5第五章_船舶吃水差的计算与调整

合集下载

船舶水尺吃水纵倾修正方法

船舶水尺吃水纵倾修正方法

船舶水尺吃水纵倾修正方法
在船舶发生纵倾的情况下,要计算船舶的排水量,需要考虑到吃水标志与艏艉垂线或船舯线不重合的情况。

这时观测的吃水与实际吃水存在一定的差值,需要进行艏艉吃水或船舯吃水修正。

具体方法如下:
1. 修正后的实际吃水:
艏吃水df = df’ + Clf
艉吃水da = da’ + Cla
舯吃水dm = dm’ + Clm
2. 吃水修正值的计算:
当吃水差t > 0时,即首倾:Clf = tLf/(Lbp-Lf-La),为正值,符号与“t”相同;Cla = -tLa/(Lbp-Lf-La),为负值,符号与“t”相反。

当t < 0时,即尾倾:Clf = tLf/(Lbp-Lf-La),为负值,符号与“t”相同;Cla = -tLa/(Lbp-Lf-La),为正值,符号与“t”相反。

3. 船舯吃水修正:如果船舯水尺标志不在船中,需要进行船中修正。

修正值Clm的符号与其相对于船中载重线标志的位置和吃水差符号有关。

具体修正方法如下:
如果吃水标志位于舯后时:艏倾Clm为正,艉倾为负。

如果吃水标志位于舯前时:艏倾Clm为负,艉倾为正。

在计算中需要注意,当吃水差小于米时,可以忽略不计。

此外,上述公式中的符号确定主要取决于两个因素:一是吃水差符号,二是Lf和La相对于艏艉垂线的位置。

因此,在进行修正时,应仔细考虑这两个因素。

以上内容仅供参考,如需更专业的信息,建议咨询航海方面的专家或查阅航海相关的书籍。

船舶货运基础知识.

船舶货运基础知识.

第一章船舶与货运基础知识第一节船舶的重量性能和容积性能一、船舶的重量性能:1、排水量(Displacement)△:无航速的船舶在静水中处于自由漂浮状态时,船体所排开水的重量,该装载状态下船舶的总重量。

公式:△=V×ρ(t)。

包括空船排水量(Light ship displacement)△L(有船体、机器设备、机器中的燃料及润料、锅炉中的燃料和水及冷凝器中的淡水等重量的总和);满载排水量(Full loaded displacement)△S(包括空船重量、货物、燃润料、淡水、压载水、船员及行李、粮食、供应品、船用备品等重量的总和);装载排水量(Loaded displacement)△(空、满载水线之间任一吃水下的排水量。

)2、载重量:运输船舶所装载的载荷重量。

包括总载重量(Dead weight)DW:船舶在空载水线与满载水线之间任一确定的吃水下,船舶所能装载的最大重量。

公式:DW=△-△L,(新船出厂时随船舶资料作为船舶基本参数提供的总载重量是夏季满载水线的总载重量,DWs);净载重量(Net deadweight)NDW:具体航次中船舶所能装载货物重量的最大值。

公式:NDW=DWmax-ΣG-C(t).(新船出厂时随船舶资料作为船舶基本参数提供的净载重量是夏季满载水线下保持最大续航能力,且船舶常数为零)。

3、航次储备量ΣG:具体航次中船舶为维持生产和生活的需要而必须储备的所有重量的总合。

4、船舶常数(Constant)C:包括定期修理和局部改装的改变量;残留货物、垫舱物料及垃圾;污油、积水、沉淀物;未计入备品重量破旧机件、器材、废旧物料;附的海藻、贝类等海生物。

二、船舶的容积性能:船舶所具有的容纳各类载荷体积的性能。

1、舱柜容积(Compartment capacity):船体内部用来装载货物、燃料、淡水等液体载荷的围蔽处所的容积。

包括货舱散装容积(Grain capacity);货舱包装容积(Bale capacity);液货舱容积(Liquid capacity):船舶的液货舱所能容纳液货的最大容积;液舱容积(Tank capacity):船舶的燃料、润料、淡水、压载水舱柜容纳相应液体的最大容积。

船舶吃水差

船舶吃水差

图 4-1 船舶吃水差的产生 三、吃水差对船舶航海性能的影响 吃水差对于船舶的操纵性、快速性、适航性与抗风浪性能都有影响。船舶吃水差的大小 直接影响螺旋桨和舵的入水深度,对操纵性和航速有直接的影响。船舶尾倾过大,会使操纵 性能变差, 易偏离航向, 船首部底板易受波浪拍击而导致损坏, 同时还不利于驾驶台的了望; 船舶首倾时,因螺旋桨和舵的入水深度减小,从而导致航速降低,航向稳定性变差,首部甲 板易上浪,而且船舶纵摇时,螺旋桨和舵叶易露出水面,主机负荷不均匀,造成飞车,影响 主机的正常运转。另外,当船舶保持平吃水状态,减小船舶最大吃水,可以有效地增加船舶
第二节
吃水差的计算与调整
一、吃水差计算原理 如图 4-3 所示,船舶产生纵倾后,水线由平吃水时的 W0L0 变为 W1L1,并出现一个纵 倾角φ(Angle of trim) 。由于φ角一般很小,因此可认为船舶纵倾前后两水线面的交线通过 原水线面的漂心 F。
图 4-3 吃水差的产生 示意图 船舶纵倾前后相邻两 浮力作用线的交点 ML 称为 纵 稳 心 ( Longitudinal metacenter) 。纵稳心距基线高度 KML 随排水量的不同而变化,在静水力曲线图上可以查到 其值,KML 数值较大,一般与船长处于同一数量级。由重心 G0 至 ML 的距离称为纵稳性高 度 GML(Longitudinal stability height) ,因为 GML 总是正值而且数值较大,所以,船舶一般 不会由于纵稳性不足而引起事故。但很小的纵倾能产生较大的吃水差,因此,在船舶纵倾问 题上我们的注意点应是吃水差及其值的计算。 同船舶横倾一样,船舶纵倾后产生纵向复原力矩 MRL,其表达式如下: MRL=Δ•GML•sinφ (9.81kN•m) (4-2) 式中:Δ——排水量,t; GML——纵稳性高度,m; φ——纵倾角,°。当φ很小时,可认为 sinφ ≈ tanφ。 根据相似14) 在实际工作中, 在不要求精确计算船舶的首尾吃水值时, 则可以利用上式求取近似值。 例 4-1:某船由上海开往欧洲,计划在各舱柜内装载各种载荷如表 4-1 所示。试计 算 吃 水 差 和 首 尾 吃 水 。 根 据 排 水 量 查 得 : dm=9.10m , XB = -1.43m , MTC=233.5×9.81kN·m/cm,Xf = -5.8m,LBP=148m。 表 4-1 载荷纵向重量总力矩

船舶吃水差保证及调整—吃水差基础知识

船舶吃水差保证及调整—吃水差基础知识
A.提高推进器的推进效率和改善舵效,使得船舶的速度性能得到充分发挥,操 纵更为灵活。
B.减少首部甲板上浪,保证主机均衡工作,便于驾驶台瞭望。
2.万吨级货船的吃水差值 满载时要求 t = -0.3~-0.5 m; 半载时要求 t = -0.6~-0.8 m ; 轻载时要求 t = -0.9~-1.9 m。
3.大吨位船舶要求平吃水,以免搁浅,也有利于在吃水受限的情况下多 装货。
船舶吃吃水与尾吃水的差值
t = dF - dA
当t = 0时,称为平吃水(Even keel); 当t > 0时,称为首倾(Trim by head); 当t < 0时,称为尾倾(Trim by stern)。
二、吃水差对船舶的影响
1.影响船舶操纵性、快速性和耐波性。 2.船舶稳性。 3.船体纵向受力状况。 4.影响装载量。 5.部分港口使费的支出。 6.影响码头装卸。
快速性
操纵性
耐波性等
首倾时
轻载时螺旋桨沉深比 下降,影响推进 效率。
轻载时舵叶可 能露出水面, 影响舵效。
满载时船首容易上 浪。
过大尾 倾时
轻载时球鼻首露出水 面过多,船舶阻
水下转船动力 点后移,回
轻载时船首盲区增 大,船首易遭海
力增大。
转性变差。
浪拍击。
三、对船舶吃水及吃水差的要求
1.船舶航行时要求有一定的尾倾

船舶吃水差的概念与基本计算

船舶吃水差的概念与基本计算

第一节船舶吃水差的概念与基本计算一、吃水差概述1. 吃水差(trim)概念当t = 0时,称为平吃水(Even keel);t = d F-d A当t > 0时,称为首倾(Trim by head);当t < 0时,称为尾倾(Trim by stern)。

2. 吃水差对船舶航海性能的影响快速性操纵性耐波性等首倾时轻载时螺旋桨沉深比下降,影响推进效率。

轻载时舵叶可能露出水面,影响舵效。

满载时船首容易上浪。

过大尾倾时轻载时球鼻首露出水面过多,船舶阻力增大。

水下转船动力点后移,回转性变差。

轻载时船首盲区增大,船首易遭海浪拍击。

3. 适当吃水差的范围1)载货状态下,对万吨级货轮:满载时:t = -0.3~-0.5 m半载时:t = -0.6~-0.8 m轻载时:t = -0.9~-1.9 m2)空载航行时:◎一般要求dm ≥ 50%d s(冬季航行dm ≥ 55%d s)I/D ≥0.65~0.75| t | <2.5%L bp其中:d s——船舶夏季满载吃水(m);I ——螺旋桨轴心至水面高度(m);D ——螺旋桨直径(m)。

◎推荐值当L bp≤ 150m时d Fmin≥ 0.025L bp( m )d mmin ≥ 0.02L bp + 2 ( m )当L bp > 150m 时d Fmin ≥ 0.012L bp + 2 ( m ) d mmin ≥ 0.02L bp + 2 ( m ) 二、吃水差产生的原因1. 纵向上,船舶装载后总重心与正浮时的浮心不共垂线,即g b x x ≠2. g x 的求法 合力矩定理 ()i i g P x x ∑⋅=∆三、吃水差的基本计算 1. 纵向小倾角静稳性理论证明,船舶在小角度纵倾时,其纵倾轴为过初始水线面漂心的横轴,在排水量一定时,纵倾前后相临两浮力作用线的交点L M 为定点,L M 称为纵稳心。

sin tan RL L L L BPt M GM GM GM L ϕϕ=∆⋅⋅≈∆⋅⋅=∆⋅⋅2. 每厘米纵倾力矩MTC :吃水差改变1cm 所需要的纵倾力矩,可由资料查得。

船舶吃水差计算讲解

船舶吃水差计算讲解

P d 100TPC
( m)
P 符号: 装正卸负
(2)纵移,计算δt和t1
t
ห้องสมุดไป่ตู้
P(XP X f ) 100MTC
(m)
船舶吃水差及首尾吃水的计算
t1 t t (m)
(3)计算 dF1,dA1
Xf d F 1 d F d t 0.5 ( m) L Xf d A1 d F 1 t1 d A d t 0.5 L
( m)
例题10-2
某船由某港开航时Δ=20122t,dF=8.50m, dA= 8.90m,航行途中油水消耗:燃油300t( xp=-10.50m),柴油20t(xp=-40.00m),淡水 90t(xp=-68.00m), 求船舶抵港时的dF1,dA1 。 已知Δ=20122t时 xf=-1.42m,TPC=25.5 t/cm,MTC=9.81×225.1 KNm/cm,Lbp=140m。
船舶吃水差及首尾吃水的计算
一、基本计算方法(适用于积载设计)
() 1 t
( X g Xb ) 100 MTC
(m)
( Pi X i ) Xg
Xf (2)d F d m t 0.5 L
(m)
Xf (3) d A d F t d m t 0.5 (m) L
例题10-1
(2)求压载水调拨后的dF1,dA1
Xf d F 1 d F t 0.5 L 1.54 8.29 0.36 0.5 8.47 m 140 d A1 d F 1 t1 8.47 (0.64) 9.11m

货运计算

货运计算

或表示为
其中: ——初稳性高度(m); ——未考虑自由液面影响的船舶初稳心高度(m);
——浮心距基线的高度(m),简称浮心高度; ——横稳心半径(m); ——船舶重心距基线高度,简称重心高度(m);
—未考虑自由液面影响的船舶重心高度(m); ——横稳心距基线高度(m); 步骤:⑴ 的查取,根据装载后的平均吃水查取静水力曲线图、静水 力参数表或载重表,即可得到相应平均吃水的 值;
δΔ - -
--
式中: —平均吃水 dM2 处的每厘米纵倾力矩(MTC)的变化率,
即在吃水为 dM2 时,当吃水增、减各 0.5m 时的每厘米纵倾力矩的变化值 ④经纵倾修正后的船舶排水量 Δ1 Δ Δ’ δΔ
5.进行港水密度修正 Δ Δ’ρ/ρs;
6.计算测定船舶常数时的空船重量 ΔL‘
‘ L
-ΣG-BW
ΣQ= - - - -
其中:Δ’---------船舶装货后或卸货前的排水量; ΣG--------装货后或卸货前船上的油水存量; ΔL---------空船重量;
C----------船舶常数; BW-------压载水重量。 七、船舶吃水差的计算 1、公式:

t=
其中:t——吃水差(m); ——船舶重心距船舯的距离(m); ——正浮时船舶浮心距船舯的距离(m);
查取 dM、 、 和 MTC,查表时应注意:船舯坐标系中,浮心、漂心 在船舯前时 和 取+,在船舯后则相应取-。 ⑶计算船舶吃水差 t
按式 t=
- 求取船舶在装载状态下的吃水差。
⑷计算船舶首吃水 dF 和尾吃水 dA




当漂心在船中时, =0,上式可简化为:


3、载荷变动对浮态的影响 ⑴载荷纵移

船舶吃水差解析PPT课件

船舶吃水差解析PPT课件

2.对船舶吃水差的要求
船舶航行中适当的尾倾值应根据具体船舶 的不同装载状态确定。实践经验表明,万吨级
货船适度吃水差为:满载时尾倾—;半载时尾 倾—0. 8m;空载时尾倾—1.9m;对于速度较高 的船舶,出港前静态时允许稍有首倾,航行时 由于舷外水的压强相对降低,可使船舶处于一 定尾倾。大吨位船舶满载进出港口或通过浅水 区时因水深限制而要求平吃水,以免搁浅,并 有利于多装货物。
近年来,国际上已研究出在营运条件下允许 的最小首吃水及最小平均吃水的要求。上海船 舶运输研究所在分析了IMO浮态衡准后,建议 我国远洋航行船舶的最小首吃水d F min及最小 平均吃水dMmin应满足以下要求: (1)当LBP≤150m时,
d F min≥0.025 LBP
dMmin ≥0.02 LBP&#保证适当吃水差的经验方法
为了在确定全船各舱配货重量时就能兼顾 到满足适当吃水差的要求,减少装货完毕后需
要大幅度调整吃水差的情况出现,广大船员在 实践中总结出了不少经验,归纳如下:
1.按经验得出的各舱配货重量的合适比例 配货。各舱配货重量占全船装货总重量的合适
比例,随船舶的机舱位置、货舱和液体舱的大 小及布置等的不同而变化。对于同一船舶,其 合适比例也随船舶排水量的不同而变化。即使 对于同一船舶在相同排水量下,兼顾纵强度要 求的保证适当吃水差的各舱配货重量合适比例 也有多种方案可以通过计算或由长期积累的船 舶积载数据获得。
船舶空载时的吃水差要求,一般都以螺旋 桨具有足够的浸水深度为前提。因此,空船时 船舶须具有较大的尾倾值,以保证螺旋桨的推 进效率和舵的反应效率。
由于船舶纵倾(或吃水差)状态不 同,其水线下流线型船体形状会有明显 的差别,从而直接影响船舶的阻力、稳 性和船体受力等,因此,船舶在一定船 速和排水量状态下.通过不断调整船
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LBP
2018/10/2
d F (min) 0.012 LBP 2( m ) 150m, d M (min) 0.02 LBP 2( m )
第一节 船舶吃水差概念
2)对空船压载航行时吃水差的要求
螺旋桨沉深比 t (静水中不小于0.5,风浪中应不 L I I 小于 ) 0 .65 ~ 00.65-0.75 .75,当 0.5 时,推进效率将急剧下 降。
D
2.5%
BP
D
吃水差与船长之比
t Lbp 纵倾角
2018/10/2
2.5% 1.5
第二节 吃水差的核算与调整
考 试 大 纲 要 求
1、船舶吃水差和首、尾吃水的计 算; 2、少量载荷变动时船舶吃水差和 首、尾吃水改变量的计算; 3、吃水差的调整方法(包括纵向 移动载荷以及增加或减少载荷) 及计算:
的吃水与尾垂线处的吃水的差值。
t dF d A
2018/10/2
第一节 船舶吃水差概念
尾倾(Trim by stern):t<0 首倾(Trim by head):t>0 平吃水(Even keel): t=0
W1 L1 L G B W1 F W
L L1
F G B
W
L
F • G • •B
2018/10/2
第二节 吃水差的核算与调整
一、吃水差的计算原理
1、纵稳性的假设条件 (1)纵倾前后的水线面的交线过正浮时的漂心。 (2)浮心移动的轨迹是圆弧的一段,圆心为定 点—纵稳心ML,圆弧的半径即为纵稳心半径BML。
2018/10/2
第二节 吃水差的核算与调整
2、吃水差的基本计算公式
M RL GZL GM L sin
其中,GML—纵稳性高度。


2018/10/2
GM L KM L KG KB BM L KG
M RL GM L tg GM L t Lbp
第二节 吃水差的核算与调整
2、吃水差的基本计算公式
2018/10/2
(二)载荷变动对吃水差的影响
1、大量载荷变动
条件: 1 计算载荷变动后的重心距船中距离xg2 利用排水量Δ2查取dM2、xb2、xf2、MTC2 利用基本计算公式计算t2、dF2、dA2
xg2
2018/10/2
1 x g1 Pi xi 1 Pi
P 1 x f P( x p x f ) d dF ( ) F1 100TPC 2 L 100MTC P 1 x f P( x p x f ) d A1 d A ( ) 100TPC 2 L 100MTC
(m) (m)
( m) ( m)
x值的符号确定:
载荷由后向前移, 取“+”; 载荷由前向后移, 取“-”。
2018/10/2
例题:某船△=20325t,dF=8.29m, dA =9.29m,xf= -1.54m,MTC=9.81×227.1kN·m/cm,为减 小船舶中垂,拟将NO.3压载舱(xp3=12.1m)压载水 250t调驳到NO.1压载舱(xp1=45.14m),已知船长 LBP=140m,试求压载水调驳后的dF、dA和t1。 解:求吃水差改变量δ t δ t=250×(45.14-12.10)/100×227.1=0.36m 压载水调驳后的dF、dA和t1 dF =8.29+(70+1.54)/140×0.36=8.47m dA =9.29-(70-1.54)/140×0.36=9.11m t1=8.47-9.11=(8.29-9.29)+0.36=-0.64m
i i
px
2018/10/2
第二节 吃水差的核算与调整
xg
P

i
xi
xg-船舶重心距船中距离(m)。中前为正,中后为负。 xi-组成的载荷重心距船中距离(m)。中前为正,中后为负。 包括:L、航次储备量、压载水、货物等。
空船、航次储备量不变部分、船舶常数重心距船中距离:查 取船舶资料; 油水等重心距船中距离:无论是否装满,均视液舱舱容中心 为其重心纵向坐标; 货物重心距船中距离:均可近似取货舱容积中心为其重心纵 向坐标; 货堆长度 x 货堆近船中一端至船中的距离 i 详算法: 2
当 t=1cm=1/100 m时,
L L
M RL
GM L M .T .C 100Lbp
M.T.C—厘米纵倾力矩 (9.81kN.m/cm) 设 GM BM 则
BM L MTC MTC(d ) 100Lbp
(2)吃水差的基本计算公式

( xg xb ) ML t 100MTC 100MTC
W
2018/10/2
第一节 船舶吃水差概念
2、产生吃水差的原因
船舶的重力作用线与正浮时的浮力作用 线在中线面上的投影不在同一条垂直线 上,即 :
xg xb
G B
纵倾力矩
2018/10/2
第一节 船舶吃水差概念
3 、吃水差对船舶的影响
快速性
首倾 过大 尾倾 过大
2018/10/2
操纵性
其它
② 将载荷由漂心处水平移到实际装载位置XP处: 变为船内载荷纵向移动,移动距离(xp-xf)
t t1 t0
2018/10/2
Mt P xp P x f 100MTC
P( x p x f ) Mt 100MTC 100MTC
一)纵向移动载荷对吃水差的影响
L t d d d ( x ) F m f F1 2 L L t d A1 d A d m ( x f ) 2 L
2018/10/2
第三节 吃水差图表
考 试 大 纲 要 求
1、吃水差计算图表的制表原理 2、吃水差计算图表的应用。
2018/10/2
第三节 吃水差图表
1、吃水差曲线图(Trim diagram)
适用范围:大量载荷变动? 用途:计算大量载荷变动后t、dF、dA,及调整t 曲线图组成: 纵坐标:载荷(不含ΔL )对船中力矩的代数和Mx 横坐标:排水量; 曲线:吃水差曲线、首吃水曲线、尾吃水曲线。
t t d A d M x f d A ( Pi X i , ) 2 L
2018/10/2
2、吃水差曲线图的使用
吃 水 差 曲 线 图
2018/10/2
第三节 吃水差图表
2、吃水差比尺(Trimming table)
螺旋桨出水
2018/10/2
第一节 船舶吃水差概念
二 对船舶吃水及吃水差的要求
船舶航行时要求有适宜的尾倾
提高推进效率,航速增加; 舵效变好,操纵性能变好; 减少甲板上浪,利于安全。
1 、装载状态下对吃水差的要求 根据经验,万吨轮适宜吃水差为:
满载时 t=-0.3m~-0.5m 半载时 t=-0.6m~-0.8m 轻载时 t=-0.9m~-1.9m
式中

2018/10/2
ML—纵倾力矩 (9.81kN.m) xg—重心纵向坐标 (m ) xb—浮心纵向坐标 (m )
第二节 吃水差的核算与调整
2、吃水差的基本计算公式


pi xi xg
PX t
i
i
Xb
100MTC
式中
—纵向重量力矩(9.81KN.m); Pi—第i分项重量 (t ) Xi—Pi相应的重心纵坐标 (m )
2018/10/2
2)计算油水消耗后平均吃水改变量
∑Pi (-170)+(-30)+(-100) δ d = ————— = ———————————————— = -0.115 m 100TPC 100×26.09
3)计算油水消耗后的吃水差改变量 ∑Pi(Xpi-Xf) [ (-170 ) ( -7.62+2.53 ) ] δ t = ————————— = ———————————————— + 100×MTC 100×226 [ (-30 ) ( 5.12+2.5 3) ] [ (-100 ) (-66.85+2.53 )] ————————————— + —————————————— = 0.31 m 100×226 100 ×226 4)计算油水消耗后的首尾吃水改变量 Xf 2.53 δ dF =δ d + (0.5- ———)·δ t =- 0.115+ ( 0.5+ ——— )×0.31=0.0456 m LBP 140 Xf 2.53 δ dA =δ d - (0.5+ ———)·δ t =-0.115- ( 0.5- ——— )×0.31=-0.2644 m LBP 140 5)油水消耗后,船舶抵港时的首尾吃水 dF1= dF + δ dF = 8.56 + 0.0456 ≈ 8.61 m dA1= dA + δ dA = 9.03 - 0.2644 ≈ 8.77 m
t L t L
二、影响吃水差的因素
(一)纵向移动载荷对吃水差的影响
移动特点 移动过程中船舶排水量不变,属于船内问题。
M P L
dA1
x F • G G• • 1 • •B1 B

dF1
W dF1
dA1
2018/10/2
一)纵向移动载荷对吃水差的影响
计算公式
Px t 100 MTC
(二)载荷变动对吃水差的影响
2、少量载荷(Pi < 10%)变动的计算
一)纵向移动载荷对吃水差的影响 ① 假定先将载荷P装在漂心F的垂线上:使船舶平 行沉浮,吃水改变,吃水差不变
P d 100TPC
2018/10/2
一)纵向移动载荷对吃水差的影响
相关文档
最新文档