高中数学竞赛培优专题辅导-复数
高中数学竞赛第十五章 复数【讲义】

第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
高中数学培优讲义 第十六讲 复数

第十六讲复数复数在高考中所占比例很小,一般只占一个选择题,并且大都比较简单。
但自主招生考试中却常见到它的身影。
复数是一个非常重要并且有用的概念,它拥有许多良好的性质。
利用它能帮助我们解决许多看似和复数无关的问题。
因此我们也花一讲的篇幅讨论它。
复数的表示:一般可表示为z=a+bi,其中a,b为实数。
z=a−bi叫做z的共轭,zz=z2另一种表示为,z=r cosθ+isinθ,其中r是非负实数,等于z的模,θ也为实数,称为z 的辐角。
这被称为复数的三角表示。
复数具有良好的几何意义。
首先它具有向量合成分解的运算。
因此复数也有类似向量的不等式:z1+z2≥|z1±z2|更重要的是复数能进行向量不好描述的变换:旋转。
利用复数乘法的法则,容易证明:对于z2=r2cosθ2+isinθ2和z1=r1(cosθ1+isinθ1)有z2z1=r2r1(cosθ2+θ1+isinθ1+θ2)成立。
从此式可以看出,z2乘以z1相当于把z2逆时针旋转θ1角,然后模长变为原来的z1倍。
如果只想要旋转一定的角度,只需乘上一个模长为1,辐角为旋转角的复数即可并且从此式出发还可以得到公式:若z=r(cosθ+isinθ),则z n=r n(cosnθ+isinnθ)利用上式我们可以得到方程z n=1的n个根,他们分别是z k=cos 2kπn+i sin2kπn,k=1,2,3,….,n这被称为n次单位根。
由因式分解我们知道z n−1=(z−1)(z n−1+z n−2+⋯+1)所以任意不等于1的单位根都能使z n−1+z n−2+⋯+1=0成立。
单位根许多场合有用,例如多项式的相关问题,以及一些三角恒等式的证明,甚至一些和正多边形有关的平面几何问题都可以利用单位根来处理。
例1(2006上海交通大学)已知z=1,z是复数,k是实数。
求z2+kz+1的最大值。
例2(2006复旦大学)设z1,z2为一对共轭复数,如果z1−z2=6且z1z22为实数,求z1例3 (2009复旦大学) 若z=r,r>1,则1z+z在复平面内对应点的轨迹是()A焦距为4的椭圆 B. 焦距为2的椭圆C焦距为r4的椭圆D焦距为r2的椭圆例4(2013北京大学)若复数x,y,z的模均为1,x+y+z≠0,则xy+yz+zxx+y+z的值为_______.例5设z是1的7次方根,z≠1,求z+z2+z4的值例6设n为正整数,1+x+x2n=a0+a1x+a2x2+⋯+a2n x2n,求a0+a3+a6+a9+⋯的值提示:可以利用3次单位根。
高中数学竞赛复数解法

高中数学竞赛复数解法
一、基本概念
1. 复数的定义:复数是一类有虚数单位i(i^2=-1)的数,由实数部分和虚数部分组成,可以写成a+bi(a、b为实数);
2. 共轭复数:如果z=a+bi(a、b为实数),则z的共轭复数为z*=a-bi;
3. 复数的模:复数z=a+bi的模为|z|=√(a^2+b^2);
4. 复数的幅角:复数z=a+bi的幅角为tanθ=b/a(a≠0);
二、运算技巧
1. 加减法:(a±bi)+(c±di)=(a+c)±(b+d)i;
2. 乘法:(a±bi)(c±di)=(ac-bd)±(ad+bc)i;
3. 除法:若z1=a+bi,z2=c+di(c≠0),则z1/z2=(ac+bd)/(c^2+d^2)±(bc-ad)/(c^2+d^2)i;
4. 幂次:幂次可以按照分解平方和公式(a+bi)^2=a^2-b^2+2abi 求解;
三、解题技巧
1. 计算复数的模和幅角:在求复数的模和幅角时,采用简单的数学计算手段可以节省大量的时间;
2. 按照运算法则:解决复数的问题,要按照复数的运算法则(加减乘除法),熟练掌握,灵活运用;
3. 变量代换:在复数问题中,往往可以将解变量代入原方程,做判断,简化计算量;
4. 提取公因数:在复数的运算过程中,可以通过提取公因数,简化计算量。
【高中数学竞赛专题大全】 竞赛专题12 复数(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】竞赛专题12 复数 (50题竞赛真题强化训练)一、填空题1.(2021·全国·高三竞赛)已知z 为复数,且关于x 的方程2484i 30x zx -++=有实数根,则z 的最小值为__________. 【答案】1 【解析】 【详解】解析: x 为实数根,若0x =,则4i 30+=,矛盾;故0x ≠,故2431i 82x z x x +=+,于是我们可以得1z ==≥,当且仅当x =1. 故答案为:1.2.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =+的模长相等,且12z z 为纯虚数,则a +b=_____.1 【解析】 【详解】由题设知121z z =,且1122z z z z =为纯虚数,故12z i z =±.因此1,2.b b ⎧-=-⎪=或1,2.b b ⎧-=-⎪=-解得a b ==或a b ==1a b +=.13.(2020·江苏·高三竞赛)已知复数z 满足1z =,则22413iz z z -+--的最大值为__________.【答案】3 【解析】 【详解】 解析:由题意可得222224(1)3(1)3i 13i 13i 13i 13iz z z z z z z z -+-+--===-+------,则()13i 13i z z -+=--表示复平面上点Z 到()1,3-的距离.如图所示,()1,3C -,由此可得13ZC ≤≤.故22413iz z z -+--的最大值为3.故答案为:3.4.(2018·山东·高三竞赛)若复数z 满足132i 22z z -+--=z 的最小值为______. 【答案】1 【解析】 【详解】设()1,0A ,()3,2B ,22AB =z 的轨迹为线段AB . 因此min z 为原点O 到A 的距离,即min 1z OA ==.5.(2019·甘肃·高三竞赛)在复平面内,复数123,,z z z 对应的点分别为123,,Z Z Z .若12122,0z z OZ OZ ==⋅=,1232z z z +-=,则3z 的取值范围是______.【答案】[]0,4【解析】 【详解】因为12120z z OZ OZ ==⋅=,所以12+2z z =,因为123+2z z z -=,所以12312332|+|+||||=|||2|z z z z z z z =-≥--, 从而332||22,0|| 4.z z -≤-≤≤≤6.(2018·福建·高三竞赛)设复数z 满足i 2z -=,则z z -的最大值为______.(i 为虚数单位,z 为复数z 的共轭复数) 【答案】6 【解析】 【详解】设()i ,z x y x y R =+∈,则i z x y =-,()()i i 2i z z x y x y y -=+--=,2z z y -=, 由i 2z -=,知()i i 2x y +-=,()2214x y +-=.所以()214y -≤,13y -≤≤.所以26z z y -=≤.当且仅当3y =,即3i z =时,等号成立.故z z -的最大值为6.7.(2018·全国·高三竞赛)已知定义在复数集上的函数()()24f z i z pz q =+++(p 、q 为复数).若()1f 与()f i 均为实数,则p q +的最小值为__________.【解析】 【详解】设p a bi =+,()q c di a b c d R =+∈、、、.由()()()141f a c b d i =+++++,()()()41f i b c a d i =--++-++为实数 知1a d =-,1b d =--.则p q +==故当0c d ==(即1a =,1b =-)时,p q +8.(2021·全国·高三竞赛)设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为1220,,,z z z ,则复数1995199519951220,,,z z z 所对应的不同的点的个数是_______________.【答案】4 【解析】 【详解】 因为()39919955z z =,故考虑1250525,,,z z z 的不同个数.由201k z =,则()()()()2055550111k k k k k z z z z i z i =-=-+-+,可知5k z 只有4个取值,而()3155k k z z =的取值不会增加,故应为4个不同的点的个数. 故答案为:4.9.(2021·全国·高三竞赛)设1()1iz F z iz +=-,其中i 为虚数单位,z C ∈.设011,(),3n n z i z F z n N +=+=∈,则2020z 的实部为___________.【答案】137【解析】 【详解】i 1i ()i 1i z z F z z z +-==-+,故()()()ii 1i 1i1i ()i i 1i 1i 1i iz z z z F F z z z z z ---+-++===-+---++,故()()1ii 1()1i i 1z z F F F z z z z +--==++-, 故()()2020002191i i316i 1i i 31z F z F z +-====+++,从而实部为137.故答案为:137. 10.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.【答案】2 【解析】 【详解】解析:1231231213112312312313123111124t z z z z z z z z z z z z z z z z z z z z z z z z z z z z ⎛⎫++ ⎪++++⎝⎭==⋅⋅=++++++.故答案为:2.11.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.【答案】203 【解析】 【分析】 【详解】如图所示,设12,z z 在复平面内对应的点分别为12,Z Z ,由已知得12123,OZ OZ Z Z ==-=由余弦定理得向量12,OZ OZ 所成的角为2π3, 不妨设()12223cos sin ,3cos sin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=+=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()12223cos sin ,3cos sin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=-+-=--+-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 12229cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1222 9cos sin 33z z i ππ⎛⎫=+ ⎪⎝⎭, ()10201220203cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1020122020 3cos sin33z z i ππ⎛⎫=+ ⎪⎝⎭, ()()1010202020121220232cos32cos 333z z z z ππ+=⨯⨯=⨯⨯=, ()()10102012123z z z z +=.故答案为:203.12.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1i i z z ---为实数,则复数z =______. 315i +或315i . 【解析】 【分析】 【详解】 由1i 11i (1)i z z x y --=--+-,所以1y =,则315x =所以315i z =或315i z =. 故答案为:315i z =+或315i z =+. 13.(2021·全国·高三竞赛)已知1,1z z z∈+=C ,则z 的取值范围为___________. 5151z -+≤≤【解析】 【分析】 【详解】 设()i z rer θ+=∈R ,则:221sin cos 1cos sin i z r ir z r r θθθθ=+=+-+222211cos sin r r r r θθ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭2212cos2r r θ=++. 故22112cos23r r θ+=-≤2r ≤≤r ≤≤.故答案为:⎣⎦. 14.(2021·全国·高三竞赛)已知复数z =(i 虚数单位),则()22222212121212111z z z zz z ⎛⎫+++⋅+++= ⎪⎝⎭______________. 【答案】36 【解析】 【分析】 【详解】由已知||1,||1,k kz z z k +===∈N ,故1k k z z=,再结合1212z z z z +=+,及2||zz z =,知所求式子为22221212z z z+++.又4i z e π==,是8次单位根.当1,3,5,7(mod8)k ≡时,21(mod8)k ≡. 当2,6(mod8)k ≡时,24(mod8)k ≡. 当4,8(mod8)k ≡时,28(mod8)k ≡, 所以222221212482633|6|36z z z z z z z +++=++==.故答案为:36.15.(2021·全国·高三竞赛)已知复数a 、b 、c 满足2222221,1,i,a ab b b bc c c ca a ⎧++=⎪++=-⎨⎪++=⎩则ab bc ca ++=_________. 【答案】i 【解析】 【分析】 【详解】由题意有333333,,i()a b a b b c c b c a c a -=--=--=-,三式相加有1i 1i 22b c a ++=+,代入第一个式中有2233ii i 1222a ac c +⎛⎫-++= ⎪⎝⎭, 与22i a ac c ++=联立,即有a 、c 均不为0且1(1i)c a a=--, 故有42i(1i)i 0a a --+=,所以21a =或i . 当1a =时,有i,0c b ==,此时原式为i . 当1a =-时,有i,0c b =-=,此时原式为i .当2i a =时,有2i 0c c +=,又0c ≠,所以21(1i)ii a c a a---=-==,得1a =,矛盾.综上所述,原式仅有i 一个值. 故答案为:i.16.(2021·全国·高三竞赛)若复数1234z z z z 、、、满足条件12233441241,1,z z z z z z z z z z +=+=-+∈R ,则()()1324z z z z -+=______.【答案】0 【解析】 【分析】 【详解】对34411z z z z +=-取共轭,34411z z z z +=-. 再与12231z z z z +=相加,并结合24z z +∈R 得: ()()()()32412413240z z z z z z z z zz =+++=++.若240z z +=,则所求式为0.否则,130z z +=.则13z z =-,从而13z z =-.代入条件二,得()3441z z z -=-. 即3444112i Im z z z z ==⋅-. 故3z 是纯虚数,有13130z z z z -=+=. 从而,所求式也为0. 故答案为:0.17.(2021·全国·高三竞赛)若复数z 满足20202019143340z iz iz ------=,则34(34)i i zz -⎛⎫++ ⎪⎝⎭的取值范围为________. 【答案】[]10,10- 【解析】 【分析】 【详解】2020201912020143i 3i 40(43i )43i z z z z z z --------=⇔-=+()2020143i 43i z z z -⇔-=+2019(43i)z z =+. 设(,)z a bi a b R =+∈,则:2222|43||43||(43)3||4(43)|iz z i b ai a b i --+=+--++2222(43)916(43)b a a b =++--+()()2227171||a b z =--=-.若||1z >,则22|43i ||43i ||43i ||43i |0z z z z ->+⇒--+>,而()271||0z -<矛盾.同理||1z <,亦不可能,所以1z =.设cos isin ,34i 5(cos isin )z ααββ=++=+,则:34i 34i (34i)(34i)z z z z -+⎛⎫++=++ ⎪⎝⎭5[cos()isin()]5cos()isin()βαβαβαβα=+++++++10cos()βα=+,所求取值范围是[]10,10-. 故答案为:[]10,10-.18.(2021·全国·高三竞赛)若非零复数x 、y 满足220x xy y ++=,则20052005()()x y x y x y+++的值是________. 【答案】1 【解析】 【分析】 【详解】2()10x xy y ++=得12x y ω==-或12x y ω==-. (1)当12x y ω==-时, 原式20052005200520051111()()()()11111y x x y ωω=+=+++++20052005200520051111()()()ωωωω=-+=-+-11()()1ωωωω=-+=-+=.(2)当12x y ω==-时,同理可得原式1=. 故答案为:1.19.(2020·全国·高三竞赛)设z 为复数.若2z z i--为实数(i 为虚数单位),则|3|z +的最小值为______.【解析】 【分析】设(,)z a bi a b =+∈R ,由已知条件计算出a b 、的数量关系,然后运用不等式求解出结果; 【详解】设(,)z a bi a b =+∈R ,由条件知22222(2)i (2)(1)22Im Im 0i (1)i (1)(1)z a b a b ab a b z a b a b a b ⎛⎫--+---++-⎛⎫==== ⎪ ⎪-+-+-+-⎝⎭⎝⎭, 故22a b +=.从而3||(3)2|5z a b +=≥++=,即|3|z +≥.当2,2a b =-=时,|3|z +【点睛】关键点点睛:解答本题的关键是紧扣已知条件,计算出满足条件的数量关系,继而可以求出结果.20.(2019·浙江·高三竞赛)设12,z z 为复数,且满足1125,2z z i z ==+(其中i 为虚数单位),则12z z -取值为____________.【解析】 【详解】由15z =,设15(cos isin )z αα=+,由122i z z =+得2(2i)(cos isin )z αα=-+,于是,12|(3)(cos isin )|z z i αα-=++21.(2019·贵州·高三竞赛)已知方程5250x x -+=的五个根分别为12345,,,,x x x x x ,f (x )=x 2+1,则()51k k f x ==∏____________ .【答案】37 【解析】 【详解】设52()5g x x x =-+,则()51()k k g x x x ==-∏.又f (x )=x 2+1=(x -i )(x +i ),所以()()()555111i i kkk k k k f x xx ====-⋅+∏∏∏()()g i g i =⋅-()5252i i 5(i)(i)5⎡⎤=-+⋅---+⎣⎦(6)(6)37i i =+-=.故答案为:37.22.(2019·四川·高三竞赛)满足(a +bi )6=a -bi (其中a ,b ∈R ,i 2=-1)的有序数组(a ,b )的组数是_____ . 【答案】8 【解析】 【详解】令z =a +bi ,则6z z =,从而6||||||z z z ==.于是||0z =或者||1z =.当||0z =时,z =0,即a =b =0,显然(0,0)符合条件; 当||1z =时,由6z z =知72||1z z z z =⋅==,注意到z 7=1有7个复数解.即有7个有序实数对(a ,b )符合条件. 综上可知,符合条件的有序实数对(a ,b )的对数是8. 故答案为:8.23.(2019·福建·高三竞赛)已知复数()1212,,z z z z z ≠满足22122z z ==--,且124z z z z -=-=,则||z =____________ .【答案】【解析】 【详解】先求复数2--的平方根.设2()2(,)x yi x y +=--∈,则()222i 2x y xy -+=--.故有2222x y xy ⎧-=-⎪⎨=-⎪⎩,解得111x y =⎧⎪⎨=⎪⎩221x y =-⎧⎪⎨=⎪⎩.由2212122z z z z ==--≠,知12,z z为复数2--的两个平方根.由对称性,不妨设1211z z ==-.于是,1212124,4z z z z z z z z -=-=-=-=,复数12,,z z z 对应的点12,,Z Z Z 构成边长为4的正三角形.又复数12,z z 对应的点12,Z Z 关于原点O 对称,所以OZ 为△ZZ 1Z 2的高,故||||z OZ ==故答案为:24.(2019·山东·高三竞赛)已知虚数z 满足1w z z =+为实数,且112,1z w u z--<<=+,那么2u ω-的最小值是______ .【答案】1【解析】 【详解】设z =x +yi (x ,y ∈R ),易知221x y +=, 则222222(1)31(1)1y w u x x x x -=+=++-++, 当x =0时等号成立. 故答案为:1.25.(2019·重庆·高三竞赛)已知复数123,,z z z 使得12z z 为纯虚数,121z z ==,1231z z z ++=,则3z 的最小值是_______ .1 【解析】 【详解】设123z z z z =++,则||1z =,由已知11220z z z z ⎛⎫+= ⎪⎝⎭, 所以12210z z z z +=.所以()2121212()z z z z z z +=++11221212z z z z z z z z =+++2=.所以12z z +=. 所以312z z z z =+-12||z z z+-1.当1231,i,i)z z z ===+时,最小值能取到. 1.26.(2019·上海·高三竞赛)若复数z满足||4z z +=,则||zi +的最大值为________. 【解析】 【详解】由复数的几何意义知,z 在复平面上对应的曲线是椭圆:2214x y +=.设2cos isin ,02z θθθπ=+<,则222211616|i |4cos (sin 1)3sin 333z θθθ⎛⎫+=++=--+ ⎪⎝⎭,所以43||3z i +,当1sin 3θ=,即421i 33z =+时等号成立,故最大值为433. 故答案为:433. 27.(2019·江苏·高三竞赛)在复平面中,复数3-i 、2-2i 、1+5i 分别对应点A 、B 、C ,则△ABC 的面积是________ .【答案】4 【解析】 【详解】如图所示,△ABC 的面积为:ABC CDEF ABE BFC ADC S S S S S =---△△△△,即△ABC 的面积是17276422⨯---=.故答案为:4.28.(2018·河南·高三竞赛)已知i 为虚数单位,则在)103i的展开式中,所有奇数项的和是______. 【答案】512 【解析】 【详解】 易知)103i的展开式中,所有奇数项的和是复数的实部.又)()()1010101013133i2i 2i 22⎡⎤⎛⎫⎛⎫=--=--⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()1310245123i 2⎛⎫=-⨯-=- ⎪ ⎪⎝⎭.故填512.29.(2018·全国·高三竞赛)设复数1sin 2z i α=+,()21cos z i R αα=+⋅∈.则2121213z iz f z iz -+=-的最小值为__________. 【答案】2 【解析】 【详解】令12z iz t -==,则t ⎡∈⎣且此时有()222212sin cos 310sin212z iz t ααα+=-+=-=-. 故2212121312z iz t f z iz t-++==≥-当1t =,即()4k k Z παπ=-∈时,f 的最小值为2.30.(2019·全国·高三竞赛)设方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅.则112255111x x x x x x ++⋅⋅⋅+=______. 【答案】850 【解析】 【详解】 设cossin1010i ππε=+.则101ε=-.由于方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅,不妨设其为1x 、2x 、3x 、4x 、5x 、1x 、2x 、3x 、4x 、5x .由()1010131x x -=-,知()211311,2,,5k k k x x k ε--==⋅⋅⋅.于是,21113k kx ε-=-. 故()()5212111122551111313k k k x x x x x x εε---=++⋅⋅⋅+=--∑ ()52121117013k k k εε---=⎡⎤=-+⎣⎦∑ ()52121185013850k k k εε---==-+=∑. 31.(2019·全国·高三竞赛)若n 为大于1的正整数,则2462coscos cos cos n n n n nππππ+++⋅⋅⋅+=______. 【答案】0 【解析】 【详解】2112cos Re 0k i nn n k k k e n ππ====∑∑. 32.(2018·全国·高三竞赛)已知复数123,,z z z 满足121,1z z ≤≤,()312122z z z z z -+≤-.则3z 的最大值是______.【解析】 【详解】注意到3122z z z -+ ()312122z z z z z ≤-+≤-.则312122z z z z z ≤++- ≤=.当()2113121,z i z z z z z =±⋅==+时,3z .33.(2019·全国·高三竞赛)在复平面上,复数1z 对应的点在联结1和i 两点的线段上运动,复数2z 对应的点在以原点为圆心、1为半径的圆上运动.则复数12z z +对应的点所在区域的面积为______.【答案】π 【解析】 【详解】设()11z t i t =+-(01t ≤≤),2cos sin z i θθ=+. 则()12cos 1sin z z x yi t i t θθ+=+=++-+.故()()2211x t y t ⎡⎤-+--=⎣⎦为圆心在1y x =-上的一组圆,该区域面积为π. 34.(2018·广西·高三竞赛)设a 、b 为正整数,且()()22b ia i i i-++=-.则a b +=______. 【答案】8. 【解析】 【详解】由题意得()()()()2222212212552455b b a a b a b a +-⎛⎫⎛⎫-++=+⇒+-= ⎪ ⎪⎝⎭⎝⎭. 又因为5b a +与5b a -为奇偶性相同的整数,所以,512,52b a b a +=⎧⎨-=⎩或56,5 4.b a b a +=⎧⎨-=⎩ 解得1a =,7b =. 故8a b +=.35.(2019·全国·高三竞赛)化简12arcsin 23=______.【答案】π4【解析】 【详解】令11z =,22i z =,则有()2121211arg arg arg 22z z z z +=()()1arg 42i 2⎡⎤=-+⎣⎦ ()13πarg 18i 24=-=.从而,122πarcsin13π3arg arg 224z z -+==,故12πarcsin 234=. 36.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_________种取值. 【答案】20112 【解析】 【详解】显然,对任意的非负整数n 均有1n z =.设[)()0,2n i n o z e θθπ=∈.则12122n n ni i n n i ee e πθθθπθθ+⎛⎫+ ⎪⎝⎭+-=⇒=+1022222n n n πππθθθ+⎛⎫⎛⎫⇒+=+=⋅⋅⋅=+ ⎪ ⎪⎝⎭⎝⎭. 由20111z =,得()20112k k Z θπ=∈,即201102222k ππθπ⎛⎫+=+ ⎪⎝⎭. 由[)00,2θπ∈,得2010201022252k ππππ≤+<⨯20112011200920092152125244k k -⨯-⇒≤<⇒≤<⨯.因此,满足条件的n z 共有2009200920115222⨯-=(个). 故答案为2011237.(2019·全国·高三竞赛)设复数123,2)z i z i z i θθ=-=++.则12z z z z -+-的最小值是________.【答案】2+ 【解析】 【详解】()1212122z z z z z z z z z z -+-≥---=-=+ 其等号成立的条件是()()12arg z z arg z z -=-,=2sin θθ=,即()601,150sin θθ-︒==︒.因此12z z z z -+-的最小值是2+38.(2021·全国·高三竞赛)若e 为自然对数的底,则满足11z z e z -=+,且100z <的复数z 的个数为________. 【答案】32 【解析】 【分析】 【详解】记i 为虚数单位.设z 是一个满足题意的复数,且i(,)z x y x y =+∈R 首先,容易直接验证0,1,1z ≠-.由ii ·z x y x y x e ee e e +===,知1||||1z x z e e z -==+. 若0x <,则1||11x z e z -=<+. 但22|1||1|(1)(1)(1)(1)2()40z z z z z z z z x --+=---++=-+=->,则1||11z z ->+,矛盾. 若0x >,则1||11x z e z -=>+. 但22|1||1|(1)(1)(1)(1)2()40z z z z z z z z x --+=---++=-+=-<, 则1||11z z -<+,矛盾. 故只能有0x =,于是,()i 0z y y =≠.注意到z 满足题意当且仅当z -满足题意,故不妨设0y >,下求满足i1i1iy y e y -+=+的正实数y的个数.由以上讨论,知iy e 与1i1iy y -++在复平面中所对应的点都在单位圆上,故y 应使两者的辐角主值相等.当y 从0连续递增变动到+∞时,1i y -+的辐角主值从π连续递减变到(),1i 2y π++的辐角主值从0连续递增变到()2π-故1i1i y y -++的辐角主值从π连续递减变到0+另一方面,对于n N ∈,考察i y e 在())2,22y n n ππ∈+⎡⎣时的变化情况.当y 从2n π连续递增变动到()21n π+时,i y e 的辐角主值从0连续递增变到π;当y 从()()21n π++连续递增变动到()()22n π-+时,i y e 的辐角主值从π+连续递增变到()2π-.由以上分析,知对每个i1i,1iy y n N e y -+=+∈在()2,21n n ππ+⎡⎤⎣⎦上恰有一个解,在()()()21,22n n ππ++上无解.那么,注意到0100y <<,且3110032ππ<<.故i1i,1iy y n N e y -+=+∈在()0,100上有16个解,故答案为32. 故答案为:32.39.(2019·上海·高三竞赛)设a 是实数,关于z 的方程(z 2-2z +5)(z 2+2az +1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a 的取值范围是________. 【答案】{a |-1<a <1}∪{-3} 【解析】 【详解】由z 2-2z +5=0,得1212i,12i z z =+=-.因为z 2+2az +1=0有两个不同的根,所以△=4(a 2-1)≠0,故a ≠±1.若△=4(a 2-1)<0,即-1<a <1时,3,4z a =-因为1234,,,z z z z 在复平面上对应的点构成等腰梯形或者矩形,此时四点共圆,所以,11a -<<满足条件.若△=4(a 2-1)>0,即|a |>1时, 3.4z a =-当z 1、z 2对应的点在以34,z z 对应的点为直径的圆周上时,四点共圆,此圆方程为22343422z z z z x y +-⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 整理得()2234340x z z x z z y -+++=,即x 2+2ax +1+y 2=0,将点(1,±2)代入得a =-3. 综上所述,满足条件的实数a 的取值范围是{a |-1<a <1}∪{-3}. 故答案为:{a |-1<a <1}∪{-3}. 二、解答题40.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.【答案】答案见解析 【解析】 【详解】因为2132z z z =,所以:()()2(1)cos isin sin icos a i θθθθ-+=+,整理得:()()22cos sin sin cos i sin cos 2isin cos a a θθθθθθθθ++-=-+,所以(cos sin )(cos sin )(sin cos ),(sin cos )2sin cos .a a θθθθθθθθθθ+=+-⎧⎨-=⎩(1)3cos sin 04πθθθ+=⇒=或74π,34πθ=时,代入得2a =-74πθ=时,代入得a = (2)若cos sin 0θθ+≠,则有:22(sin cos )2sin cos tan 4tan 10θθθθθθ-=⇒-+=,故tan 2θ=θ的值为12π或512π或1312π或1712π,对于的a 分别为、 故所有的(,)a θ为:53131771212412124ππππππ⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.41.(2021·全国·高三竞赛)设点Z 是单位圆221x y +=上的动点,复数W 是复数Z 的函数:21(1)W Z =+,试求点W 的轨迹.【答案】214y x =-+. 【解析】 【分析】 【详解】因为1Z =,所以设cos isin ,12cos cos isin 222Z Z θθθθθ⎛⎫=++=+ ⎪⎝⎭.令i W x y =+,则:22211i (1)4coscos isin 222x y Z θθθ+==+⎛⎫+ ⎪⎝⎭2211(cos isin )4cos(cos isin )4cos22θθθθθθ==-+.所以2cos 4cos2x θθ=①,2sin 4cos2y θθ=-②.②÷①得tan yxθ=-③. 由②得22sin cos122tan 224cos 2y θθθθ=-=-. 所以tan22y θ=-,代入③得222tan42141tan 2y y x y θθ--==--. 所以轨迹方程为:214y x =-+. 42.(2021·全国·高三竞赛)已知z C ∈,存在唯一的a ∈C ,使得322(2)(13)0z a z a z a a +-+-+-=,求2420201z z z ++++.【答案】0 【解析】 【分析】 【详解】由322(2)(13)0z a z a z a a +-+-+-=,得()22323120a a z z z z z -+++++=,得()()22231210a a z z z z z -+++++=.所以()2()210a z a z z ⎡⎤--++=⎣⎦.由a 的值唯一,故221z z z =++,即210z z ++=,所以()2(1)10z z z -++=,即31z =,所以 ()()2420202462016111z z z z z z z ++++=+++++()()26201611z z z z =+++++0=.43.(2021·全国·高三竞赛)求证:存在非零复数c 与实数d ,使得对于一切模长为1的复数12z z ⎛⎫≠- ⎪ ⎪⎝⎭均有221111c d z z z z --=++++ 【答案】证明见解析 【解析】 【分析】 【详解】对于满足1z =的复数z .设()cos sin 02z t i t t π=+≤<.则不难计算得21cos sin 12cos 1t i tz z t -=+++.设22cos 11Re Im 12s 1121in ,cos cos x y t tt t z z z z -====++++++,则,si cos n 1212x y t t x x-==--. 由22cos sin 1t t +=,得2211212x y x x -⎛⎫⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,即2229313x y ⎛⎫--= ⎪⎝⎭ ①①即211z z ++在复平面中对应的点的轨迹方程.可以看到,此轨迹是双曲线,其焦点为4(0,0),,03⎛⎫⎪⎝⎭.由双曲线的定义,知取42,33c d ==满足题意.44.(2021·全国·高三竞赛)若关于z 的整系数方程320z pz qz r +++=的三个复数根在复平面内恰好成为一个等腰直角三角形的三个顶点,求这个等腰直角三角形的面积的最小值.【答案】1 【解析】 【分析】 【详解】设该等腰直角三角形斜边中点对应的复数为1z ,直角顶点对应的复数为()1220z z z +≠, 则另外两个顶点对应的复数分别为12z z i +和12z z i -,依题意有: 32121212()()()z pz qz r z z z z z z i z z z i +++=-----+,化简得223223111221112223,32,z x z p z z z z q z z z z z z r +=-++=+++=-,所以3222221223,489z z q p Z z z pq r Z =-+=-∈∈.进而122z z Q +∈,与123z z p Z +=-∈联立就有2z Q ∈.再由22223x q p Z =-∈知2z Z ∈,于是21z ≥,所以等腰直角三角形的面积最小为1.另一方面,3210z x z +++=的三个复数根恰是面积为1的等腰直角三角形的顶点. 45.(2021·全国·高三竞赛)已知实数0,a b C >∈.若方程32310x ax bx +++=的三个复数根的正三角形,求a b 、的值.【答案】a =b =【解析】 【分析】 【详解】设方程三根为123z z z 、、,正三角形中心对应的复数为z ,则有1233z z z z a ++==-. 进一步可设2123,,z a z z a z z a z ωω''=-+=-+=-+.其中12ω=-是三次单位根.由Vieta 定理知:()()22223221223313113b z z z z z z a az z a ωωωωωωω''=++=-++++++++=. 因此方程是实系数三次方程,必有实根,不妨设1z ∈R . 由1z a a +=且0不是方程的根知12z a =-.进一步地,2,31i 2z a =-.由312321z z z a =-=-得a =进一步地,23b a ==46.(2019·全国·高三竞赛)123z z z 、、为多项式()3P z z az b =++的三个根,满足222123250z z z ++=,且复平面上的三点123z z z 、、恰构成一个直角三角形.求该直角三形的斜边的长度.【答案】【解析】 【详解】由韦达定理得123123003z z z z z z ++++=⇒= ⇒以123z z z 、、两为顶点的三角形的重心为原点.不妨设1213,z z x z z y -=-=为两条直角边.由于顶点与重心的距离等于该顶点所对应的中线长的23,2222214419499y z x x y ⎛⎫=+=+ ⎪⎝⎭故. 类似地,2222224149499x z y x y ⎛⎫=+=+ ⎪⎝⎭. 22222341194499x y z x y ⎛⎫=+=+ ⎪⎝⎭. 则222123z z z ++=222266222509933x y x y +=+==47.(2019·全国·高三竞赛)设a 、b 、c 是正实数,22λ-<<.证明:()()()2221a b c ab bc ca λ≥+++-++.【答案】见解析 【解析】 【详解】注意到,()()22222244a ab b a b a b λλλ-+-+=++-.于是,可构造复数))1z a b a b i =++-,))2z b c b c i =+-,))3z c a c a i =+-. 易得()()()2221223311z z z z z z a b c ab bc ca λ++=+++-++.故要证不等式的左边122331122331122331z z z z z z z z z z z z z z z z z z =++=++≥++ ()()()()()()22222211a b c ab bc ca a b c ab bc ca λλ=+++-++≥+++-++.48.(2021·全国·高三竞赛)设122020,,,z z z 和122020,,,w w w 为两组复数,满足:202020202211i i i i z w ==>∑∑.求证:存在数组()122020,,,εεε(其中{1,1}i ε∈-),使得2020202011i ii ii i zwεε==>∑∑.【答案】证明见解析 【解析】 【分析】 【详解】 用()()1212,,,,,,nn f εεεεεε∑表示对所有数组()12,,,n εεε的求和,下面用数学归纳证明如下的等式:()12221122,,,12n nnn n ii z z z zεεεεεε=+++=∑∑ ①(1)当1n =时,①式显然成立; 当2n =时,()()()()()()222212121212121211221222z z z z z z z z z z z z z z z z z z ++-=+++--=+=+,即①式成立.(2)假设n k =时,①式成立,则1n k =+时,我们有()1212112211,,,k k k z z z εεεεεε+++⋅⋅⋅+++∑()()12221122111221,,,k k k k k k k z z z z z z z z εεεεεεεεε++⋅⋅⋅=++++++++-∑()()122211221,,2kk k k z z z z εεεεεε+⋅⋅⋅⋅=++++∑1221111222k k k k i n i i i z z z +++==⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∑∑,即1n k =+时①式成立. 由(1)(2)可得:()12221122,,,12,n nnn n i i z z z z n εεεεεε+⋅⋅⋅=+++=∈∑∑N .回到原题,由202020202211i ii i z w==>∑∑,可得2020202022202020201122iii i zw==>∑∑,即()()12202012202022112220202020112220202020,,,,,,z z z w w w εεεεεεεεεεεε⋅⋅⋅⋅⋅⋅+++>+++∑∑,所以存在数组()122020,,εεε(其中{1,1}i ε∈-,使得222020202011i ii ii i zwεε==>∑∑,即2020202011i ii ii i zwεε==>∑∑.49.(2019·全国·高三竞赛)设复数数列{zn }满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有122m z z z +++<【答案】证明见解析 【解析】 【分析】很明显,复数列恒不为零,且)1N n n z n z ++∈.据此结合递推关系分类讨论m 为偶数和m 为奇数两种情况即可证得题中的结论. 【详解】由于11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=,故()0n z n +≠∈N .由条件得()2114210n n n n z z n z z +++⎛⎫⎛⎫++=∈ ⎪ ⎪⎝⎭⎝⎭N ,解得)1N n n z n z ++=∈. 因此1112n n nn z z z z ++===,故()1111122n n n z z n +--=⋅=∈N ①进而有)111112n n n n n n z z z z n z +++-+=⋅+=∈N ② 当m 为偶数时,设m =2s (s ∈N +).利用②可得 122121smk k k z z z zz -=++++∑2121kk k z z ∞-=<+∑1k ∞==当m 为奇数时,设m =2s +1(s ∈N ).由①、②可知2121221112s k k s k s k s z z z ∞∞+-=+=+===+∑∑, 故12212211smk k s k z zz z z z -+=⎛⎫+++++ ⎪⎝⎭∑2121k kk z z ∞-=<+=∑. 综上结论获证. 【点睛】本题主要考查复数列的递推关系,复数的运算法则,放缩法证明不等式等知识,意在考查学生的转化能力和计算求解能力.50.(2021·全国·高三竞赛)设{}n a 、{}n x 是无穷复数数列,满足对任意正整数n ,关于x 的方程210n n x a x a +-+=的两个复根恰为n x 、1n x +(当两根相等时1n n x x +=).若数列{}n x 恒为常数,证明: (1)2n x ≤;(2)数列{}n a 恒为常数.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据题意和韦达定理可得()211n n n x x x ++=-,取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立,否则,由于数列{}n x 恒为常数,则11n x -=,即结论也成立;(2)由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨设为ε和ε,依据题意即可证明. 【详解】由题意和韦达定理得,111,.n n n n n n x x a x x a ++++=⎧⎨=⎩ 则1112n n n n n x x a x x ++++==+,即()21111n n n n n n x x x x x x ++++=-=-. ① (1)由①取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立; 否则,由于数列{}n x 恒为常数,则11n x -=,即有112n n x x ≤-+=.(2)由(1)知,对任意的,11n n x +∈-=N ,又数列{}n x 恒为常数,因此n x 只有互为共轭的两种取值ε和ε.若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈.若2n x ε+=,则220εε-=,即0ε=或2;若2n x ε+=,则2εεε=+∈R ,且|1|1ε-=.因此,要么ε∈R ,要么{}n x 呈ε、ε周期.故显然1n n n a x x +=+是常数,即证数列{}n a 恒为常数. 【点睛】 关键点点睛:本题主要考查数列不等式的证明,解题关键在于利用韦达定理得出()211n n n x x x ++=-,再取模,对0n x =这种特殊情形和一般情形11n x -=讨论即可证明结论成立;(2)本题主要考查常数列的证明,解题关键在于n x 的取值情况和1n n x x ε+==的假设,由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨记为ε和ε,若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈,对2n x +分类讨论即可证明.【高中数学竞赛专题大全】竞赛专题12 复数(50题竞赛真题强化训练)一、填空题 1.(2021·全国·高三竞赛)已知z 为复数,且关于x 的方程2484i 30x zx -++=有实数根,则z 的最小值为__________.2.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =+的模长相等,且12z z 为纯虚数,则a +b=_____.3.(2020·江苏·高三竞赛)已知复数z 满足1z =的最大值为__________.4.(2018·山东·高三竞赛)若复数z满足132i z z -+--=z 的最小值为______. 5.(2019·甘肃·高三竞赛)在复平面内,复数123,,z z z 对应的点分别为123,,Z Z Z.若12120z z OZ OZ ==⋅=,1232z z z +-=,则3z 的取值范围是______.6.(2018·福建·高三竞赛)设复数z 满足i 2z -=,则z z -的最大值为______.(i 为虚数单位,z 为复数z 的共轭复数)7.(2018·全国·高三竞赛)已知定义在复数集上的函数()()24f z i z pz q =+++(p 、q 为复数).若()1f 与()f i 均为实数,则p q +的最小值为__________.8.(2021·全国·高三竞赛)设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为1220,,,z z z ,则复数1995199519951220,,,z z z 所对应的不同的点的个数是_______________.9.(2021·全国·高三竞赛)设1()1iz F z iz +=-,其中i 为虚数单位,z C ∈.设011,(),3n n z i z F z n N +=+=∈,则2020z 的实部为___________.10.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.11.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.12.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1i i z z ---为实数,则复数z =______.13.(2021·全国·高三竞赛)已知1,1z z z∈+=C ,则z 的取值范围为___________. 14.(2021·全国·高三竞赛)已知复数z =(i 虚数单位),则()22222212121212111z z z zz z ⎛⎫+++⋅+++= ⎪⎝⎭______________. 15.(2021·全国·高三竞赛)已知复数a 、b 、c 满足2222221,1,i,a ab b b bc c c ca a ⎧++=⎪++=-⎨⎪++=⎩则ab bc ca ++=_________. 16.(2021·全国·高三竞赛)若复数1234z z z z 、、、满足条件12233441241,1,z z z z z z z z z z +=+=-+∈R ,则()()1324z z z z -+=______.17.(2021·全国·高三竞赛)若复数z 满足20202019143340z iz iz ------=,则34(34)i i zz -⎛⎫++ ⎪⎝⎭的取值范围为________.18.(2021·全国·高三竞赛)若非零复数x 、y 满足220x xy y ++=,则20052005()()x y x y x y+++的值是________.19.(2020·全国·高三竞赛)设z 为复数.若2z z i--为实数(i 为虚数单位),则|3|z +的最小值为______.20.(2019·浙江·高三竞赛)设12,z z 为复数,且满足1125,2z z i z ==+(其中i 为虚数单位),则12z z -取值为____________.21.(2019·贵州·高三竞赛)已知方程5250x x -+=的五个根分别为12345,,,,x x x x x ,f (x )=x 2+1,则()51k k f x ==∏____________ .22.(2019·四川·高三竞赛)满足(a +bi )6=a -bi (其中a ,b ∈R ,i 2=-1)的有序数组(a ,b )的组数是_____ .23.(2019·福建·高三竞赛)已知复数()1212,,z z z z z ≠满足22122z z ==--,且124z z z z -=-=,则||z =____________ .24.(2019·山东·高三竞赛)已知虚数z 满足1w z z =+为实数,且112,1z w u z--<<=+,那么2u ω-的最小值是______ .25.(2019·重庆·高三竞赛)已知复数123,,z z z 使得12z z 为纯虚数,121z z ==,1231z z z ++=,则3z 的最小值是_______ .26.(2019·上海·高三竞赛)若复数z 满足|3||3|4z z -++=,则||z i +的最大值为________. 27.(2019·江苏·高三竞赛)在复平面中,复数3-i 、2-2i 、1+5i 分别对应点A 、B 、C ,则△ABC 的面积是________ .28.(2018·河南·高三竞赛)已知i 为虚数单位,则在)103i的展开式中,所有奇数项的和是______.29.(2018·全国·高三竞赛)设复数1sin 2z i α=+,()21cos z i R αα=+⋅∈.则2121213z iz f z iz -+=-的最小值为__________.30.(2019·全国·高三竞赛)设方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅.则112255111x x x x x x ++⋅⋅⋅+=______. 31.(2019·全国·高三竞赛)若n 为大于1的正整数,则2462coscos cos cos n n n n nππππ+++⋅⋅⋅+=______. 32.(2018·全国·高三竞赛)已知复数123,,z z z 满足121,1z z ≤≤,()312122z z z z z -+≤-.则3z 的最大值是______.33.(2019·全国·高三竞赛)在复平面上,复数1z 对应的点在联结1和i 两点的线段上运动,复数2z 对应的点在以原点为圆心、1为半径的圆上运动.则复数12z z +对应的点所在区域的面积为______.34.(2018·广西·高三竞赛)设a 、b 为正整数,且()()22b ia i i i-++=-.则a b +=______. 35.(2019·全国·高三竞赛)化简12arcsin 23=______.36.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_________种取值.37.(2019·全国·高三竞赛)设复数123,2)z i z i z i θθ=-=++.则12z z z z -+-的最小值是________.38.(2021·全国·高三竞赛)若e 为自然对数的底,则满足11z z e z -=+,且100z <的复数z 的个数为________.39.(2019·上海·高三竞赛)设a 是实数,关于z 的方程(z 2-2z +5)(z 2+2az +1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a 的取值范围是________. 二、解答题40.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.41.(2021·全国·高三竞赛)设点Z 是单位圆221x y +=上的动点,复数W 是复数Z 的函数:21(1)W Z =+,试求点W 的轨迹.42.(2021·全国·高三竞赛)已知z C ∈,存在唯一的a ∈C ,使得322(2)(13)0z a z a z a a +-+-+-=,求2420201z z z ++++.43.(2021·全国·高三竞赛)求证:存在非零复数c 与实数d ,使得对于一切模长为1的复数12z z ⎛⎫≠- ⎪ ⎪⎝⎭均有221111c d z z z z --=++++ 44.(2021·全国·高三竞赛)若关于z 的整系数方程320z pz qz r +++=的三个复数根在复平面内恰好成为一个等腰直角三角形的三个顶点,求这个等腰直角三角形的面积的最小值. 45.(2021·全国·高三竞赛)已知实数0,a b C >∈.若方程32310x ax bx +++=的三个复数根的正三角形,求a b 、的值.46.(2019·全国·高三竞赛)123z z z 、、为多项式()3P z z az b =++的三个根,满足222123250z z z ++=,且复平面上的三点123z z z 、、恰构成一个直角三角形.求该直角三形的斜边的长度.。
高中数学竞赛专题竞赛中的复数问题

Z2,Z3,Z4
共圆的充要条件是:
z3 z4
z1 z1
:
z3 z4
z2 z2
∈R.
二、典型问题
1.复数概念
[例 1]:若对一切θ∈R,复数 z=(a+cosθ)+(2a-sinθ)i 的模不超过 2,则实数
a 的取值范围为 .
[解 析]:|z|≤2 (a+cosθ)2+(2a-sinθ)2≤4 2acosθ-4asinθ≤3-5a2 -2 5 asin(θ+φ) ≤3-5a2 2 5 |a|≤3
z1 z2
+ z2 z3
+
z3 z1
=cos(α-β)+
isin(α-β)+cos(β-γ)+isin(β-γ)+cos(γ-α)+isin(γ-α)=1 sin(α-β)+sin(β-γ)+si
n(γ-α)=0
2sin cos 2 -2sin cos =0 sin sin sin =0.
部是
.
解: = =2 (1 cos 2B i sin 2B)(1 cos 2C i sin 2C) 2 cos B(cos B i sin B) 2 cos C(cos C i sin C)
cos B cos C
1 cos 2A i sin 2A
2 cos A(cos A i sin A)
2
2
2
2
2
2
2
当
sin
2
=0
时,β=2kπ+α
高中数学竞赛专题讲座复数问题

=
9+4
2sin
4
,
由此知当sin
4
=1即
=
3 时,OC 4
max
9 4 2 1 2 2.
18
9.利用复数解决数列问题
=
z 2
cos2
+iz2
sin
2
z 2
cos2
iz2 sin2
=
z 2
cos2 +
z2
sin2 =
z 2
cos2 sin2
=
z 2
,
即 z1 2 z2 2 ,所以x2 y2 A2 B2 .
17
8.复平面上的几何问题 例8、B是圆心为O的单位半圆上一动点,A为半圆的直径的延长线上一 定点,且OA=2,ABC是以BC为斜边的等腰直角三角形,问B在何处时, O到C的距离最远?
13
5 j 1
1 rj
5 j 1
1 rj
5 169
5,
由于
-1=
1 r
10
-130
1 r
9
+
,
所以 1 是方程 x10 -130x9 + =-1的根,故 r
5
1
5
1 130,
5
从而
1 850.
r r j1 j
例7、已知A=x cos2 y sin2 ,B=x sin2 y cos2
(x,y,A,B R.), 求证 x2 +y2 A2 +B2.
江苏省丹阳高级中学高二数学竞赛培训讲义:复数(无答案)

复 数一、知识、方法、技能1.复数的四种表示形式代数形式:(,)z a bi a b R =+∈ 几何形式:复平面上的点(,)Z a b 或由原点出发的向量OZ uuu r三角形式:(cos sin ),0,z r i r R θθθ=+≥∈指数形式:i z re θ=(令cos sin i e i θθθ=+)2.复数的运算法则加、减法:()()()()a bi c di a c b d i +±+=±+±乘法:()()()()a bi c di ac bd bc ad i ++=-++111222121212(cos sin )(cos sin )[cos()sin()]r i r i r r i θθθθθθθθ+⋅+=+++ 除法:2222(0)a bi ac bd bc ad i c di c bi c d c d ++-=++≠+++111112122222(cos sin )[cos()sin()](cos sin )r i r i r i r θθθθθθθθ+=-+-+乘方:[(cos sin )](cos sin )()n nr i r n i n n N θθθθ+=+∈ 开方:复数(cos sin )r i θθ+的n 次方根是22sin )(0,1,,1)k k i k n n n θπθπ+++=-L 3.复数的模与共轭复数复数的模的性质:①|||Re()|z z ≥,||Im()|z z ≥;②1212||||||||n n z z z z z z ⋅=⋅L L ; ③11222||||(0)||z z z z z =≠; ④1212||||||||z z z z -≤+,与复数1z 、2z 对应的向量1OZ u u u u r 、2OZ u u u u r 反向时取等号;⑤||||||||2121n n z z z z z z +++≤+++ΛΛ,与复数n z z z ,,,21Λ对应的向量 12,,n OZ OZ OZ u u u u r u u u u r u u u u r L 同时取等号.共轭复数的性质:①22||||z z z z ⋅==r r ; ②2Re(),2Im()z z z z z z +=-=r r ; ③z z =; ④2121z z z z ±=±; ⑤1121z z z z ⋅=⋅; ⑥11222()(0)z z z z z =≠; ⑦z 是实数的充要条件是z z =,z 是纯虚数的充要条件是).0(≠-=z z z4.复数解题的常用方法与思想(1)两个复数相等的充要条件是它们的实部、虚部对应相等,或者它们的模与辐角主值相等(辐角相差2π的整数倍). 利用复数相等的充要条件,可以把复数问题转化为实数问题,从而获得解决问题的一种途径.(2)复数的模也是将复数问题实数化的有效方法之一.善于利用模的性质,是模运算中的一个突出方面.二、例题分析例1、若225,arg(4),arg(4)63z C z z ππ∈-=+=,则z 的值是____________例2、设复数12,z z 满足11212||||3,||z z z z z =+=-= 则=+|)()(|log 2000212000212z z z z ___________例3、设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为,,,,2021z z z Λ则复数1995201995219951,,,z z z Λ所对应的不同的点的个数是__________例4、关于x 的二次方程2120x z x z m +++=中,1z 、2z 、m 均是复数,且i z z 20164221+=-.设这个方程的两个根为α、β,且满足72||=-βα,求|m |的最大值和最小值.例5、求和:S=cos200+2cos400+…+18cos(18×200).B ACD E例6、证明:sin 2n+1 sin 22n+1…sin n 2n+1= 2n+12n .例7、已知cos cos cos sin sin sin cos (y z)sin (y z)x y z x y z a x x ++++==++++,求下列三角函数值: (1)cos(y)cos(y z)cos(z )x x +++++; (2)sin(y)sin (y z)sin (z )x x +++++.例8、如图,△ABC 和△ADE 是两个不全等的等腰直角三角形。
高中数学竞赛专题讲座复数问题31页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
高中数学竞赛专题讲座复数问题
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛培优专题辅导-复数一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ).6.开方:若=nw r(cos θ+isin θ),则)2s i n2(c o snk i nk r w nπθπθ+++=,k=0,1,2,…,n-1。
7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos+,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k ,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m ,当n ≥2时,有m n m mZZ Z1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根。
12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用。
例1 求证:当n ∈N +时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明] 若z 是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(z +1)=(z-1)(z -1),化简得z+z =0,又z=0不是方程的根,所以z 是纯虚数。
例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值。
[解] 因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b) =|f(1)+f(-1)-f(i)-f(-i)|≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0. 2.复数相等。
例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解] 若方程有实根,则方程组⎪⎩⎪⎨⎧=--=++0122λλx x x x 有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x 2-x+1=0中Δ<0无实根,所以λ≠-1。
所以x=-1, λ=2.所以当λ≠2时,方程无实根。
所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4 设n ≤2000,n ∈N ,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个? [解] 由题设得)2sin()2cos()2sin()2(cos )]2sin()2[cos(θπθπθπθπθπθπn i n i n i n -+-=-+-=-+-,所以n=4k+1.又因为0≤n ≤2000,所以1≤k ≤500,所以这样的n 有500个。
4.二项式定理的应用。
例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+- [解] (1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100=10010010099991002210011000100i C i C i C i C C +++++ =100100410021000100(C C C C +-+- )+(99100510031001100C C C C --+- )i ,比较实部和虚部,得100100410021000100C C C C +-+- =-250,99100510031001100C C C C --+- =0。
5.复数乘法的几何意义。
例6 以定长线段BC 为一边任作ΔABC ,分别以AB ,AC 为腰,B ,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN 。
求证:MN 的中点为定点。
[证明] 设|BC|=2a ,以BC 中点O 为原点,BC 为x 轴,建立直角坐标系,确定复平面,则B ,C 对应的复数为-a,a,点A ,M ,N 对应的复数为z 1,z 2,z 3,a z BA a z CA +=-=11,,由复数乘法的几何意义得:)(13a z i a z --=-=,①)(12a z i a z --=+=,②由①+②得z 2+z 3=i(z 1+a)-i(z 1-a)=2ai.设MN 的中点为P ,对应的复数z=ai z z =+232,为定值,所以MN 的中点P 为定点。
例7 设A ,B ,C ,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD 。
[证明] 用A ,B ,C ,D 表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|•|C-D|+|B-C|•|A-D|≥(A-B)(C-D)+(B-C)(A-D).所以|A-B|•|C-D|+|B-C|•|A-D|≥|A-C|•|B-D|, “=”成立当且仅当)()(D C C B Arg A D A B Arg --=--,即)()(CD CB Arg A B A D Arg --+--=π,即A ,B ,C ,D 共圆时成立。
不等式得证。
6.复数与轨迹。
例8 ΔABC 的顶点A 表示的复数为3i ,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹。
[解]设外心M 对应的复数为z=x+yi(x,y ∈R),B ,C 点对应的复数分别是b,b+2.因为外心M 是三边垂直平分线的交点,而AB 的垂直平分线方程为|z-b|=|z-3i|,BC 的垂直平分线的方程为|z-b|=|z-b-2|,所以点M 对应的复数z 满足|z-b|=|z-3i|=|z-b-2|,消去b 解得).34(62-=y x所以ΔABC 的外心轨迹是轨物线。
7.复数与三角。
例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0。
[证明] 令z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ,则 z 1+z 2+z 3=0。
所以.0321321=++=++z z z z z z 又因为|z i |=1,i=1,2,3. 所以z i •i z =1,即.1ii z z =由z 1+z 2+z 3=0得.022********32221=+++++z z z z z z x x x ①又.0)(111321321321321132321=++=⎪⎪⎭⎫⎝⎛++=++z z z z z z z z z z z z z z z z z z 所以.0232221=++z z z所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0. 所以cos2α+cos2β+cos2γ=0。