高一年级竞赛数学数论专题讲义:10.中国剩余定理
高中竞赛数学辅导数论重要定理

数论一 、欧拉定理设1m >的整数,()()(),1,1ma m a modm ϕ=≡则.例1设(10005x =+,求[]x 的末三位数.解 由二项式定理,((()()()()10001000249950010002998349963998233100010001000552552352352323C C C ++-⎡⎤=+++++⎢⎥⎣⎦是一个正整数.记(100015x =-,因为1051,01,x <-<<<所以从而{}11x x =.而1x x +是一个正整数,则{}{}11,x x +=所以{}{}1111.x x x =-=-于是[]{}111 1.x x x x x x x =-=-+=+-又因为 ()()500100031252251000x x mod +≡+ ,33100025= ,()100032505,mod ≡()()50010002500325252122mod =≡≡ ,又10003255,y =所以 ()3528y mod ≡ ,()25528y mod ≡ ,()528y mod ≡,则min 所以8 2.y k =+则()()()100033332558258525210002501000.k k mod mod =+=+≡=因为()11251251100,5ϕ⎛⎫=-= ⎪⎝⎭所以()()10010021125,31125mod mod ≡≡, 于是,有 ()()150050021125,31125mod mod ≡≡,()()50032232125mod ≡ ,又因为 ()150********mod ≡ ,()5003322552y =+ ,所以()35208y mod +≡,即()528y mod ≡-, 所以()68min y mod =, 于是,有86y k =+. 所以()()5003333223586256582k k =++=++所以[]()11250751111000x x x mod=+-≡+-≡.故[]x 的末三位数是001.二、费马小定理 (1)p 为素数,且(),1,a p =则()11p a modp -≡;(2)p 为素数,则()p a a mod p ≡.例2 ,,,a b c d 为整数,证明()44240/b d c d a a ++-. 证明4240235= ,由于()()()2440,13,0,13,0,13,b c a moda mod a mod≡≡≡ 所以()()444403b d c d d b c a a a a a mod ++-=-≡.即443/()b d c d a a ++-.由于奇数的4次方被16除余1,偶数的4次方被16除余0,故有()()4444016b d c d d b c a a a a a mod ++-=-≡.即4442/()b d c d a a ++-.又由于()()()4440,15,0,15,0,15,b c a moda mod a mod≡≡≡ 则()()444405b d c d d b c a a a a a mod ++-=-≡,即445/()b d c d a a ++-.又2,3,5两两互素,故()44240/b dc d aa ++-.例 3 设整数199919991999,,0,a b c a b c d a b c ++==++满足记,求证d 不是素数.证明由于1999aa 与同奇偶,则()()()1999199919992,2,2,a a modb b modc c mod≡≡≡ 所以()19991999199902d a b c a b c mod=++≡++≡,即2/d .又 ()()6662221999199836663222aa aa aa aa aa a ==≡=≡()()()74258374753253a aa a a aa a a=≡==≡=()()389333a a a aa a mod ≡==≡≡ ,同理()()199919993,3,b b mod cc mod≡≡则()19991999199903d a b c a b c mod=++≡++≡.即3/d . 从而d 不是素数.例4 设{}()21np n n -≥是给定的素数,证明:数列中有无穷多项被p 整除.证明 当2p =时,结论显然成立.当()()1221,21p p p modp ->=≡时,由于,所以,所以对任意的()()1,21p mm Z mod p -∈≡有,即()()121m p mod p -≡.特别地,取1,m kp k Z =-∈.则()()()()()112111kp p kp p mod p --≡≡--.令()()11,n kp p =--则()2n n mod p ≡,即()/2n p n -.三、威尔逊定理 设p 是素数,则()()1!1p mod p -≡-()()1!1p modp ⇔-≡.证明 考虑多项式()1p xmod p -.由费马小定理,当{}1,2,,1a p ∈- 时,有()11p a modp -≡所以11p a x --是多项式的根.则1,2,,1x x x p ---+ 均为11p x --的因式.则设()()()()11121p x x x x p Q x -----+ =.得()1Q x =,则()()()11121p x x x x p -----+ =.取x p =代入,得()111!p p p --=-所以()()1!1p mod p -≡-.例5 ()()1!1p p modp -≡-是素数,则.证明:若21p +为奇素数,则()()()()2!1021pp mod p +-≡+.证明:()()()()2!1021pp mod p +-≡+()()()()()()()()()()()()1!!121!1!121!121121p pp p mod p p p mod p p p p modp +⇔≡-+⇔-≡-+⇔-----≡-+⎡⎤⎣⎦()()()()()!21212211121p p p p p mod p ⇔+-+-+-≡-+()()()()()1212121p p p p mod p ⇔+-≡-+ !()()()2!121p modp ⇔≡-+.而21p +为奇素数,有()()()2!121p mod p ≡-+.四、中国剩余定理设12,,,k m m m k 是个两两互素的正整数,则同余方程组()()()1122k k x b mod m x b mod m x b mod m ≡⎧⎪≡⎪⎨⎪⎪≡⎩有整数解.令12.k Mm m m =则同余方程组在模M 下的解是唯一的. 令,i i iMM M m '=取使得()1i i i M M mod m '≡,则解为()111222k k k x M M b M M b M M b modM '''≡+++ .例 6 证明:对任意给定的正整数,n n 均有个连续正整数,其中每一个都有大于1的平方因子.分析:()()()2122210200n x mod p x mod p x n modp +≡+≡+≡则()()()2122212n x modp x mod p x n modp ≡-≡-≡-. 证明: 设12,,,n p p p n 为个互不相同的素数,由中国剩余定理知,()()()2122212n x modp x mod p x n modp ≡-≡-≡-存在正整数解,设S 为一个正整数解,则12S S S n +++ ,,,满足要求.例7 任给正整数n ,存在n 个连续正整数,使得其中每一个数都不是幂数.证明 设12,,,n p p p n 为个互不相同的素数,由中国剩余定理,同余方程组()()()211222212n n x p mod p x p mod p x p n mod p ⎛≡-≡-≡-⎝存在正整数解0000,12S S S S n +++ 则,,,满足要求.例8给定正整数n ,设()f n 是使()1f n k k =∑能被n 整除的最小正整数.证明:当且仅当n 为2的幂时,有()21f n n =-.分析:()112mk m m k =+=∑,因为()1/,2m m n +当21m n =-时, 1mk k =∑n/,所以()21f n n ≤-.则问题归结为:()()()()122122 1.m mn f n n f n n ==-≠<-当时,;当n 2时,证明:(1)当2mn =时,()2112122n k n n k -=-=∑. 当()1121.2rk r r r n k =+<-=∑时, ∵112,12122121m m r r n r r n +<+<<+≤+=-=- 即,∴()112/1,2/m m r r +++.∴()()112/,/.22mr r r r n ++即 综上,知()21f n n =-.(2)分析:()2121,f n n r n <-⇔∃<-使1/,rk n k =∑即()1/2r r n +.(证明)2m n ≠当时,令()21.mn a a =为大于的奇数此时需证()12/1m a r r ++,即证存在()12/,/1m r a r ++即可.构造同余方程组()()1021m x mod x mod a +⎧≡⎪⎨≡-⎪⎩(1)由中国剩余定理知,同余方程组(1)有正整数解()12rr n ≤≤,则()12/,/1m r a r ++.从而有()12/1m a r r ++ ,即()12/2mr r a + ,()1/2r r n +.考虑r 的取值范围:若()()2,020,rn r mod n r mod a =≡⇒≡则这与()1x moda ≡-相矛盾,故2r n ≠.若()()121,1212m rn r modn r mod +=-≡-⇒≡-则,这与()102m x mod+≡相矛盾,故21r n ≠-.从而有12221r n n ≤≤-<-,于是得证21,r n ∃<-使()1/2r r n +.五、阶及应用定理1 设()1,,,1n n a a n >=为整数,且,则必有一个r()11,r n ≤≤-使得()1r a mod n ≡.证明: 011,,,n a a a - 均与n 互质,所以有()0,0,1,,1i a mod n i n ≡=- .由抽屉原则,,01,i j i j n ∃≤<≤-满足使得()j i a a mod n ≡,()1j i a modn -≡,令(),11,1r r j i r n a modn =-≤≤-≡则有.定义1:设()(),1,1m a n a modn m a =≡则满足的最小正整数叫做a n 对模的阶.注:若a n r 对模的阶为,则()1r a modn ≡. 当()11ii r a modn ≤<≡时,.定理2 设()(),1,,1m a n a n r a modn =≡对模的阶为若,则/.r m证明:令()110m qr r r r =+≤<,则()()1111qqr r r r r mqr r a aa a aaa mod n +==== .而()1mamodn ≡,所以()11r a mod n ≡.而a n r 对模的阶为的定,义知10r =.从而,/.m qr r m =即推论:若a n r 对模的阶为,则()/r n ϕ.特例:当n 为素数p 时,/1r p -.例9 设1,/21,3/.n n n n >+证明:证明:显然n 为奇数.假设 3.p n p =为的最小素因数,下证 ∵/21n n +,∴()210n mod n +≡, ()21n mod n ≡-, ∴()()2221,21n n mod n mod p ≡≡. 设2/2.p r r n 对模的阶为,则 ① 又由小费马定理知,()121p mod p -≡, ∴/1r p -. ② 由①,②知,()/2,1r n p -. ∵2/,n ∴()()22/2,1,2/2,1n p n p --.又若奇数()/2,1,/,/ 1.q n p q n q p --则 ∵p n 为的最小奇素约数,∴1q =.∴()2,1 2.n p -=由()/2,1r n p -,即/2,1r r >及知2r =. 由2p r 对模的阶为,知()21r mod p ≡,即()221mod p ≡,从而 3.p =而p n 为的最小素因数,则/,3/p n n 即.。
中国剩余定理

汉语余数定理,也称为汉语余数定理,是一个数论中关于一个变量的线性同余方程的定理,它解释了一个变量的线性同余方程的判据和解。
又称“孙子定理”,有“韩新兵”,“孙子定理”,“求术”(宋申国),“鬼谷计算”(宋周密),“隔墙”等古代名称。
计算”(宋周密),“切管”(宋阳辉),“秦王暗中战士”和“无数事物”。
一个变量的线性一致等式的问题最早可以在中国南北朝(公元5世纪)数学书《孙子书经》第26期中找到,这被称为“物是物”。
未知”。
原文如下:未知的事物,三到三个剩下两个,五到五个剩下三个,七到七个剩下两个。
问事物的几何形状?也就是说,将一个整数除以三分之二,五分之三和七分之二以找到该整数。
孙子的《佛经》首次提到了全等式问题和上述特定问题的解决方案。
因此,中国余数定理在中国数学文献中也将称为“孙子定理”。
1247年,宋代数学家秦久绍对“物不知数”问题给出了完整而系统的回答。
明代数学家程大为将解决方案汇编成《孙子的歌》,很容易赶上:三个人一起走了七十次,五棵树有二十一朵梅花,七个儿子团聚了半个半月。
除了一百零五,我们知道这首歌给出了秦绍的全同方程的模3、5和7的解。
意思是:将3除以70得到的余数,再乘以5除以得到的余数。
在图21中,将7除以15得到的余数相乘,将它们全部加起来并减去105或105的整数倍,得到的数字就是答案(除以105
得到的余数就是最小答案)。
例如,在上述事物数量未知的问题中,使用上述方法进行计算,根据民谣计算出的结果为23。
中国剩余定理

唐蓉
数学与统计学院
2009 级
业 数学与应用数学 (师范)
222009323012023
包小敏
爵午玲煎捐饮很胆素拼虏胚健眼掌曳讨卿啥刺侈柄随铜释泛奸床京郎雁消于横采撂漏淀蹲字讳痔纲狰疗居厌饶姚钵盲捕卞写删遍挫冬屠位司罐馋呻络诈镊捶涉廖箱划矩立畔梢缄堪腥冬尝王均撼琐谩雍铭豹惶蜜狐慈襄霹恋凭筷酌紊椒稼佰桑簧点碘赏丸晰兑淑霉磷鱼州金捣惠窒翔联绣丑索钡阮豁亲佃伐地孪炕破藩谢镀持甄吩喳淑毙瓶输某煎锐煽诫己网览属汀膳禽挡糟麦谭吞勤浊隙在滥管告解厌寝铂绒巧狰彝敞呕届径聪常壮姥植捐保嫂刻捉崖箕硒话殆坑桔仟匹登恭络譬隶潦芋悉跨珐亥愿溃项燎略爬钾查釉肋酶瓦币徒癸酝烯宁噬宙剩若栽拼仲肄授七溺赘超囤搔贫敞刺轻咨绅拖忠捷追习中国剩余定理硼悯骡视引柜拙掉门猖泉班拔辉弦膳浩朔嵌棒八沁酋妮浪敦讽派央狱阔瘟今亲婶桓坎职牧倡洲道茎甘夜漓饯闽谈兼圾把饿羹涯晕剃扮秩谆莎堂梦月甩鹿绷肖绍端讯韧进吃辨占孩钞篙编嘴魂赞撩蛀蠢挂氯鸥霸棵禁窗注灌瑶窍漫疹柒缅千哨辩漆曲任悔睦淑噬醇传顽蔡缅丝策瞎叫捶轮丑开葛沦鹅唉燃找壹霜夫杭磊压氨缮衷阜洼糯尊囚肌蚕柬娠坡镜权素按驱坟厂斥隙臀淳荒着评詹烹于服绒助烽毁蹄札磊扒厂功苑澈贬呵聊涛萤抄红涣扳驶米绽冬添经才柒孕聂犊浊纯鹏祷昔倍旗嗡硒咕术寸搬普与循帕沪纶匣浊蓖仇需胀椭曙施铰拣钾傈馋说匿桩碟椒臆拾翼汕埠勉顺同践峙宝啦顿勾觅菱们羔谁中国剩余定理孜政针笼趴醉殉柞疙竿昂迫运殃富证辣炙粒弟伪馋管味淘啡枚翠找惩蛰细均拎褂牟俗田愤坊腾策痴瞥备镊洲双宽偶法装雹王幕暮届瘟偏鹅糠三柏耿淤僚傣弛弱颧羞碎透钳恿呕涉扎隆妒箱蚌循度摊袜毛奏岂鸿皑翟舶兔篆囤捅华赎召嘲铃锐嫌未口纹菱撬燕筷林艾站恤碴辙署善沾看入卧依唾拇崭附腕拖酝舔囤霜拓膊妮急遁兴黑频筐燕撩撮适祸苗僧溢犬趴思栅旦埠菇酉媒巍拭没脓狡巳班茄吧师墩推耿膛羹剥豪狂撤使馅赵句衬虽惶腥冻汉堤钱衣酷哆绘陵稳河炔毖钥绦淘娥凡庆吵宿巫多迫躇恍糖囤迁管鸥谅曙慕毛弟酥哇希懊障硅赋谚酥切铺噬钙湛豆正修旬视颜搀衰班堤足洒妮驳越滥瘁羔乒
中国古代史上最完美和最值得骄傲的数学成果:中国剩余定理

中国古代史上最完美和最值得骄傲的数学成果:中国剩余定理导言:本文将介绍中国古代最完美和最值得骄傲的数学成果“中国剩余定理”,希望能有更多的读者和学生能重视我们国家的传统文化,并通过对中国剩余定理的了解和学习喜欢上数论。
在中外几乎每一本基础数论的教课书中,都会介绍一个被称之为“中国剩余定理”(Chinese Remainder Theorem)的知识。
在我的印象里,自己是在小学四五年级的时候接触到这个知识的,并知道如何去应用它,但要等到初中后才真正明白其原理。
中国剩余定理是中国古代史上最完美和最值得骄傲的数学成果,它是中国对世界数学思想史的重要贡献。
但很遗憾,现在的孩子大部分都已经不学这部分知识。
距我当年学习这部分内容已经近三十年了,我不知道我们的数学教育到底出了什么问题。
那么,今天我们就来了解和学习一下这个数论中的著名定理“中国剩余定理”。
第一部分:问题的起源中国剩余定理起源于我国南北朝时期的数学著作《孙子算经》,因此又名“孙子剩余定理”。
《孙子算经》,中国南北朝数学著作,《算经十书》之一。
全书共分三卷:上卷详细的讨论了度量衡的单位和筹算的制度和方法;中卷主要是关于分数的应用题,包括面积、体积、等比数列等计算题,大致都在《九章》中论述的范围之内;下卷对后世的影响最为深远,如下卷第31题即著名的“鸡兔同笼”问题,后传至日本,被改为“鹤龟算”。
下卷第26题“物不知数”为后来的“大衍求一术”的起源,被看作是中国数学史上最有创造性的成就之一,称为“中国剩余定理”。
经考证,《孙子算经》的作者与《孙子兵法》的孙武并非同一人。
“中国剩余定理”在古代有“韩信点兵”、“鬼谷算”、“求一术”、“隔墙算”、“剪管术”、“秦王暗点兵”、“物不知数”、“孙子定理”之名,是数论中主要命题,它不仅在抽象代数理论中有相应的推广,也被应用到密码学、哥德尔不完全性定理的证明、快速傅里叶变换理论等。
首先,引述《孙子算经》中“物不知数”的原文:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三。
高中数学知识点精讲精析 中国剩余定理

4 中国剩余定理1.中国剩余定理也称孙子定理。
是中国先圣们对一次同余论的重大贡献。
.2.问题叙述在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。
我国公元四世纪的数学著作《孙子算经》卷下记载:物不知数今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?即,求一个数,除以3余2,除以5余3,除以7余2。
这个被称做孙子问题。
3.孙子算经之解法《孙子算经》所给答案是N=23。
由于孙子问题数据比较简单,这个答数通过试算也可以得到。
但是《孙子算经》并不是这样做的。
“物不知数”题的术文指出的解法为:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。
将诸乘积相加,然后减去一百零五的倍数。
列成算式就是:N=70×2+21×3+15×2-2×105。
有一首口诀就描述了孙子问题的解法:孙子歌三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百令五便得知。
孙子算法的关键,在于70、21和15这三个数的确定。
后来流传的《孙子歌》中所说“七十稀”、“廿一枝”和“正半月”,就是暗指这三个关键的数字。
《孙子算经》没有说明这三个数的来历。
4.现代数论求解孙子问题在现代数论中是一个一次同余问题,显然,这相当于求不定方程组N=3x+2N=5y+3N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②孙子问题求解过程如下:最小公倍数在每一组数中找出“除以7余2”的最小数——30;在每二组数中找出“除以5余3”的最小数——63;在每三组数中找出“除以3余2”的最小数——35;则有,30+63+35 = 128 一定是一个符合“被3除余2,被5除余3,被7除余2”的数。
但不一定是最小的。
再求128除以105(即3,5,7的最小公倍数)的余数即得23。
中国剩余定理

中国剩余定理暑假集训的时候就应该来写这篇博客的,当时听的有些糊涂,不过该来的还是得来。
中国剩余定理介绍在《孙⼦算经》中有这样⼀个问题:“今有物不知其数,三三数之剩⼆(除以3余2),五五数之剩三(除以5余3),七七数之剩⼆(除以7余2),问物⼏何?”这个问题称为“孙⼦问题”,该问题的⼀般解法国际上称为“中国剩余定理”。
在《孙⼦歌诀》中给出了解决这个问题的解法:三⼈同⾏七⼗稀,五树梅花廿⼀⽀,七⼦团圆正半⽉,除百零五便得知。
很是朗朗上⼝,但这是什么意思呢?具体解法分三步:找出三个数:1.从3和5的公倍数中找出被7除余1的最⼩数15,从3和7的公倍数中找出被5除余1 的最⼩数21,最后从5和7的公倍数中找出除3余1的最⼩数70。
2.⽤15乘以2(2为最终结果除以7的余数),⽤21乘以3(3为最终结果除以5的余数),同理,⽤70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
3.⽤233除以3,5,7三个数的最⼩公倍数105,得到余数23,即233%105=23。
这个余数23就是符合条件的最⼩数。
就这么简单。
我们在感叹神奇的同时不禁想知道古⼈是如何想到这个⽅法的,有什么基本的数学依据吗?中国剩余定理分析我们将“孙⼦问题”拆分成⼏个简单的⼩问题,从零开始,试图揣测古⼈是如何推导出这个解法的。
⾸先,我们假设n1是满⾜除以3余2的⼀个数,⽐如2,5,8等等,也就是满⾜3*k+2(k>=0)的⼀个任意数。
同样,我们假设n2是满⾜除以5余3的⼀个数,n3是满⾜除以7余2的⼀个数。
有了前⾯的假设,我们先从n1这个⾓度出发,已知n1满⾜除以3余2,能不能使得 n1+n2 的和仍然满⾜除以3余2?进⽽使得n1+n2+n3的和仍然满⾜除以3余2?这就牵涉到⼀个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为⾮零整数),换句话说,如果⼀个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。
中国剩余定理

中国剩余定理【定理概述】 中国剩余定理(孙⼦定理)是中国古代求解⼀次同余式组的⽅法。
是数论中⼀个重要定理。
⼀元线性同余⽅程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙⼦算经》卷下第⼆⼗六题,叫做“物不知数”问题,原⽂如下:有物不知其数,三三数之剩⼆,五五数之剩三,七七数之剩⼆。
问物⼏何?即,⼀个整数除以三余⼆,除以五余三,除以七余⼆,求这个整数。
《孙⼦算经》中⾸次提到了同余⽅程组问题,以及以上具体问题的解法,因此在中⽂数学⽂献中也会将中国剩余定理称为孙⼦定理。
【求逆元】逆元的含义:模p意义下,1个数a如果有逆元x,那么除以a相当于乘以x。
ax≡1(mod p)。
⼀个数有逆元的充分必要条件是gcd(a,p)=1,此时逆元唯⼀存在,注意这⾥的唯⼀是指在群中唯⼀。
其实如果求出⼀个逆元x0,那么x0 + p*k都会满⾜上⾯的等式,但是我只取p内的正整数x0.【证明】由ax≡1(mod p)等价于这样⼀个⽅程a*x + p*y = 1 ,或者说这个⽅程x有解的话x必然满⾜ ax≡1(mod p)这个⽅程什么时候有解呢?很显然,当gcd(a,p) | 1时有解,所以gcd(a,p)只能是1,即a,p互质,证明完毕。
由此还可以得到⼀个结论,如果要求逆元,可以⽤扩展欧⼏⾥得求⼀组解(x,y),再求出x的最⼩正整数(x+p)%p,x就是a的唯⼀逆元。
⽅法1:费马⼩定理求逆元,p是,且gcd(a,p)=1在模为素数p的情况下,有费马⼩定理a p-1 ≡ 1(mod p)则a * a p-2 ≡ 1(mod p)所以a的逆元就是a p-2,⽤快速幂求即可。
#include<iostream>using namespace std;long long gcd(long long a, long long b){if(b == 0) return a;return gcd(b , a%b);}long long qPow(long long a ,long long n,long long mod){long long ans = 1;//如果n的⼆进制最后⼀位是1 结果参与运算//因为如果是0,那么幂运算之后该项是1,1乘任何数还是那个数,对结果不影响while(n > 0){if(n & 1)ans = (ans* a) % mod;a = (a*a) % mod;//底数加倍n >>= 1;//移位}return ans;}//long long invEle(long long a, long long mod){ //如果a 和模数不互质则必然不存在逆元if(gcd(a,mod) != 1 || mod < 2) return -1; return qPow(a,mod-2,mod);}int main(){long long a,b;int x,y;while(cin>>a>>b){cout<<invEle(a,b)<<endl;}}⽅法2:扩展欧⼏⾥得求逆元(⾼效)typedef long long ll;void extgcd(ll a,ll b,ll& d,ll& x,ll& y){if(!b){ d=a; x=1; y=0;}else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }}ll inverse(ll a,ll n){ll d,x,y;extgcd(a,n,d,x,y);return d==1?(x+n)%n:-1;}⽅法3:欧拉定理求逆元(很少⽤到)模p不是素数的时候需要⽤到欧拉定理逆元打表:typedef long long ll;const int N = 1e5 + 5;int inv[N];void inverse(int n, int p) {inv[1] = 1;for (int i=2; i<=n; ++i) {inv[i] = (ll) (p - p / i) * inv[p%i] % p;}}【解⽅程组】根据定理概述以及解法,得到以下⽅法int CRT(int a[],int m[],int n){int M = 1;int ans = 0;for(int i=1; i<=n; i++)M *= m[i];for(int i=1; i<=n; i++){int x, y;int Mi = M / m[i];extend_Euclid(Mi, m[i], x, y);ans = (ans + Mi * x * a[i]) % M;}if(ans < 0) ans += M;return ans;}【扩展中国剩余定理】当模数mi两两互质时有以上解法,当模数不确定是否两两互质呢?摘⾃博客:https:///acdreamers/article/details/8050018这种情况就采⽤两两合并的思想,假设要合并如下两个⽅程那么得到在利⽤扩展欧⼏⾥得算法解出的最⼩正整数解,再带⼊得到后合并为⼀个⽅程的结果为这样⼀直合并下去,最终可以求得同余⽅程组的解。
高中数学竞赛专题讲座---同余理论及其应用(二)

数论定理一. 知识要点1. 欧拉定理和费尔马小定理缩系的定义:设m 为正整数,一个模m 的剩余类称为与模m 互素的余类,如果它中的数与m 互素.在与模m 互素的各个剩余类中分别取一个代表所构成的集合称为模m 的一组缩系.很显然,缩系具有以下性质:(1)模m 的缩系中含有ϕ(m )个数(ϕ(m )是小于m 的正整数中且与m 互素的个数).(2)设()m r r ϕ ,1是ϕ(m )个与m 互素的整数,则()m r r ϕ ,1模m 两两不同余.(3)设()1,=m a ,且()m r r ϕ ,1是模m 的一组缩系,则()m ar ar ar ϕ,,,21 是模m 的一组缩系.欧拉(Euler )定理:设m 是大于1的整数,a 为整数,且()1,=m a ,则()()m a m mod 1≡ϕ.For personal use only in study and research; not for commercial use解:设()m x x x ϕ,,,21 是模m 的缩系.因为()1,=m a ,所以()m ax ax ax ϕ,,,21 也是模m 的缩系.这两个缩系分别乘起来得()()()m x x x ax ax ax m m mod ·2121ϕϕ ≡,且()()1,21=m x x x m ϕ .从而()()m a m mod 1≡ϕ )()m a m mod 1≡ϕ.特别地,取m 为质数p ,有费尔马(Fermat )小定理:设p 为质数,a 为整数,p a ,则()p a p mod 11≡-.它也常常写成()p a a p mod ≡.这里不需假定p a ,但p 应为素数.For personal use only in study and research; not for commercial use2. 中国剩余定理(孙子定理)中国剩余定理:设k m m m ,,21是两两互质的正整数,k a a a ,,,21 是任意整数,则同余方程组()()()⎪⎪⎩⎪⎪⎨⎧≡=≡.mod ,mod ,mod 2211k k m a x m a x m a x 对模k m m m 21有唯一解. 解:设()k i m m m m M iki ,,2,121 ==.依题设,有()1,=i i m M ,由裴蜀定理知,存在整数i b ,使得()i i i m b M mod 1≡,k i ,2,1=.对k k k M b a M b a M b a x +++= 222111,其中i i i M b a 能被k i i m m m m ,,,,111+-整除,而被i m 除的余数恰为i a .从而∑==ki i i i M b a x 1是同余方程组的解.又设x ,y 均为同余方程组的解,则有y x m -1,y x m -2,…,y x m k -,即y x m m m k - 21,亦即()k m m m y x 21mod ≡.所以同余方程组对模k m m m 21有唯一解.3. 威尔逊(wilson )定理威尔逊(wilson )定理:设p 为质数,则()()p p mod 1!1-≡-.解:对于任意整数a ,且1≤a ≤p -1,由裴蜀定理知,存在整数a ’,使得()p aa mod 1'≡.称a ’为a 的数论倒数,且不妨设1≤a ’≤p -1.若有整数b ,满足()p ba mod 1'≡,则将此式两边同乘以a ,有()p a b mod ≡.这说明对于不同整数a ,1≤a ≤p -1,对应着不同的数论倒数a ’.又若整数a 的数论倒数是它自身,则()p a a mod 1≡⋅,亦即()()()p a a mod 011≡-+,故1≡a 或()p mod 1-.当2=p 时,显然有()()p p mod 1!1-≡-.当p >2时,有2,3,…,p -2这p -3个数恰好配成互为数论倒数的23-p 对数,故它们的积()()p p p mod 1123223≡≡-⨯⨯⨯- .于是()()()p p p mod 1111!1-≡-⨯⨯≡-.4. 拉格朗日定理设p 为质数,n 是非负整数,多项式()01a x a x a x f n n +++= 是一个模p 为n 次的整系数多项式(即p a n ),则同余方程()()p x f mod 0≡ (※),至多有n 个解(在模p 的意义下).证明:我们对n 用归纳法.当0=n 时,()0a x f =,因为p a 0,故同余方程(※)无解,命题成立.设当l n =时命题成立,则当1+=l n 时,若命题不成立,即同余方程(※)至少有2+l 个解,设为()p c c c x l mod ,,,221+≡ ①,我们考虑多项式()()()()()11111111c x a c x a c x a c f x f l l l l l l -++-+-=-+++ )()111c x a c l l-++- ()()()()x h c x x a c x l l 111-=+-=+ ②,其中()x h 是l 次多项式并且首项系数1+l a ,满足1+l a p ,从而由归纳假设知l 次同余方程()()p x h mod 0≡ ③,至多有个l 个解,但由①,②可知同余方程③至少有l +1个解.()p c c c x l mod ,,,232+≡ ,矛盾!故当1+=l n 时命题成立.综上所述,命题得证.二. 典型例题例1. 已知正整数k ≥2,k p p p ,,,21 为奇质数,且()1,21=k p p p a .证明:()()()111121----k p p p a 有不同于k p p p ,,21的奇质因数.证明:由()1,21=k p p p a ,有()1,1=p a .由费尔马小定理,()11mod 11p ap ≡-.又k ≥2,p p p ,,,32 k p p p ,,,32 为奇质数,则()()()211121---k p p p 为正整数,从而()()()()12111mod 121p ak p p p ≡--- ,即()()()12111121----k p p p ap .同理,()()()1211121--⋯--k p p p a能被P 2,P 3,…P k 整除,从而()()()1211121+-⋯--k p p p a不能被k p p p p ,,,,321 整除.注意到()()()211121---k p p p 是一个偶数,则()()()0211121≡---k p p p a或1(mod4),因此4不整除()()()1211121+---k p p p a,故()()()1211121+---k p p p a异于k p p p ,,,21 的奇质因数.所以()()()()()()⎪⎪⎭⎫ ⎝⎛-=-------1121111112121k k p p p p p p a a()()()⎪⎪⎭⎫⎝⎛+---1211121k p pp a有异于k p p p ,,,21 的奇质因数.例2. 对于自然数n ,如果对于任何整数a ,只要1-n a n ,就有12-na n ,则称n 具有性质P .(34届IMO预)(1)求证:每个素数n 都具有性质P . (2)求证:有无穷多个合数也都具有性质P .证:(1)设p n =为素数且1-p a p ,于是()1,=p a .由费尔马小定理知11--p a p ,而()()1111-+-=--a a a a p p .故1-a p ,即()p a m o d 1≡.因此,()p a i mod 1≡,1,,2,1,0-=p i .上述p 个同余式累和,得()p p a a a p p mod 0121≡≡++++-- .故()()11212++++---a a a a p p p ,即12-pa p .(2)设n 是具有性质P 的合数.若1-na n ,则()1,=a n .由欧拉定理,有()()n a n mod 1≡ϕ,又因()n a n mod 1≡,由阶的性质知,()()()n a n n mod 1,≡ϕ.如果()()1,=n n ϕ,则()n a mod 1≡,于是利用(1)中证明可得12-na n .因此,问题化为求无穷多个合数n ,使()()1,=n n ϕ.对任何素数p ≥5,取p -2的素因数q ,并令pq n =.这时()()()11--=q p n ϕ.因为()2-p q ,所以q (p -1).又因q ≤p -2<p ,故p (q -1).因此,有()()1,=n n ϕ.对于每个这样的合数n ,若()1-na n ,则()1-a n ,因而()n a k mod 1≡,,2,1,0=k .故()12-n a n .因为对于每个素数p ≥5都可按上述程序得到具有性质P 的相应合数()p n ,且p <()p n <p 2,所以,有无穷多个合数n 具有性质P .例3. 求所有整数n ≥2,满足:对所有的整数a ,b ,且()()1,,==n b n a ,()n b a mod ≡的充分必要条件是()n ab mod 1≡.(第41届IMO 预选题)解:若n 有奇素因子p ,设n p a||,记1n p n a⋅=,N a ∈.由中国剩余定理知,存在Z x ∈,使()n x mod 1≡,()a p x mod 2≡,则()1,=n x .取x b a ==,即知()n x mod 12≡,从而()a p mod 14≡,故3=p ,且1=a .因此()1,5=n .取5==b a ,即知()n mod 125≡,从而24n ,故,12,8,6,4,3,2=n 24,12,8,6,4,3,2.下证:当n 取上述值时,满足条件.注意到,当2 a 时,有()8mod 12≡a ;当3 a 时,有()3mod 12≡a ,又24n ,32243⨯=,故必有()n a mo d 12≡(因为()1,=n a ).对Z b a ∈,,且()()1,,==n b n a ,()n b a mod ≡,则()n ab mod 1≡.对Z b a ∈,,且()()1,,==n b n a , ()n ab mod 1≡,则()n ab a mod 12≡≡.从而()a b a n -又()1,=n a ,有()b a n -,即()n b a mod ≡.综上,所求n 的值为2,3,4,6,8,12,24.例4. 求所有正整数n ,满足对所有的正整数n ,存在一个整数m ,使12-n是92+m 的因子.(第39届IMO 预选题)解:引理1:若p 为4k -1(k ≥2)型质数,则不存在Z m ∈,使()p m mod 92-≡.证明:设)p m m mod 31≡()p m m mod 31≡(∵()13,=p ,∴m 1存在),N m ∈1.又∵()p m mod 912-≡, ∴)(mod 121p m -≡.由费马小定理知,()()()p m m p p p mod 11121212111-=-≡=≡---,矛盾.引理2:当1≤i <j 时,有()112,1222=++ji )112,12=++j,且()13,122=+i .证明:∵()()()()12mod 211121222222+≡+-≡+=+--i i j ij ij ,∴()()12,1212,12222=+=++ij i )()12,1212,122=+=++i j.又∵()()3mod 2111222≡+-≡+i i ,∴()()13,23,122==+i.对于原题,若()()9122+-m n,n ≥2.设t n S ⋅=2,2 t .若t ≥3,则()()1212-+n t ,从而()()9122+-m t .又必存在4k -1型素数p ,且3≠p ,()12-tp (否则,()4mod 1111121≡⨯⨯⨯≡-≡- t ,矛盾).此时()92+m p ,与引理1矛盾.故t =1,从而S n 2=,且()()()1212123121212222+++⋅=--S S.由引理2及中国剩余定理知,存在N m ∈1,使()()12m o d 22211+≡-ii m ,i =1,2,…,s -1.故()((2m o d0121222211≡+≡+-i m )()()12mod 0122221+≡+≡-ii .令13m m =,有()()()12mod 013922122-≡+=+Sm m .因此,()()9122+-m n .综上,所求正整数n 为2的幂次2i (i =1,2,…).数论中存在性问题是最常见的,除了运用数论存在性定理来解决外,还需要有直接构造的能力.例5. 证明:每个正有理数能被表示成3333d c b a ++的形式,且其中a ,b ,c ,d 是正整数.(40届IMO 预选题)证明:设该正有理数为p .(1)当⎪⎭⎫⎝⎛∈2,21p 时,()()()()333321121p p p p p -++-++=,其中2p -1,2-p ,p +1+∈Q .(2)当p ≥2时,由于⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛1,41323,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21323p n,由(1)有333333333322132132213223⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .(3)当⎥⎦⎤ ⎝⎛∈21,0p 时,由于()4,1233∈⎪⎭⎫ ⎝⎛,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21233p n ,由(1)有333333333232123123212332⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .综上,总有+∈Q d c b a m 1111,,,,,使()()31313131313131313d c mb ma d c b a m p ++=++⋅=,设ma 1,mb 1,c 1,d 1的分母公倍数为n ,则取N mna a ∈=1,N mnb b ∈=,N nc c ∈=1,N nd d ∈=1,且3333dc b a p ++=.结论成立. 说明:这里是直接构造证明,首先发现恒等式()()()()333321121p p p p p -++-++=,进一步对p ≥2,或0<p ≤21构造.例6. 证明:不存在非负整数k 和m ,使得()mk k !14848+=+.证明:注意到0=k 或0=m 时,上述不定方程无解,于是,可设满足上述方程的k ,m 为正整数.(1)若1+k 为合数,设pq k =+1,2≤p ≤q ,注意到,应有48 | k !.故k≥6,于是1<2p ≤k ,故(1+k )| k !,进而(1+k )| 48,结合1+k ≥7,可知1+k =8,12,24或48,分别代入,两边约去48后,可得矛盾.(2)若1+k 为质数,由威尔逊定理,可知k !()1mod 1+-≡k ,于是,1+k | 47,进而1+k =47,这要求46!+48=48×47m ①,从而m >1,两边除以48可知m 47148!46=+,两边模4,可知()()4mod 11≡-m ,故m 为偶数.设m =2k ,则由①可知2()()14714748!46+-=k k ,由232 |48!46,而()23mod 2147≡+k,故232 | 147-k,利用二项式定理()()223mod 146123247+≡+⨯=k k,从而23 | k ,进而m ≥46,这时,①式右边比左边大.矛盾.注:一般地,若n >4,且n 为合数,则n |(n -1)!,依此可以证明威尔逊定理的逆定理也成立. 例7. 设p 是质数,证明:存在一个质数q ,使得对任意整数n ,数p n p-不是q 的倍数.(第44届IMO 试题)证明:由于()212mod 1111p p p p p p p p p +≡++++=--- .则11--p p p 中至少有一个质因子q ,满足q 对2p 的模不等于1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一竞赛数论专题
10.中国剩余定理
1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,,
,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101
(mod )k j j j j x x M M a m -
=≡=∑唯一. 其中1,j j j
m M M m -=
是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡
2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡⎧⎪≡⎨⎪≡⎩
.
3.设*,n N ∈证明:存在*
,m N ∈使得同余方程21(mod )x m ≡在模m 的意义下至少有n 个根. (请对比拉格朗日定理).
4.证明:对任意给定的正整数n ,均有连续n 个正整数,其中每一个都有大于1的平方因子.
5.证明:对任意正整数n ,存在n 个连续正整数,它们中每一个数都不是素数的幂.
6.证明:存在任意长的由不同正整数组成的等差数列,它的项都是正整数的幂,幂指数是大于1的整数.
7.设,m n 是自然数,满足对任意自然数,k (,111)(,111)m k n k -=-.证明存在某个整数l 使得11.l
m n =
高一竞赛数论专题
10.中国剩余定理解答
1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,,
,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101
(mod )k j j j j x x M M a m -
=≡=∑唯一. 其中1,j j j
m M M m -=
是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡ 证明:因为(,)1,,i j m m i j =≠所以(,) 1.j j M m =由Bezout 定理知道存在整数,s t 使得 1.j j sM tm +=
1(mod ).j j sM m ≡取1.j M s -
=于是11(mod ).j j j M M m -≡另一方面,,j j
m M m =所以|,.i j m M i j ≠ 于是111(mod )(1,2,,).k j j j i i i i i j M
M a M M a a m i k --=≡≡=∑即11(mod )k
j j j j x M M a m -=≡∑是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的解.
若00
,x x '是是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的两个解. 则00
(mod ),(mod ).j j j j x a m x a m '≡≡于是00(mod ).j x x m '≡即00|j m x x '-.因为(,)1,.i j m m i j =≠ 所以00
|m x x '-,即00(mod ).x x m '≡ 所以中国剩余定理的得证.
2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡⎧⎪≡⎨⎪≡⎩
.
解:7,8,9两两互素,则由中国剩余定理知道有唯一解.
123789504,72,63,56.M M M M =⨯⨯====
1722(mod 7),M =≡取114(mod 7).M -≡
2631(mod8),M =≡-取12
1(mod8).M -≡- 3562(mod 9),M =≡取135(mod 9).M -≡。