 并写出正交变换

4. 设
为 4 阶方阵,其中
是 4 维列向量,且

3. 正交变换
,为

化二次型为标准形

4.

线性无关,
,解得

5. (1)

( 2)

6. (1)

(2)不能,因为其特征值为 -1,-1,-1 ;但线性无关的特征向量只有一个 . 四 证明题
1. ( 1)
为可逆矩阵,

其中
为可逆矩阵。因此 为正定矩阵, 相似于 , 的特征值与 相
同,故 的特征值都大于零。
1. 已知矩阵
为 阶正定矩阵 , 证明 :
(1) 矩阵 矩阵。
的特征值都大于零;
( 2)若
2.设 阶方阵
, 其中
是 维列向量 , 证明:
,则
为正定
(1)
的充要条件为

(2)当
时,矩阵 不
可逆。
一 选择题 二 填空题
参考答案 cadbcc
1.
;2.
三 计算题
1.

2.
,
; 3.
; 4. ; 5. ; 6.3。线性无Βιβλιοθήκη ;d. 若线性无关,则
线性相关。
5. 设
为非零实矩阵,
, 是行列式
中元素 的
代数余子式,则矩阵
阵; 阵;
a. 不可逆矩 c. 正交矩
必为
b. 对称矩阵; d. 正定矩阵。
6.设 为 阶非奇异矩阵
, 为 的伴随矩阵,则
a.

b.

c.

d.

二 填空题 (每题 3 分,共 18 分)
1. 设 3 阶方阵 有特征值
相关文档
最新文档