高中数学竞赛辅导初等数论不定方程
高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高二数学竞赛班二试数论讲义-不定方程

可得一组满足条件的正整数解(x, y).故 n2 的小于 n 的正约数恰好为 2010.
设n
p1 1
pk k
,其中
p1, ,
pk
是互不相同的素数,1, , k
是非负整数.故 n2
的小于 n
的正约数个数为
(21 1)(2 k 1) 1 , 2
故 (21 1)(2 k 1) 4021 .
易知 3 y 5 (当 y 6 时, z 7 ,上式不成立)。仅当 y 4 时, z 14 为整数,故仅有一组整数解 (2, 4,14)
(2)当 (x 1)( y 1)(z 1) 1 3 时,则 1 1 1 1 1 1 2
xyz
x y z xy yz zx
1
4.求方程 x3 y3 xy 61 的正整数解 5.求所有正整数 m, n ,使 2m 3n 为平方数。
高二数学竞赛班二试讲义
不定方程
例
1.
Hale Waihona Puke x 650 y 225
107t 37t
(t
Z
)
,先求
37
x
107
y
25
的一组特解。为此对
37,107
用辗转相除法。107
三、精选习题
1.求不定方程 23x 17 y 25 的整数解。
2.求所有的有理数 r ,使得方程 rx2 (r 1)x (r 1) 0 的所有解都是整数。
例 2.求出所有的正整数 n ,使得关于 x, y 的方程 1 1 1 恰有 2011 组满足 x y 的正整 xyn
综上所述,满足题意的正整数 (a, b, c) 为 (3,5,15), (2, 4,8)
竞赛数学(张同君陈传理)数论3(不定方程)

根据未知数的个数和方程的个数之间的关系,不定方程可分为一 元不定方程、二元不定方程等。
整数解与特解概念
整数解
满足不定方程的整数解称为该不 定方程的整数解。
特解
不定方程的一组特殊解,通常用 于求解其他解或证明解的存在性 。
线性不定方程性质
01
齐次线性不定方程
若线性不定方程的常数项为零,则称为齐次线性不定方程。齐次线性不
的解。
04
特殊类型不定方程处理方法
佩尔方程求解思路
佩尔方程形式
佩尔方程是一类形如x^2 - ny^2 = 1的不定方程, 其中n为正整数且不是完全平方数。
求解步骤
通过连分数、二次剩余等方法找到一组特解,然后 利用递推关系式求得所有解。
注意事项
在求解过程中需要注意n的取值范围以及特解的选择 ,避免陷入死循环或者得到无效解。
况下,可以通过消元法、代入法等方法求解。
02
线性不定方程求解方法
逐步满足法原理及步骤
原理:通过逐步满足方程中的条件,使问题不 断简化,最终得到方程的解。
01
观察方程特点,确定一个未知数的取值范 围;
03
02
步骤
04
在该范围内逐一尝试满足方程的整数解;
若找到一组解,则验证其正确性;
05
06
若无法找到解,则调整取值范围或尝试其 他方法。
其他特殊类型问题探讨
其他特殊类型问题
除了佩尔方程和高次幂和型不定方程外,还有一些其他特殊类型的不定方程问题,如费马 大定理相关的不定方程、涉及三角函数的不定方程等。
处理方法
针对不同类型的特殊问题,需要采用不同的处理方法。例如,费马大定理相关的不定方程 可以通过代数数论的方法进行研究;涉及三角函数的不定方程可以通过三角恒等式进行化 简和求解。
初等数论不定方程的解法

初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。
在初等数论中,不定方程是一个非常重要的研究对象。
不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。
本文将介绍不定方程的一般解法,并通过具体例子进行演示。
首先,我们来介绍一下一元一次不定方程的解法。
一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。
解决这个方程的关键是找到一组x、y的取值,使得方程成立。
我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。
我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。
我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。
2.如果方程有解,我们需要求出一个特解。
我们可以使用扩展欧几里得算法来求解特解。
扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。
我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。
3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。
这样,我们就可以通过改变k的值来得到方程的所有整数解。
接下来,我们来介绍一下二次不定方程的解法。
二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。
对于二次不定方程,我们可以通过一些特殊的方法来求解。
下面介绍两种常用的方法:1.利用配方法。
如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。
竞赛讲座 不定方程

竞不定方程不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.(1) 不定方程解的判定如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.例1 证明方程2x2-5y2=7无整数解.证明∵2x2=5y2+7,显然y为奇数.①若x为偶数,则∴∵方程两边对同一整数8的余数不等,∴x不能为偶数.②若x为奇数,则但5y2+7∴x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例2 (第14届美国数学邀请赛题)证明方程无整数解证明如果有整数x,y使方程①成立,则=知(2x+3y2)+5能被17整除.设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立.例3 (第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是(). (A)0 (B)1(C)2(D)无限个(E)上述结论都不对解由x2+y2=x3得y2=x2(x-1),所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x,y)有无限多个,应选(D).说明:可用写出方程的一组通解的方法,判定方程有无数个解.(2) 不定方程的解法不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.例4 求方程的整数解.解(配方法)原方程配方得(x-2y)2+y2=132.在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于132即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解解得例5 (原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.证明(因式分解法)∵a2+b2=c2,∴a2=(c-b)(c+b),又∵a为素数,∴c-b=1,且c+b=a2.于是得c=b+1及a2=b+c=2b+1<3b,即<.而a≥3,∴≤1,∴<1.∴a<b.例6(第35届美国中学数学竞赛题)满足联立方程的正整数(a,b,c)的组数是(A)0 (B)1 (C)2 (D)3 (E)4解(质因数分解法)由方程ac+bc=23得(a+b)c=23=1×23.∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2,1)和(1,22,1),应选(C).例7求不定方程2(x+y)=xy+7的整数解.解由(y-2)x=2y-7,得分离整数部分得由x为整数知y-2是3的因数,∴y-2=±1,±3,∴x=3,5,±1.∴方程整数解为例8 求方程x+y=x2-xy+y2的整数解.解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≥0,解得≤y≤.满足这个不等式的整数只有y=0,1,2.当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.所以方程有整数解最后我们来看两个分式和根式不定方程的例子.例9 求满足方程且使y是最大的正整数解(x,y).解将原方程变形得由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,12-x=1,x=11,这时y=132.故满足题设的方程的正整数解为(x,y)=(11,132).例9(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().(A)0 (B)1 (C)3 (D)4 (E)7解法1 根据题意知,0<x<1984,由得当且仅当1984x是完全平方数时,y是整数.而1984=26·31,故当且仅当x具有31t2形式时,1984x 是完全平方数.∵x<1984,∵1≤t≤7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1116)和(279,775).当t>3时y≤x不合题意,因此不同的整数对的个数是3,故应选(C).解法2 ∵1984=∴由此可知:x必须具有31t2形式,y必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.练习1.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足.2.求的整数解.3.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.4.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.练习1.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z都不能是整数.2.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得3.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).4.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
数论选讲

解: 又
(m + n)m ≥ mm + nm ⇒ mn ≤ 1413 。
44 = 256,53 = 3125 > 1413 ⇒ m ≤ 4 。 显然 m 为奇数。 当 m = 1时,对任何正整数 n ,不可能有 (m + n)m = n +1 = nm +1413 = n +1413 。
当 m = 3 时,由 (3 + n)3 = n3 +1413 可得 n2 + 3n −154 = 0 ,即
(1)必有自然数 k ,使得 Ak+1 = Ak 。 (2) 若 A = 1986 ,问上述的 Ak 等于多少?并说明理
由。
证明:(1)n = 0 时,对任意 k ,有 Ak = A 。当 n = 1 时,显然 A ≥ f ( A) 。 当 n ≥ 2 时,
f ( A) = 2n a0 + 2n−1 a1 +" + 2an−1 + an ≤ (2n + " + 2 + 1) ⋅ 9 = (2n+1 −1) ⋅ 9 , A ≥ 10n an ≥ 10n = 10 ⋅10n−1 > 9 ⋅10n−1 > 9 ⋅ 23 ⋅10n−2 ≥ 9 ⋅ 23 ⋅ 2n−2 = 9 ⋅ 2n+1 > 9(2n+1 −1) ≥ f ( A)
一、基本知识
(一)整除与同余
1. 设 n 为正整数,则任意 n 个连续整数中有且仅有一个是 n 的倍数。 2. 若 p 为素数, n 为任意正整数,且 p a1 a2 "an ,则至少存在一个 ai ,使得 p ai 。
3. 若 ai ≡ bi (mod n),i = 1,2,", m ,则对任意的整数 ci (i = 1, 2,", m) ,均有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1.几类不定方程 (1)一次不定方程在不定方程和不定方程组中,最简单的不定方程是整系数方程)0,0(,0≠>=++b a c by ax 通常称之为二元一次不定方程.一次不定方程解的情况有如下定理.定理一:二元一次不定方程c b a c by ax ,,,=+为整数.有整数解的充分必要条件是c b a |),(. 定理二:若00,,1),(y x b a 且=为①之一解,则方程①全部解为at y y bt x x -=+=00,. (t 为整数)。
(2)沛尔)(pell 方程形如122=-dy x (*d N ∈,d 不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设),(11y x 为该方程的正整数解),(y x 中使d y x +最小的解,则其的全部正整数解由111111111[()()]2)()]n nn n n n x x x y x x ⎧=+-⎪⎪⎨⎪=-⎪⎩(1,2,3,n =)给出.①只要有解),(11y x ,就可以由通解公式给出方程的无穷多组解. ②n n y x ,满足的关系:1(nn x y x y +=+;11211222n n n nn n x x x x y x y y ----=-⎧⎨=-⎩ , (3)勾股方程222z y x =+这里只讨论勾股方程的正整数解,只需讨论满足1),(=y x 的解,此时易知z y x ,,实际上两两互素. 这种z y x ,,两两互素的正整数解),,(z y x 称为方程的本原解,也称为本原的勾股数。
容易看出y x ,一奇一偶,无妨设y 为偶数,下面的结果勾股方程的全部本原解通解公式。
定理三:方程222z y x =+满足1),(=y x ,2|y 的全部正整数解),,(z y x 可表为2222,2,b a z ab y b a x +==-=,其中,b a ,是满足b a b a ,,0>>一奇一偶,且1),(=b a 的任意整数.4.不定方程zt xy =这是个四元二次方程,此方程也有不少用处,其全部正整数解极易求出:设a z x =),(,则ad z ac x ==,,其中1),(=d c ,故1),(,,===d c dt cy adt acy 因即, 所以bc t bt y y d ==则设,,|. 因此方程zt xy =的正整数解可表示为d c b a bc t ad z bd y ac x ,,,.,,,====都是正整数,且1),(=d c .反过来,易知上述给出的t z y x ,,,都是解.也可采用如下便于记忆的推导: 设d c d c y t z x 这里,==是既约分数,即1),(=d c . 由于z x 约分后得出dc,故ad z ac x ==,,同理.,ab y cb t ==2.不定方程一般的求解方法1.奇偶分析法;2.特殊模法;3.不等式法;4.换元法; 5.因式分解法6.构造法(构造出符合要求的特解或一个求解的递推关系,证明解无数个) 7.无穷递降法由于不定方程的种类和形式的多样性,其解法也是多种的,上面仅是常用的一般方法. 注:对无穷递降法的理解:以下面的问题为例: 证明:方程442x y z +=无正整数解。
证明:假设442x y z +=存在正整数解,其中z 最小的解记为0z 。
因为()()22222xy z +=,根据勾股方程的通解公式有2222220,2,x a b y ab z a b =-==+,其中,a b 一奇一偶,(),1a b =。
从222x a b =-可以得到a 为奇数,b 为偶数,令2b s =,224y ab as ==,其中(),1a s =,所以22,,(,)1a t s q t q ===。
由222x a b =-得2444x t q =-,即2444x q t +=,又可以通过勾股方程的通解公式222222,22,,(,)1x l m q lm t l m l m =-==+=,注意到2q lm =,所以2200,l l m m ==,24400t l m =+,而420z t b t =+>,与0z 的最小性矛盾。
所以原方程组无正整数解。
赛题精讲例1.(1)求不定方程3710725x y +=的所有解; (2)求不定方程719213x y +=的所有解。
解析:(1)可以由辗转相除法得到,其实根据该方法可以得到必存在整数,s t ,使得371071s t +=。
如10723733,371334,3481=⨯+=⨯+=⨯+,依次反代即可得到一个特解。
(2)213197y x -=,可以取353027yx y -=-+,此时可以得到2y =。
从而得到一个特解。
注:这个两个方法是基本方法。
例2.求所有满足方程81517xyz+=的正整数解解析:首先从同余的角度可以发现y 必须为偶数,81517xyz+=,又15y的个位数必须为5,而8x的个位数为2,4,或6,17z的个位数为3,9,1,所以0,2(mod 4)x ≡,对应的0,2(mod 4)z ≡。
这样可以令2y k=,2z l=,可以得到2281715(1715)(1715)x l k l k l k =-=-+,注意到17,15l k 均为奇数,两个的和和差必定是一个单偶,一个双偶,从而311715217152l k l k x -⎧-=⎪⎨+=⎪⎩,目标集中于17152l k-=,观察有解()(),1,1l k =。
当2k ≥时,两边取模17可以得到()(1)2mod9k-≡矛盾。
所以仅有解()2,2,2例3.a 为给定的一个整数,当a 为何值时,方程31(1)y a xy +=-有正整数解?有正整数解时,求这个不定方程。
解:31(1)y a xy +=-可以变形为333331(1)x y y x y a xy -+++=-,这样()333(1)|xy y x y -+,一个明确的事实()31,1xy y -=,从而()3(1)|1xy x -+。
这样我们得到()33(1)|1(1)|1(*)xy x xy y -+⇔-+。
不妨假设,y x y x =>两种情况。
(1)y x =3322111(1)11y y a y a y y y ++=-⇔==+--,从这个代数式发现,2y =,对1y =单独讨论,有2(1)a x =-,1,3;2,2a x a x ====,这种情况共有解:()()1,3,1;22,1a a =⇔=⇔;()32,2a =⇔,注意到*式的等价性,又有解 ()()14,1,3;91,2a a =⇔=⇔(2)x y >将等式转化为不等式321111y a y y y +<=+--,从同余的角度看有1,1a ky k =-≥,所以3211111y ky y y y +-<=+--,若1k =,则232121(1)(1)1111y y y xy y xy x x y y y ++=--⇔=--⇔==++--,只能是2,5,1;3,5,2y x a y x a ======。
注意到*式的等价性,又有解5,2,14;5,3,9y x a y x a ======综上,可以有1,2,3,9,14a =,对应的解分别为()()()()()()()()()3,15,22,11,23,52,21,35,32,5共9组解。
例4.证明:不定方程254x y =-无整数解解析:254x y =-给我们的第一个印象是,x y 同为奇数或同为偶数。
若同为偶数,则254324k l =-也就是2518k l +=,进一步有k 为奇数,因为奇数的平方模8余1,矛盾。
若同为奇数,则需进一步讨论,关键是取模为多少比较好讨论。
结合费马小定理如(,11)1y =,则5110(mod11)y or =,从而54678(mod11)y or or -≡,但是20,1,3,4,5,9(mod11)x ≡。
比较两者我们就可以到相应的结论例5.求证:2222265x y z u v xyzuv ++++=-存在无数组解且每个解都大于2009。
证明:观察有特解()1,2,3,4,5。
从原方程可以得到22222()()12yzuv x y z u v yzuv x yzv -++++=--。
这说明从一组解可以得到另一组解(),,,,yzuv x y z u v -。
由于方程结构的对称性,不妨假设0x y z u v <<<<<,则y z u v yzuv x <<<<-,主要是证明v x yzuv +<,这是因为v x vx yzuv +<<。
不断依次类推就可得到结论。
例6.(普特南竞赛题)求方程||1rsp q -=的整数解,其中q p ,是质数,s r ,是大于1的正整数,并证明你所得到的解是全部解.解析:容易看到两个质数中肯定有一个为2,不妨假设2p =,|2|1r s q -=,即21r sq -=±。
若21r s q =+,从余数去讨论,3(mod 4)q ≡,s 为奇数。
1221(1)(1)rss s q q qq--=+=+-++,所以12121212rr s s q q q --⎧+=⎪⎨-++=⎪⎩,()1111(1)2211222sr sr s r r r s s-=-+=-++,提取公因数,有()1111(1)(2)2211222sr r s r s r r s s --⎡⎤=-+=-++⎣⎦,从奇偶性可以看出这种情形方程无解。
21r s q =-为偶数,注意到1221(1)(1)r s s s q q q q --=-=-+++。
12121212r r s s q q q --⎧-=⎪⎨+++=⎪⎩,()11111(1)21221122(1)22sr sr s r r r rs s s s --=+-=+++-+,令2u s v =,()11111(1)21221122(1)22sr sr s r r u r r u s v s v --++=+-=+++-+,观察最后两项,只能11r =, 3q =, 2s =,从而3r =综上,考察到对称性,原方程恰有两组解: 3,2,2,3,2,3,3. 2.p p q q or r r s s ==⎧⎧⎪⎪==⎪⎪⎨⎨==⎪⎪⎪⎪==⎩⎩ 例8.(09湖北)求不定方程21533654321=+++++x x x x x x 的正整数解的组数. 解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.1,2,3≥≥≥z y x ,123215≤--=∴y x z ,21≤≤∴z .当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x .当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x . 所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x .又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为21x C -,方程y x x =+54)2,(≥∈x N y 的正整数解的组数为11C -y ,故由分步计数原理知,原不定方程的正整数解的组数为81693036C C C C C C C C 1124132312261129=+++=+++.例8.(09 巴尔干)求方程235x y z -=的正整数解。