竞赛数学中的初等数论(精华版)
初等数论在中学数学竞赛中的应用

4、总结
通过对本文的研究,可以看出初等数论的知识 在竞赛题中的重要性,在解题时要适当运用其定理 和定义,才能更好地解决问题。需要注意的是在运 用初等数论知识中解题时常常蕴涵了整体化、配对、 化归等数学思想方法。例如整除与带余除法问题; 整除与同余问题;不定方程与同余问题都可以等价 化归。有些竞赛题更是需要多种数论方法,多种数 学思想方法相互交织才能解答,这就要求我们必须 要掌握一些初等数论的知识,才能在竞赛题中灵活 的应用。
在此处添加文章正文,根据需要调整字体、字号、颜色。按回
谢谢各位老师!
研究现状
在国内,有很多学者对初等数论在中学 数学竞赛中的应用进行了研究,有针对初等 数论的某一定理展开研究的,也有总结竞赛 中常用到的初等数论思想或是解题方法等等。 但大都是针对某一定理在高中竞赛中的应用, 很少有总结归纳数论知识对初中数学竞赛的 应用。
二、主要内容
1、整除理论及其应用
2、同余理论及其应用
3、不定方程及其应用
4、总结
1、整除理论及其应用
初等数论是研究整数基本性质的一门十分重 要的数学基础课程,由此而言,初等数论的基础 便是整除理论了。
本章主要从整除、带余数除法、最大公约数 与最小公倍数、高斯函数的基本定义以及其性质 出发,结合近几年的中学数学竞赛题来说明整除 理论的应用。
2、同余理论及其应用
二元一次不定方程中主要介绍了竞赛中不定 方程求整数解的题型,再求特解的过程中,可以 用观察法、辗转相除法或缩小系数等方法。
高次不定方程,根据其自身特点,运用整 除理论和有关初等数论的知识,可以有效地求 解方程。常用的几种高次不定方程的解法有: 余数分析法、因式分解法、约数分析法、奇偶 分析法、判别式法等等。本节通过竞赛题简单 了介绍了几种方法的使用。
高中数学联赛初等数论专题练习(带答案详解版)

12.若两整数 、 除以同一个整数 ,所得余数相同,即 ,则称 、 对模 同余,用符号 表示,若 ,满足条件的 由小到大依次记为 ,则数列 的前 项和为________.
13.设 , 表示不超过 的最大整数,若存在实数 ,使得 , ,…, 同时成立,则正整数 的最大值是.
高中数学联赛初等数论专题练习(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设 ,用 表示不超过 的最大整数,则 称为高斯函数,例如: , ,已知函数 ( ),则函数 的值域为()
9.等差数列 的前 项和为 ,且 , ,记 ,其中 表示不超过 的最大整数,如 , ,则 _________.
10.已知 表示正整数 的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则 ;21的因数有1,3,7,21,则 ,那么 _________.
11.用符号 表示小于 的最大整数,如 ,有下列命题:①若函数 ,则 的值域为 ;②若 ,则方程 有三个根;③若数列 是等差数列,则数列 也是等差数列;④若 ,则 的概率为 .
【解析】
【分析】
首先将函数解析式进行化简,并用换元思想,得到 ( ),研究二次函数在某个区间上的值域,求得 ,根据“高斯函数”的本质,求得结果.
【详解】
因为 ,令 ( ),
则 ( ),函数的对称轴方程为 ,
所以 ,
,所以 ,
所以 的值域为 ,
故选:B.
【点睛】
本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.
初中数学竞赛数论定理

初中数学竞赛数论定理
初中数学竞赛中常用的数论定理:
1. 质数与因数:任何一个整数都可以唯一分解成若干质数的乘积,而且所有的因子都由这些质因子的指数作出来。
2. 最大公因数和最小公倍数:两个正整数a和b的最大公因数和最小公倍数分别记作gcd(a,b)和lcm(a,b)。
它们有许多重要性质可以应用。
3. 素性质数列:素数可以用许多方式列举出来,例如欧拉函数、Wilson定理、费马小定理等等。
其中一些方法在竞赛中比较常用。
4. 同余定理:如果a和b除以正整数m的余数相同,即
a≡b(mod m),那么a和b就被称为模m同余。
同余关系具有传递性、对称性和反对称性,可以用来证明各种数学恒等式和不等式。
5. 等比数列:等比数列指的是一个数列中每个数都是前一个数乘以一个固定的比例因子。
一些有用的定理包括调和平均值不小于几何平均值、柯西不等式等等。
6. 解方程:竞赛中常常需要解各种复杂的方程,例如二次方程、方程组、移项变系数、绝对值不等式等等。
有些常见的技巧包括配方法、因式分解、代数恒等式、三角变换等等。
高中数学竞赛课程讲座:初等数论

高中数学竞赛课程讲座:初等数论
本课程讲座旨在介绍初等数论的基础知识,帮助学生为高中数学竞赛做最好的准备。
我们将深入探讨数论中的基础概念,如质数分解和
算术难题,并探讨一些实际应用的技巧和常用方法,帮助学生在数学
竞赛中取得好成绩。
本次讲座将向您介绍初等数论,它是一门关于形式化、有限数论等术语和方法的数学分支。
简而言之,初等数论在研究有关有限结构的
问题和计算方法时是不可或缺的。
在这个课程中,我们将探讨整数质
因数分解、质数及其应用、素数概念、余数定理、线性算术等,帮助
您为数学竞赛中的第一题做准备。
我们还将深入讨论有关如何构造有
限结构的问题,利用它们来探究多项式的性质;研究几何图形;通过
图论剖析算法,及解决整数方程组等方面的相关内容。
我们相信您在
学习初等数论时会有所收获,从而在高中数学竞赛中尽显实力!
此外,我们还将为您介绍数论的发展和历史,例如,古希腊的Euclid
的元素书、中国的Sunzi的求积算,以及17世纪的Fermat的大定理等,一起探究中国数学家在数论中的贡献。
在讲座中,我们还会解释完整
的幂的概念,从中分析总结出幂的工具,比如抽象代数和提高多项式
的方法等,以帮助您从大量的幂等式中获取实质性的知识,理清思路。
最后,在考试期间,我们将重点讨论质因数分解原理、构造,以及如
何将数论应用于实际情况中,例如Cryptography,帮助您在考试中取得高分。
(完整word版)《竞赛数学中的初等数论》

《竞赛数学中的初等数论》贾广素编著2006-8-21序 言数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。
数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。
可是这也说明了最难的数论问题,适合于任何人去研究。
初等数论最基础的理论在于整除,由它可以演化出许多数论定理。
做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。
这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈∃∈∀,,,,满足r bq a +=,其中b r <≤0。
除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。
相信通过对本书学习,您可以对数论有一个大致的了解。
希望我们共同学习,相互交流,在学习交流中,共同提高。
编者:贾广素2006-8-21于山东济宁第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m Λ--,则此数可以简记为:021a a a A m m Λ--=(其中01≠-m a )。
由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=----Λ,其中1,,2,1},9,,2,1,0{-=∈m i a i ΛΛ且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m Λ--=。
数学竞赛精讲精练专题—初等数论中的同余问题_1

∴
(
pk k
)
pk k
[
pk k p
]
pk k
pk 1 k
∴
(m)
(
p1 1
)
(
p2 2
)
(
pk k
)
(
p1 1
p1 1
1
)(
p2 2
p2 2
1
)
(
pk k
pk k
1
)
p1 1
(1
p11
)
p2 2
(1
p21)
pk k
(1
又 p 为奇素数, p 1为偶数,∴ ( p 1)!1 0(mod p) ,得证.
6、设 a 为整数, p 为正整数,若存在 x Z ,使得 x2 a(mod p) ,则称 a 为模 p 的二
次剩余,否则,称 a 为模 p 的二次非剩余.
p1
设 p 为奇素数,a Z 且 p a ,证明:a 是模 p 的二次剩余充要条件是 a 2 1(mod p) ;
若 a b(mod m) , c d(mod m) , n N* 则 a c b d(mod m) , a c b d(mod m) ac bd(mod m) , an bn (mod m) .
3)除法运算:
ac bc(mod m) ,则 a b(mod m ) . (c, m)
(1)k m p1 p2 pk
k
m(1
1
1 (1)k 1 )
p p p i1 i 1i jk i j
初中数学竞赛中的数论初步

初中数学竞赛中的数论初步
数论是数学中一个重要的分支,它涉及许多问题,如素数分解、同余关系、算术平衡、因子分解等。
作为一个抽象的学科,它在数学竞赛中至关重要,使得学生们能够积累丰富的知识,并运用它们来解决复杂的问题。
在初中阶段,数论一般介绍一些简单的基础知识,主要包括基本的整数计算,比如整除、分解质因数、最大公约数等,以及一些诸如费马小定理、欧拉函数、素数表示等复杂的概念。
同时,初中还引入了许多实际应用的概念,如计算机图形、排列组合、几何图形等。
这些概念对学生来说都是新鲜的,可以作为重要的知识积累。
在数学竞赛中,数论的应用特别重要。
一些复杂的题目的答案依赖于数论的技巧,而实现这些技巧需要许多基础知识的积累。
因此,在竞赛中,学生需要掌握许多数论的基础知识,以便在比赛中设计出有效的解决方案。
此外,学生还需要结合几何、排列组合、代数等其他方面的概念,来解决更加复杂的题目。
初中数学竞赛除了要求学生掌握数论的基本知识,还要求其学会实际操作,因此在比赛过程中,学生需要以更高的效率来完成题目的求解。
这就要求学生更好地掌握数论的技巧,比如要掌握欧拉函数和欧拉等式在数学比赛中的应用,也要掌握因式分解、费马小定理等概念,以及分解质因数、素数表示等概念。
此外,有效的解题技巧也是数学比赛的关键,学生需要更多的练习以提高自己的水平,尤其是针对相同题型题目的复习和训练,还可
以总结和掌握新解题技巧,便于在以后的数学比赛中更胜一筹。
总之,数论是初中数学竞赛中的重要一环,它不仅要求学生掌握数论的基础知识,还要求他们有效求解题目,掌握解题技巧,这种能力对学生以后参加数学比赛乃至学习数学都有重要意义。
初等数论在数学竞赛及密码学中的应用

初等数论在数学竞赛及密码学中的应用
初等数论是以素数、合数及基本数论函数(例如:素性测试、质因数分解、欧几里得算法)为主要工具来研究整数及关于它们的推理、符号等数学概念的研究领域。
初等数论在数学
竞赛及密码学中有着重要的应用,为解决日常问题提供了有效的方案。
素性测试在密码学中的使用被广泛应用,可以找到一定范围内的素数。
素数的重要性不言
而喻,它们可以用来生成安全的密钥,来保护重要资料和交换信息。
质因数分解可以将较
大的数字快速分解为质因数,质因数可以用来计算程序的最优解,从而赢得学术比赛的胜利。
欧几里得算法可以用来解决有关整数相关的大量问题,它是一种高效的数论方法,可用于
计算素数的乘积。
如果参赛者能够使用欧几里得算法进行素数的乘积计算,他们就可以快
速解决此类问题,从而赢得竞赛胜利。
在数学竞赛中,参赛者必须运用其他数论方法,如
扩展欧几里得算法、整数分解等,才能解决数学问题。
在实际应用中,初等数论方法可以用来解决复杂或微小数学问题,如求解素数定理等,是
高等数学中一个重要的领域。
初等数论在数学竞赛及密码学研究领域中被广泛应用,取得
了巨大的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《竞赛数学中的初等数论》贾广素编著2006-8-21序 言数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。
数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。
可是这也说明了最难的数论问题,适合于任何人去研究。
初等数论最基础的理论在于整除,由它可以演化出许多数论定理。
做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。
这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈∃∈∀,,,,满足r bq a +=,其中b r <≤0。
除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。
相信通过对本书学习,您可以对数论有一个大致的了解。
希望我们共同学习,相互交流,在学习交流中,共同提高。
编者:贾广素2006-8-21于山东济宁第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。
由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。
在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。
但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。
特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。
为了具备一般性,我们给出正整数A 的p 进制表示:012211a p a p a p a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且01≠-m a 。
而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。
典例分析例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与八进制,并将其表示成多项式形式。
分析与解答分析:用2作为除数(若化为p 进位制就以p 作为除数),除2004商1002,余数为0;再用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。
所得的各次余数按从左到右的顺序排列出来,便得到所化出的二进位制的数。
解:故210)01111101010()2004(=,246789104212121212121214102⨯+⨯+⨯+⨯+⨯+⨯+⨯=+⨯; 同理,有810)3274()2004(=,48782834102234+⨯+⨯+⨯=+⨯。
处理与数字有关的问题,通常利用定义建立不定方程来求解。
例2.求满足3)(c b a abc ++=的所有三位数abc 。
(1988年上海市竞赛试题) 解:由于999100≤≤abc ,则999)(1003≤++≤c b a ,从而95≤++≤c b a ; 当5=++c b a 时,33)521(1255++≠=;当6=++c b a 时,33)612(2166++≠=;当7=++c b a 时,33)343(3437++≠=;当8=++c b a 时,33)215(5128++==;当9=++c b a 时,33)927(7299++≠=;于是所求的三位数只有512。
例3.一个四位数,它的个位数字与百位数字相同。
如果将这个四位数的数字顺序颠倒过来(即个位数字与千位数字互换,十位数字与百位数字互换),所得的新数减去原数,所得的差为7812,求原来的四位数。
(1979年云南省竞赛题)解:设该数的千位数字、百位数字、十位数字分别为z y x ,,,则原数y z y x +++=10101023 ①颠倒后的新数x y z y +++=10101023 ②由②-①得7812=)(90)(999y z x y -+-即)()(10)(10)(10)(1118682x y y z x y y z x y -+-+-=-+-= ③比较③式两端百位、十位、个位数字得6,8=-=-x z x y由于原四位数的千位数字x 不能为0,所以1≥x ,从而98≥+=x y ,又显然百位数字9≤y ,所以76,1,9=+===x z x y 。
所以所求的原四位数为1979。
例4.递增数列1,3,4,9,10,12,13,……是由一些正整数组成,它们或是3的幂,或是若个不同的3的幂之和,求该数列的第100项。
(第4届美国数学邀请赛试题) 解:将已知数列写成3的方幂形式:,333,33,33,3,33,3,30127126025240131201++=+=+==+===a a a a a a a易发现其项数恰好是自然数列对应形式的二进制表示:即 ,2227,226,225,24,223,22,2101220220110++=+=+==+=== 由于100=2562222)1100100(++=所以原数列的第100项为981333256=++。
例5.1987可以在b 进制中写成三位数xyz ,如果7891+++=++z y x ,试确定所有可能的z y x ,,,和b 。
(1987年加拿大数学竞赛试题) 解:易知25,19872=++=z y x xb ,从而162)1()1(2=-+-b y b x ,即109321962])1)[(1(2⨯⨯==++-y x b b ,由10>b 知91>-b 。
由119622-≥b 知451963<≤b 故4519<-<b ;又因为1093219622⨯⨯=有12个正约数,分别为1,2,3,6,9,18,109,218,327,654,981,1962,所以181=-b ,从而19=b 。
又由1119919519872+⨯+⨯=知.11,9,5===z y x例6.设n 是五位数(第一个数码不是零),m 是由n 取消它的中间一个数码后所成的四位数,试确定一切n 使得mn 是整数。
(第3届加拿大数学竞赛试题) 解:设v u z y x xyzuv n +⋅+⋅+⋅+⋅==10101010234,其中}9,,2,1,0{,,,, ∈v u z y x 且1≥x ;v u y x xyuv m +⋅+⋅+⋅==10101023; 而mn k =是整数,可证n m <9,即<+⋅+⋅+⋅)101010(923v u y x v u z y x +⋅+⋅+⋅+⋅10101010234 即z y x v u 223101010880++<+,这显然是成立的;又可证m n 11<,即v u z y x +⋅+⋅+⋅+⋅10101010234<)101010(1123v u y x +⋅+⋅+⋅即v u y x z 10101010102232+++<,这显然也是正确的。
于是m n m 119<<,即119<<k ,又因为k 是整数,从而10=k ;于是m n 10=,即v u z y x +⋅+⋅+⋅+⋅10101010234=)101010(1023v u y x +⋅+⋅+⋅即)10(9990102v v u z +=+=⋅,而z 210|9但3 102知t t z (9=为正整数) 从而v u t +=⋅10102,显然0===v u t ,因而推得31000⋅==N xyz n 其中9910≤≤N 。
例7.若}100,,2,1{ ∈n 且n 是其各位数字和的倍数,这样的n 有多少个?(2004年南昌竞赛试题)解:(1)若n 为个位数字时,显然适合,这种情况共有9种;(2)若n 为100时,也适合;(3)若n 为二位数时,不妨设ab n =,则b a n +=10,由题意得)10(|)(b b a ++ 即Z b a b a ∈++10即Z ba a ∈+9也就是ab a 9|)(+; 若0=b 显然适合,此种情况共有9种; 若0≠b ,则由a b a >+,故)(|3b a +若9|)(b a +,则显然可以,此时共有2+8=10个;若(b a +)9,则6=+b a 或12=+b a ,这样的数共有24,42,48,84共4个; 综上所述,共有9+1+9+10+4=33个。
例8.如果一个正整数n 在三进制下表示的各数字之和可以被3整除,那么我们称n 为“好的”,则前2005个“好的”正整数之和是多少?(2005年中国奥林匹克协作体夏令营试题) 解:首先考虑“好的”非负整数,考察如下两个引理:引理1.在3个连续非负整数23,13,3++n n n (n 是非负整数)中,有且仅有1个是“好的”。
证明:在这三个非负整数的三进制表示中,0,1,2各在最后一位出现一次,其作各位数字相同,于是三个数各位数字之和是三个连续的正整数,其中有且仅有一个能被3整除(即“好的”),引理1得证。
引理2.在9个连续非负整数89,19,9++n n n (n 是非负整数)中,有且仅有3个是“好的”。
把这3个“好的”非负整数化成三进制,0,1,2恰好在这三个三进制数的最后一位各出现一次。
证明:由引理1不难得知在9个连续非负整数89,19,9++n n n (n 是非负整数)中,有且仅有3个是“好的”。
另一方面,在这三个“好的”非负整数的三进制表示中,最高位与倒数第三位完全相同,倒数第二位分别取0,1,2。
若它使它们成为“好的”非负整数,则最后一位不相同,引理2得证。
将所有“好的”非负整数按从小到大的顺序排成一列,设第2004个“好的”非负整数为m ,根据引理1,得3200432003⨯<≤⨯m ,即60126009<≤m 。