2020年上海交通大学自主招生考试数学试卷第15-25题解析
2020年普通高等学校招生全国统一考试数学(上海卷)(含答案)

2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【分值】4分 【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______【分值】4分4. 已知行列式126300a cd b =,则行列式a cd b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______【分值】4分 【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分 【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。
【分值】5分 【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【分值】5分【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。
上海交通大学2020级第二学期高等数学期末试题知乎

上海交通大学2020级第二学期高等数学期末试题知乎一、单项选择题(本大题共5小题,每小题3分,共15分。
每小题只有一个选项符合题目要求)1.点是函数的() [单选题] *A.连续点B.可去间断点(正确答案)C.跳跃间断点D.第二类间断点答案解析:2.若函数,在处连续,则常数为() [单选题] *A.2B.-2C.-1(正确答案)D.1答案解析:3.若曲线的水平渐近线存在,则常数为() [单选题] *A.1(正确答案)B.-1C.2D.-2答案解析:4.设函数是二阶可导函数,并且,当∈(0,+∞)时,<0,>0,则在(-∞,0)上函数为() [单选题] *A.单调下降,曲线是凸的B.单调下降,曲线是凹的C.单调上升,曲线是凸的D.单调上升,曲线是凹的(正确答案)答案解析:5.曲线的水平渐近线为() [单选题] *A.(正确答案)B.C.-4D.4答案解析:二、填空题(本大题共5小题,每小题5分,共25分)6.若的定义域为(0,2),则的定义域为 . [填空题] * _________________________________答案解析:7.函数的间断点是 . [填空题] *_________________________________答案解析:8.极限 . [填空题] *_________________________________答案解析:9.[填空题] *_________________________________答案解析:10.若点是曲线的拐点,则常数M,N的值分别为 . [填空题] *_________________________________答案解析:三、计算题(本大题共8小题,每小题5分,共40分)11. [填空题]_________________________________答案解析:12. [填空题] _________________________________答案解析:13. [填空题]_________________________________答案解析:14.[填空题]_________________________________答案解析:15. [填空题] _________________________________答案解析:16. [填空题]_________________________________答案解析:17.[填空题]_________________________________答案解析:18.[填空题]_________________________________答案解析:四.综合题(本大题共2小题,每小题10分,共20分)19.(1) [填空题] * _________________________________答案解析:(2) [填空题] * _________________________________答案解析:(1)函数的定义域; [填空题] *_________________________________答案解析:(2)该函数曲线的凹凸性; [填空题] *_________________________________答案解析:(3)求函数的单调区间. [填空题] *_________________________________答案解析:。
2020年上海交大自主招生数学试卷

2020年上海交大自主招生数学试卷一、填空题1.函数f(x)的定义域为(0,1).若c∈(0,),则函数g(x)=f(x+c)+f(x﹣c)的定义域为 .2.已知方程2x﹣sin x=1,则下列判断:(1)方程没有正数解(2)方程有无穷多个解(3)方程有一个正数解(4)方程的实根小于1其中错误的判断有 .3.小于1000的正整数中,既不是5的倍数也不是7的倍数的整数有 个.4.已知边长为a的正三角形ABC,D,E分别在边AB,BC上,满足AD=BE=,联结AE,CD,则AE和CD的夹角为 .5.△ABC的顶点坐标分别为A(3,4),B(6,0),C(﹣5,﹣2),则角A的平分线所在的直线方程为 .6.从2个红球,3个黑球,5个白球中任意取6个球,则有 种不同的取法.7.已知y=ax2+bx+c过A(﹣3,4),B(5,4),则2a+b= .8.过抛物线y2=2px(p>0)的焦点F作直线m交抛物线于A,B两点,若A,B横坐标之和为5,则直线m的条数为 .9.用同样大小的正n边形平铺整个平面(没有重叠),若要将平面铺满,则n的值为 .10.若三条直线x﹣2y+2=0,x=2,x+ky=0将平面划分成6个部分,则k可能的取值情况是( )A.只有唯一值B.有两个不同的值C.有三个不同的值D.无穷多个值11.非零实数a,b,c,若,,成等差,则下列不等式成立的是( )A.|b|≤|ac|B.|b|≤C.b2≥|ac|D.a2≤b2≤c2 12.若集合M中任意两个元素的和差积商的运算结果都在M中,则称M是封闭集合.下列集合:(1)R(2)Q(3)∁R Q(4){x|x=m+n,m,n∈Z}中.封闭集合的个数为 .13.方程x(x+1)+1=y2的正整数解有 .14.若a,b<0,且满足+=,则= .15.若四面体的各个顶点到平面α距离都相等,则称平面α为该四面体的中位面,则一个四面体的中位面的个数是 .16.设m(a)是函数f(x)=|x2﹣a|在区间[﹣1,1]上的最大值,则m(a)的最小值为 .17.立方体8个顶点任意两个顶点所在的直线中,异面直线共有 对.18.空间三条直线a,b,c两两异面,则与三条直线都相交的直线有 条.19.用平面截一个单位正方体,若截面是六边形,则此六边形周长最小值为 .20.矩形ABCD的边AB=,过B,D作直线AC的垂线,垂足分别为E,F,且E,F分别为AC的三等分点.沿着AC将矩形翻折,使得二面角B﹣AC﹣D成直角,则BD长度为 .21.平面上给定5个点,任意三点不共线.过任意两点作直线,已知任意两条直线既不平行也不垂直.过5点中任意一点向另外4点的连线作垂线,则所有这些垂线的交点(不包括已知的5点)个数至多有 个.22.实数a,b满足(a+b)59=﹣1,(a﹣b)60=1,则(a n+b n)= .23.甲乙丙三人的职业分别是A,B,C,乙的年龄比C大,丙的年龄和B不同,B比甲的年龄小,则甲乙丙的职业分别为( )A.ABC B.CAB C.CBA D.BCA24.函数y=,x∈(﹣,)的最小值是 .2020年上海交大自主招生数学试卷参考答案与试题解析一、填空题1.函数f(x)的定义域为(0,1).若c∈(0,),则函数g(x)=f(x+c)+f(x﹣c)的定义域为 (c,1﹣c) .【考点】函数的定义域及其求法.【分析】由题意可得,,结合c的范围解不等式可求.【解答】解:由题意可得,,解可得,,因为0<c<,所以﹣c<c<1﹣c<1+c,所以c<x<1﹣c.故函数的定义域(c,1﹣c),故答案为:(c,1﹣c)【点评】本题主要考查了函数的定义域的求解,属于基础试题.2.已知方程2x﹣sin x=1,则下列判断:(1)方程没有正数解(2)方程有无穷多个解(3)方程有一个正数解(4)方程的实根小于1其中错误的判断有 1个 .【考点】函数的零点与方程根的关系.【分析】在同一直角坐标系内画出函数y=2x﹣1与y=sin x的图象,由两函数图象的交点逐一分析四个命题得答案.【解答】解:由2x﹣sin x=1,得2x﹣1=sin x,作出函数y=2x﹣1与y=sin x的图象如图:当x=时,sin=,<<=,可知函数y=2x﹣1与y=sin x的图象在(0,1)上一定有一个交点,且唯一,故(1)错误,(3)(4)正确;由图可知,方程有无穷多个解,故(2)正确.∴其中错误的判断有1个.故答案为:1个.【点评】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,是中档题.3.小于1000的正整数中,既不是5的倍数也不是7的倍数的整数有 686 个.【考点】等差数列的前n项和.【分析】先求出5的倍数有200个,7的倍数有142个,35的倍数有28个,从而可求.【解答】解:因为小于1000的正整数中,5的倍数有1000÷5=200个,1000÷7=142…6即7的倍数有142个,因为1000÷35=28…20即35的倍数有28个,故既不是5的倍数也不是7的倍数的整数有1000﹣(200+142﹣28)=686个故答案为:686【点评】本题主要考查了等差数列的简单应用,属于基础试题.4.已知边长为a的正三角形ABC,D,E分别在边AB,BC上,满足AD=BE=,联结AE,CD,则AE和CD的夹角为 60° .【考点】两直线的夹角与到角问题.【分析】以BC的中点为坐标原点O,建立直角坐标系xOy,分别求得A,B,C,D,E 的坐标,以及直线AE,CD的斜率,由两直线的夹角公式,计算可得所求值.【解答】解:以BC的中点为坐标原点O,建立直角坐标系xOy,可得A(0,a),B(﹣a,0),C(a,0),由AD=BE=,可得E(﹣a,0),又=,可得D(,a),即为(﹣a,a),则直线AE的斜率为k AE==3,直线CD的斜率为k CD==﹣,可得两直线AE,CD的夹角的正切为||=,则所求夹角为60°.故答案为:60°.【点评】本题考查两直线的夹角的求法,运用坐标法是解题的关键,考查直线的斜率和两直线的夹角公式,考查化简运算能力,属于中档题.5.△ABC的顶点坐标分别为A(3,4),B(6,0),C(﹣5,﹣2),则角A的平分线所在的直线方程为 7x﹣y﹣17=0 .【考点】直线的一般式方程与直线的性质.【分析】求出|AB|、|AC|的长,利用定比分点坐标公式求出点T的坐标,即可写出AT所在的直线方程.【解答】解:由A(3,4),B(6,0),C(﹣5,﹣2),所以|AB|==5,|AC|==10,设角A的平分线AT交BC于点T,则点T分BC所成的比为λ==,由定比分点坐标公式,得x T==,y T==﹣;所以点T(,﹣),所以AT所在的直线方程为=,即7x﹣y﹣17=0.【点评】本题考查了线段的定比分点和直线方程的应用问题,是中档题.6.从2个红球,3个黑球,5个白球中任意取6个球,则有 11 种不同的取法.【考点】排列、组合及简单计数问题.【分析】根据题意,按不同颜色球的数目列举所有的情况,即可得答案.【解答】解:根据题意,从2个红球,3个黑球,5个白球中任意取6个球,有以下情况:1、2个红球,3个黑球,1个白球;2、2个红球,2个黑球,2个白球;3、2个红球,1个黑球,3个白球;4、2个红球,4个白球;5、1个红球,3个黑球,2个白球;6、1个红球,2个黑球,3个白球;7、1个红球,1个黑球,4个白球;8、1个红球,5个白球;9,3个黑球,3个白球;10、2个黑球,4个白球;11、1个黑球,5个白球;共11种情况;故答案为:11.【点评】本题考查分类计数原理的应用,注意分类讨论要做到不重不漏,属于基础题.7.已知y=ax2+bx+c过A(﹣3,4),B(5,4),则2a+b= 0 .【考点】二次函数的性质与图象.【分析】由二次函数图象的对称性,可得对称轴方程为x=1,可解出答案.【解答】解:图象过A,B两点,可知该函数一定是二次函数,对称轴方程为,所以b=﹣2a,b+2a=0.故答案为0.【点评】本题考查了二次函数的对称性.8.过抛物线y2=2px(p>0)的焦点F作直线m交抛物线于A,B两点,若A,B横坐标之和为5,则直线m的条数为 当p>5时,直线条数为0条;当p=5时,直线条数为1条;当p<5时,直线条数为2条. .【考点】抛物线的性质.【分析】设直线方程为x=ty+,联立可得x1+x2=t(y1+y2)+p=5,,根据5﹣p的符号判定即可.【解答】解:设直线方程为x=ty+,联立整理可得y2﹣2pty﹣p2=0,y1+y2=2pt,x1+x2=t(y1+y2)+p=5,t•2pt+p=5∴,当p>5时,直线条数为0条;当p=5时,直线条数为1条;当p<5时,直线条数为2条.【点评】本题考查了直线与抛物线的位置关系,考查了转化思想,属于中档题.9.用同样大小的正n边形平铺整个平面(没有重叠),若要将平面铺满,则n的值为 3,4,6 .【考点】进行简单的合情推理.【分析】设m个正n边形可以铺满平面,得到关于m和n的式子,找到满足条件的正整数解即可.【解答】解:设m个正n边形可以无重叠,无缝隙地平铺平面如图所示,则,化简可得:2(m+n)=mn,则满足条件的有,,,因此满足条件的n的值为3,4,6,故答案为:3,4,6【点评】本题考查一般推理能力,属于中档偏难题目.10.若三条直线x﹣2y+2=0,x=2,x+ky=0将平面划分成6个部分,则k可能的取值情况是( )A.只有唯一值B.有两个不同的值C.有三个不同的值D.无穷多个值【考点】直线的一般式方程与直线的平行关系;两条直线的交点坐标.【分析】由题意可得其中只有2条直线互相平行,第三条和这2条平行线都相交,再利用两条直线平行的条件求出k的值.【解答】解:若三条直线x﹣2y+2=0,x=2,x+ky=0将平面划分成6个部分,则其中只有2条直线互相平行,第三条和这2条平行线都相交,则k=﹣2或k=0,或者三条直线经过同一个点,即x﹣2y+2=0和x=2的交点(2,2)在直线x+ky=0上,此时k=﹣1.综上,k=﹣2 或k=0或k=﹣1,故选:C.【点评】本题主要考查两条直线平行的条件,两条直线的位置关系,属于基础题.11.非零实数a,b,c,若,,成等差,则下列不等式成立的是( )A.|b|≤|ac|B.|b|≤C.b2≥|ac|D.a2≤b2≤c2【考点】不等关系与不等式;等比数列的通项公式.【分析】由等差数列的性质得2a2c2=(a2+c2)b2≥2b2|ac|,推导出|b|≤,进而得到≤≤,或,由此能求出结果.【解答】解:∵由题意得+=,即2a2c2=(a2+c2)b2≥2b2|ac|,∴b2≤|ac|,∴,即|b|≤,又2b2c2=(a2+c2)b2.∴,∴≤≤,或,即a2≤b2≤c2,或c2≤b2≤a2.故选:B.【点评】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.12.若集合M中任意两个元素的和差积商的运算结果都在M中,则称M是封闭集合.下列集合:(1)R(2)Q(3)∁R Q(4){x|x=m+n,m,n∈Z}中.封闭集合的个数为 2 .【考点】交、并、补集的混合运算.【分析】由题意结合封闭集合的定义逐一考查所给的集合是否满足题中的定义即可确定封闭集合的个数.【解答】解:两个实数的和差积商仍然是实数,故R是一个封闭集合;两个有理数的和差积商仍然是有理数,故Q是一个封闭集合;注意到,而,故∁R Q不是封闭集合;令,注意到,而,故不是封闭集合;综上可得,封闭集合的个数为2.故答案为:2.【点评】本题考查集合中的新定义问题,属于中等题.13.方程x(x+1)+1=y2的正整数解有 0 .【考点】函数的零点与方程根的关系.【分析】由已知等式可得y>x,y﹣1<x,进一步得到x<y<x+1,由此可得满足该式的正整数y不存在,从而得到方程x(x+1)+1=y2的正整数解为0个.【解答】解:由x(x+1)+1=y2,得y2﹣x2=x+1,∵x为正整数,∴x+1>1,即y2﹣x2>1,则y>x,由x(x+1)+1=y2,得y2﹣1=(y﹣1)(y+1)=x(x+1),∵y+1>x+1,∴y﹣1<x,则x<y<x+1,满足该式的正整数y不存在,则方程x(x+1)+1=y2的正整数解为0个.故答案为:0.【点评】本题考查函数的零点与方程根的关系,考查数学转化思想方法,考查逻辑思维能力与推理论证能力,是中档题.14.若a,b<0,且满足+=,则= .【考点】有理数指数幂及根式.【分析】推导出a2﹣b2=ab,整理得()2﹣﹣1=0,由此能求出的值.【解答】解:∵a,b<0,且满足+=,∴=,整理得a2﹣b2=ab,∴=1,∴()2﹣﹣1=0,由a,b<0,解得=.故答案为:.【点评】本题考查两数比值的求法,考查指数定义、运算法则等基础知识,考查运算求解能力,是基础题.15.若四面体的各个顶点到平面α距离都相等,则称平面α为该四面体的中位面,则一个四面体的中位面的个数是 7 .【考点】点、线、面间的距离计算.【分析】分3种情况分类讨论即可,①四个顶点均在平面的一侧,②平面的一侧有三个顶点,另一侧有一个顶点,③平面的两侧各有两个顶点.分别求出中位面的个数再相加可得答案.【解答】解:将所考虑的四面体记作ABCD.若四个顶点均在平面的一侧,则这四个顶点必位于一个与平面平行的平面内,不符合条件;只考虑以下两种情形.(i)平面的一侧有三个顶点,另一侧有一个顶点.不妨设点A,B,C在平面的一侧,点D在另一侧,则A,B,C三点所确定的平面必平行与,由点D作平面ABC的垂线DD1,D1为垂足.则中位面必为经过DD1的中点且与DD1垂直的平面(存在且唯一),该中位面平行于平面ABC.这种类型的中位面共有4个.(ii)平面的两侧各有两个顶点,不妨设点A,B在平面α的一侧,点C,D在另一侧,显然,易知,AB与CD为异面直线,中位面必为经过它们公垂线中点且平行于它们的平面(存在且唯一).由于四面体的6条棱可按异面直线关系分为3组,于是这种类型的中位面共有3个.综上,一个四面体的中位面由7个互不相同的中位面.故答案为:7.【点评】本题考查空间中线面位置关系,考查学生分析问题、解决问题的能力,属于中档题.16.设m(a)是函数f(x)=|x2﹣a|在区间[﹣1,1]上的最大值,则m(a)的最小值为 .【考点】带绝对值的函数.【分析】由题意可得函数f(x)为偶函数,因此讨论M(a)的值域只需在x∈[0,1]这一范围内进行,结合二次函数的单调性及a的正负及1的大小分类讨论求解M (a).【解答】解:由题意可得函数f(x)为偶函数,因此讨论M(a)的值域只需在x∈[0,1]这一范围内进行;①当a≤0时,f(x)=x2﹣a,函数f(x)在[0,1]单调递增,M(a)=f(1)=1﹣a≥1.②当1>a>0时,函数f(x)在[0,]上单调递减,在[,1]上单调递增,所以f(x)在[0,]内的最大值为M(a)=f(0)=a,而f(x)在[,1]上的最大值为M(a)=f(1)=1﹣a.若f(1)>f(0)得,则1﹣a>a,求得0<a<.故当a∈(0,)时,M(a)=f(1)=1﹣a>;若f(1)≤f(0)得,则1﹣a≤a,求得1>a≥.故当a∈[,1)时,M(a)=f(0)=a,③当a≥1时,函数在[0,1]上为减函数,所以M(a)=f(0)=a≥1.综上,M(a)=1﹣a,(当a<时);或M(a)=a,(当a≥时).所以M(a)在[0,]上为减函数,且在[,1]为增函数,易得M(a)的最小值为M()=.故答案为:.【点评】本题主要考查了偶函数的性质的应用,其实由分析可得M(a)=f(0)或f (1),所以可直接通过比较f(0)与f(1)的大小得出M(a)的解析式从而求解.17.立方体8个顶点任意两个顶点所在的直线中,异面直线共有 174 对.【考点】异面直线的判定.【分析】求出正方体中不在同一个平面上的4个点的个数,然后求出这4个点中异面直线的对数即可.【解答】解:立方体中有8个顶点,任意两个顶点所构成的直线有:=28,其中不在同一个平面上的4个点的个数有C84﹣12=58,4个点中异面直线的对数是:3,所以过正方体任意两个顶点的直线共有28条,其中异面直线有:58×3=174对.故答案为:174.【点评】本题考查排列组合的知识,结合空间几何体难度比较大,注意不在同一个平面的4点中,能够出现异面直线,是解答本题的关键.18.空间三条直线a,b,c两两异面,则与三条直线都相交的直线有 无穷多条 条.【考点】异面直线的判定.【分析】在a、b、c上取三条线段AB、CC′、A′D′,作一个平行六面体ABCD﹣A′B′C′D′,在直线A′D′上取一点P,过a、P作一个平面β,平面β与DD′交于Q、与CC′交于R,由面面平行的性质定理,得QR∥a,由点P的任意性,得与a,b,c都相交的直线有无穷多条.【解答】解:在a、b、c上取三条线段AB、CC′、A′D′,作一个平行六面体ABCD﹣A′B′C′D′,如右图所示在c上,即在直线A′D′上取一点P,过a、P作一个平面β平面β与DD′交于Q、与CC′交于R,则由面面平行的性质定理,得QR∥a,于是PR不与a平行,但PR与a共面.故PR与a相交,得直线PR是与a,b,c都相交的一条直线.根据点P的任意性,得与a,b,c都相交的直线有无穷多条.故答案为:无穷多条.【点评】本题考查满足条件的直线条件的求法,考查空间直角坐标系的性质等基础知识,考查运算求解能力,是中档题.19.用平面截一个单位正方体,若截面是六边形,则此六边形周长最小值为 3 .【考点】平面的基本性质及推论.【分析】画出图象,结合图象求出六边形的周长,即可求得此六边形周长最小值.【解答】解:如图示:,则结合对称性可知,六边形的周长最小值是6×=3,故答案为:3.【点评】本题考查利用平面几何的知识解决立体几何,考查学生的空间想象能力,考查运算求解能力.20.矩形ABCD的边AB=,过B,D作直线AC的垂线,垂足分别为E,F,且E,F分别为AC的三等分点.沿着AC将矩形翻折,使得二面角B﹣AC﹣D成直角,则BD长度为 .【考点】二面角的平面角及求法.【分析】根据,可以求出EF,再根据勾股定理即可求出BD的长度.【解答】解:设AF=FE=EC=x,则,,解得,故.故答案为:.【点评】本题考查二面角的概念,考查学生空间想象能力和运算能力,属于基础题.21.平面上给定5个点,任意三点不共线.过任意两点作直线,已知任意两条直线既不平行也不垂直.过5点中任意一点向另外4点的连线作垂线,则所有这些垂线的交点(不包括已知的5点)个数至多有 310 个.【考点】进行简单的合情推理.【分析】固定一个点进行研究,然后推广开后用排除法去掉不符合要求的即可.【解答】解:由给定的五个点两两连线共有=10条,记五个点为A1,A2,A3,A4,A5,则以A1为例进行研究:A2,A3,A4,A5四个点共产生=6条连线,由A1向6条连线可引出6条垂线,则推广到其他点共可得到6×5=30条垂线.若每两条垂线均相交,则可得到个交点,易知每一条线段的垂线互相平行且每一条线段共有3条垂线,则应减去30个交点,又A1,A2,A3,A4,A55点共可得到个三角形,三角形的三边垂线交于一点,故要减去20个点,而由A1,A2,A3,A4,A55点中任一点引出的垂线必交于该点,故减去点,则最终有435﹣75﹣20﹣30=310个点.故答案为310.【点评】本题考查了排列组合和逻辑推理的相关内容,属于难题.22.实数a,b满足(a+b)59=﹣1,(a﹣b)60=1,则(a n+b n)= 0 .【考点】数列的求和.【分析】本题先根据(a+b)59=﹣1,可得到a+b=﹣1,以及根据(a﹣b)60=1,可得a﹣b=±1,然后列出关于a、b的方程组,解出a、b的值,代入求和表达式,根据等比数列的求和公式即可计算出结果.【解答】解:依题意,由(a+b)59=﹣1,可知a+b=﹣1,∵(a﹣b)60=1,∴a﹣b=±1,∴,或,解得,或,当时,a n+b n=(﹣1)n;当时,a n+b n=(﹣1)n,∴(a n+b n)=(﹣1)n=(﹣1)1+(﹣1)2+…+(﹣1)60==0.故答案为:0.【点评】本题主要考查根据多项式求值,以及求和的问题.考查了方程思想,等比数列的求和公式,以及定义法,转化法,逻辑推理能力和数学运算能力.本题属中档题.23.甲乙丙三人的职业分别是A,B,C,乙的年龄比C大,丙的年龄和B不同,B比甲的年龄小,则甲乙丙的职业分别为( )A.ABC B.CAB C.CBA D.BCA【考点】进行简单的合情推理.【分析】由丙的年龄和B不同,B比甲的年龄小,可得乙的职业为B,进而得到甲的职业为A,丙的职业为C.【解答】解:由丙的年龄和B不同,B比甲的年龄小,可知乙的职业为B,进而乙比甲的年龄小,又因为乙的年龄比C大,所以甲的职业不可能为C,从而甲的职业为A,所以丙的职业为C,所以甲乙丙的职业分别为ABC,故选:A.【点评】本题主要考查了简单的合情推理,是基础题.24.函数y=,x∈(﹣,)的最小值是 2 .【考点】三角函数的最值.【分析】先利用换元法得到y的表达式,再利用基本不等式求得最值.【解答】解:令t=sin x+cos x=sin(x+),x∈(﹣,),则t∈(0,],2sin x cos x=t2﹣1,∴y==2t+,t∈(0,],∴y≥2=2(当且仅当t=时取等号).故答案为:2.【点评】本题主要考查换元法、基本不等式在求函数最值中的应用,属于中档题.。
重视考试分析-提高教学质量

重视考试分析提高教学质量考试能够检测学生在知识和能力掌握上的不足与问题所在,给学生提供改进学习的信息,给教师提供调整和改进教学的信息,这就是考试的诊断和反馈功能.考试提供的信息有两个方面:一是考试的内容,考试的重点,试题的结构及深浅度都对老师的教学及学生的学习起着十分重要的导向作用。
二是考生解答的试卷中记录着每个学生对每一具体问题的见解,从中可以分析得出每个学生对考核内容的掌握情况,哪些掌握得好,哪些较差,问题出在何处。
这些情况反馈给学生本人及其教师,对他们有针对性地改进学习和教学是大有裨益的.所以在考试之后,教师应对试卷进行分析和教学检查,并将试卷分析情况对学生进行讲评,指出学生学习的优点、缺点、注意事项和努力方向,教师对学生的这种学习指导是非常有效的。
本文通过对一次考试进行综合的、客观的量化分析来说明合理、客观、正确地分析试卷对我们进行教学改进、提高教学质量有着十分重要的意义。
试卷分析主要包括两个方面:一是对试题的基本结构分析,二是对学生答题情况的分析。
试卷结构分析要统计试题的题型、题量(表1)和试卷的知识领域分布情况(表2)。
表1:由此反映出本次试卷的主要特点是:体现基础性,同时突出个性发展。
试卷以《考试说明》为依据,题型结构保持稳定,较好地体现了新课程基本理念.试卷立意新颖、结构合理,由易到难,有利于学生的考场发挥。
整张试卷基础知识考查到位,基础题目所占比重达三分之二,(如:第1、2、3、4、5、6、7、9、10、11、13、14、15、16、17、18均是基础题),使大部分学生有成功的体验,可以说注重基础是近几年数学试卷的共同点。
学习数学的最终目的之一是应用数学知识解决实际问题。
试卷在几个题目中分别考查了用数学知识解决实际问题能力,例如选择题中的第5题、第18题,第21题都是以实际问题作为背景,特别是第21题以现实生活中的热点问题—-环保问题为背景,题目素材背景密切联系实际,使学生对题目有着亲切感和认同感,增强了解答的信心。
2020年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案

2020年普通高等学校招生全国统一考试(上海卷) 数学一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______ 【分值】4分【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______ 【分值】4分 54. 已知行列式126300a cd b =,则行列式a c d b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______ 【分值】4分 【答案】()13xx R ∈6. 已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分 【答案】-18. 已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有 种排法。
【分值】5分 【答案】18010. 椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为 【分值】5分 【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x a f x x x a ≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。
2020年高考数学上海卷附答案解析版

【解析】根据向量减法的运算规律,ai bj {1,2}可转化为以向量a1 和 a2 终点为圆心,作半径r1 1 和 r2 2
的圆,两圆交点即为满足题意的b ,由图知, k 的最大值为 6。
1 /6
二、 13.【答案】B 14.【答案】D 15.【答案】D 【解析】 延长 BC 至 M 点,使得CM 2 延长C1C 至 N 点,使得CN 3 ,
2
b4 a b2
,
所以有4< b4 ,解得b2>2 2 5 ,或 b2<2 2 5 (舍) 4 b2
又因为OM ON由 ON 在 OM 上的投影可知: OM ON b2 4
所 以 OM ON b2 4>6 2 5
OM ON 6 2 5,
21.【答案】(1)对于第一个数列有 2 3 1, 5 3 2 , 1 3 2 , 满足题意,该数列满足性质 p
以 C 、 M 、 N 为顶点作矩形,记矩形的另外一个顶点为 H , 连接 A1P 、 PH 、 HC ,则易得四边形 A1PHC 为平行四边形,
因为点 P 在平面 ADD1A1内,点 H 在平面 BCC1B1 内,
且点 P 在平面 ABCD 的上方,点 H 在平面 ABCD 下方, 所以线段 PH 必定会在和平面 ABCD 相交, 即点Q 在平面 ABCD 内。 16.【答案】C 【解析】本题要看清楚一个函数具有性质 P 的条件是,存在a R 且 a 0 ,
2024年交大附中自主招生数学试题

2024年交大附中自主招生数学试题2024年交大附中自主招生数学试题的挑战与应对交通大学附属中学自主招生考试是一场极具挑战性的数学考试,而2024年的考试试题更是引人注目。
在这场考试中,考生们将面临一些颇具难度的问题,要求他们展现出卓越的数学思维和解决问题的能力。
本文将结合具体试题,为读者解析这场考试的挑战性,并提供一些应对策略。
首先,2024年交大附中自主招生数学试题的难点表现在以下几个方面。
首先,题目涉及的知识面非常广,包括代数、几何、概率与统计等多个领域。
考生需要在短时间内掌握并运用这些知识,无疑是一大挑战。
其次,题目对考生的数学思维能力和逻辑推理能力要求极高,需要考生具备严密的逻辑推理能力和深入的数学思维能力。
最后,试题中还出现了一些需要运用复杂数学模型和方法的题目,要求考生具备较高的数学建模能力和解决问题的能力。
针对这些难点,考生可以采取以下几种应对策略。
首先,考生需要全面复习数学知识,确保自己对各个领域都有深入的理解和掌握。
在复习过程中,考生可以结合历年自主招生试题进行练习,提高自己的应试能力。
其次,考生需要注重培养自己的数学思维能力和逻辑推理能力,通过大量的练习和反思来提升自己的数学素养。
最后,考生还需要加强对数学方法和技术的应用,通过模拟考试和练习,提高自己的解题能力和应变能力。
在应对2024年交大附中自主招生数学试题的过程中,考生还需要注意一些问题。
首先,要合理规划答题时间,避免在难题上过度纠结,影响整体成绩。
其次,要注重解题的准确性和规范性,避免因为细节问题而丢分。
最后,要保持冷静,遇到难题时要保持冷静,避免因为紧张而犯错。
总之,2024年交大附中自主招生数学试题是一场极具挑战性的考试,要求考生具备全面的数学知识、深刻的数学思维能力和灵活的解题技巧。
考生在备考过程中需要全面复习数学知识,注重培养数学思维能力和解题技巧,同时保持良好的心态和冷静的态度,以应对这场极具挑战性的考试。
2020年自主招生数学试题及解答

2020年自主招生数学试题及解答1.(仅文科做)02απ<<,求证:sin tan ααα<<. 【解析】 不妨设()sin f x x x =-,则(0)0f =,且当02x π<<时,()1cos 0f x x '=->.于是()f x 在02x π<<上单调增.∴()(0)0f x f >=.即有sin x x >. 同理可证()tan 0g x x x =->.(0)0g =,当02x π<<时,21()10cos g x x '=->.于是()g x 在02x π<<上单调增。
∴在02x π<<上有()(0)0g x g >=。
即tan x x >。
注记:也可用三角函数线的方法求解.2.AB 为边长为1的正五边形边上的点.证明:AB(25分) 【解析】 以正五边形一条边上的中点为原点,此边所在的直线为x 轴,建立如图所示的平面直角坐标系.⑴当,A B 中有一点位于P 点时,知另一点位于1R 或者2R 时有最大值为1PR ;当有一点位于O 点时,1max AB OP PR =<;⑵当,A B 均不在y 轴上时,知,A B 必在y 轴的异侧方可能取到最大值(否则取A 点关于y 轴的对称点A ',有AB A B '<).不妨设A 位于线段2OR 上(由正五边形的中心对称性,知这样的假设是合理的),则使AB 最大的B 点必位于线段PQ 上.且当B 从P 向Q 移动时,AB 先减小后增大,于是max AB AP AQ =或;对于线段PQ 上任意一点B ,都有2BR BA ≥.于是22max AB R P R Q == 由⑴,⑵知2max AB R P =.不妨设为x .下面研究正五边形对角线的长.IHG F E 1111x x-1如右图.做EFG ∠的角平分线FH 交EG 于H . 易知5EFH HFG GFI IGF FGH π∠=∠=∠=∠=∠=. 于是四边形HGIF 为平行四边形.∴1HG =. 由角平分线定理知111EFEH x FG x HG ===-.解得x =3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)【解析】 不妨设过A 点的切线交x 轴于点C ,过B 点的切线交x 轴于点D ,直线AC 与直线BD 相交于点E .如图.设1122(,),(,)B x y A x y ,且有222211121,1,0y x y x x x =-=->>.由于2y x '=-,于是AC 的方程为2222x x y y =--;① BD 的方程为1122x x y y =--. ②联立,AC BD 的方程,解得121221(,1)2()y y E x x x x ---. 对于①,令0y =,得222(,0)2y C x -;对于②,令0y =,得112(,0)2y D x -. 于是221212121222112222y y x x CD x x x x --++=-=-. 121(1)2ECD S CD x x ∆=-.不妨设10x a =>,20x b -=>,则 2222111111()(1)(22)44ECD a b S ab a b a b ab a b a b∆++=++=+++++1111()(2)(2)44a b ab ab ab ab=+++⋅++≥ ③0s >,则有331111111(2)(.....)223399ECD S s s s s s s s s ∆=++=++++++ 6个 9个1243691616111116)]8()29s s s ⋅⋅[⋅(⋅()=⋅≥3218)3=⋅( ④又由当12x a x b s ==-=∴min ()ECD S ∆=注记:不妨设311()(2)2g s s s s=++,事实上,其最小值也可用导函数的方法求解. 由2211()(32)2g s s s '=+-知当2103s <<时()0g s '<;当213s <时()0g s '>.则()g s 在(0,上单调减,在)+∞上单调增.于是当s =时()g s 取得最小值. 4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分) 【解析】 不妨设OA ,OB 夹角为α,则1,2OP t OQ t =-=,令 222()(1)42(1)2cos g t PQ t t t t α==-+-⋅-⋅2(54cos )(24cos )1t t αα=++--+. 其对称轴为12cos 54cos t αα+=+.而12()54x f x x +=+在5(,)4-+∞上单调增,故12cos 1154cos 3αα+-+≤≤. 当12cos 1054cos 3αα++≤≤时,012cos 1(0,)54cos 5t αα+=∈+,解得223αππ<<. 当12cos 1054cos αα+-<+≤时,()g t 在[0,1]上单调增,于是00t =.不合题意. 于是夹角的范围为2[,]23ππ.5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分) 【解析】 不存在;否则有(cos sin )(cos sin )cos sin cot tan sin cos x x x x x x x x x x-+-=-=, 则cos sin 0x x -=或者cos sin 1sin cos x x x x+=.若cos sin 0x x -=,有4x π=.而此时1,122不成等差数列;若cos sin 1sin cos x x x x+=,有2(sin cos )12sin cos x x x x =+.解得有sin cos 1x x =. 而11sin cos sin 2(0,]22x x x =∈,矛盾!2020年自主招生数学试题及解答2020年自主招生数学试题及解答。