《特殊平行四边形》基础习题

合集下载

【3套】特殊平行四边形习题(含答案)

【3套】特殊平行四边形习题(含答案)

特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。

特殊平行四边形练习题

特殊平行四边形练习题

特殊平行四边形练习题1.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是.2.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.3.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.4.如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.5.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形DEGF是菱形.6.如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE,(1)求证:四边形BECF是菱形;(2)若四边形BECF为正方形,求∠A的度数.7.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.8.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.9.边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm10.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B.C.2 D.2 11.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°12.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.13.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .14.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4C.8D.1615.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED 等于度.17.菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直18.菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直19.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10 B.C.6 D.520.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,则梯形ABCD 的面积是.21.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°22.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm23.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.1624.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2B.3C.6D.25.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

特殊的平行四边形全章分节练习题

特殊的平行四边形全章分节练习题

第一节 菱形 (2016年7月16日)1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________. ②.菱形既是 对称图形,又是 图形,它有 条对称轴. 3、菱形的判定:①.__________________边都相等的四边形菱形.②.对角线_____________________________的平行四边形是菱形.③.对角线_____________________________________________的四边形是菱形. 4、菱形的面积与两对角线的关系是________________________ 5、练习:①.如图,BD 是菱形ABCD 的一条对角线,若∠ABD=65°,则∠A=_____. ②. 一个菱形的两条对角线分别是6cm ,8cm ,则这个菱形的周长 等于 cm ,面积= cm 2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为 6、如图,在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°, 且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。

7、一平行四边形的一条边长是9,两条对角线长分别是12和56,它是 形,它的面积是 ,周长是 。

8、如图,四边形ABCD 是菱形,对角线AC=8cm ,DB=6cm, DH ⊥AB 于点H ,求DH 的长.第二节 矩形 (2016年7月17日)1、矩形的定义:_________________的平行四边形叫矩形.2、矩形的性质:①.矩形的四个角都是______;矩形的对角线_______________________. ②. 矩形既是 对称图形,又是 图形,它有 条对称轴.3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形. ③.对角线________________________________的四边形是矩形. 4、矩形ABCD 的两条对角线相交于O ,∠AOD=120°,AB=4cm ,则矩形对角线AC 长为______cm .5、四边形ABCD 中,AD //BC ,则四边形ABCD 是 ,其对角线AC ,BD 交于点O ,若 ∠OAB=∠OBA ,则四边形ABCD 是_______.8、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为9、如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 和 。

特殊平行四边形(习题及答案)

特殊平行四边形(习题及答案)
3
12. 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 是菱形吗?为什么? 【思路分析】 ①读题标注: ②梳理思路: 要证四边形 ABCD 是菱形,根据题目中已有的条件选择判定 定理:_____________________________________________. 【过程书写】
7. 已知四边形 ABCD 是平行四边形,对角线 AC,BD 相交于点 O, 则下列结论不正确的是( ) A.当 AB=BC 时,四边形 ABCD 是菱形 B.当 AC⊥BD 时,四边形 ABCD 是菱形 C.当 OA=OB 时,四边形 ABCD 是矩形 D.当∠ABD=∠CBD 时,四边形 ABCD 是矩形
如图在正方形abcd中对角线acbd相交于点o则图中的等腰三角形共有a4个b6个c8个d10个aadbdbcc第5题图第7题图6
特殊平行四边形(习题)
例题示范
例 1:如图,在矩形 ABCD 中,BE 平分∠ABC,CE 平分∠DCB, BF∥CE,CF∥BE. 求证:四边形 BECF 是正方形.
【思路分析】 ①读题标注:
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.每条对角线平分一组对角
5. 符合下列条件之一的四边形不一定是菱形的是( ) A.四条边都相等 B.两组邻边分别相等 C.对角线互相垂直平分 D.两条对角线分别平分一组对角
6. 下列命题错误的是( ) A.矩形的对角线相等 B.对角线互相垂直的四边形是菱形 C.平行四边形的对边相等 D.两组对边分别相等的四边形是平行四边形
13. 如图,在四边形 ABCD 中,AB=BC,对角线 BD 平分∠ABC. P 是 BD 上一点,过点 P 作 PM⊥AD,PN⊥CD,垂足分别为 点 M,N. (1)求证:∠ADB=∠CDB; (2)若∠ADC=90°,求证:四边形 MPND 是正方形.

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。

初中数学,特殊的平行四边形同步练习题

初中数学,特殊的平行四边形同步练习题

特殊的平行四边形同步练习题基础练习题1.下列条件中,能判定一个四边形为菱形的条件是A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形2.菱形的对角线长分别为3和4,则该菱形的面积是A.6 B.8 C.12 D.243.在四边形中,能判定这个四边形是正方形的条件是A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分4.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.35.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是A.18°B.36°C.45°D.72°6.在一个直角三角形中,已知两直角边分别为6 cm,8 cm,则下列结论不正确的是A.斜边长为10 cm B.周长为25 cmC.面积为24 cm2 D.斜边上的中线长为5 cm7.在四边形ABCD 中,对角线,AC BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是A .90ABC ∠=︒B .AC BD ⊥C .AB CD =D .AB CD ∥8.如图,在长方形ABCD 中,AB =3,BC =4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为A .158B .154C .152D .159.如图,菱形ABCD 的对角线交于点O ,AC =8 cm ,BD =6 cm ,则菱形的高为A .485cm B .245cm C .125cm D .105cm 10.如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ =3,那么菱形ABCD 的周长是A .30B .24C .18D .611.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,则∠EAF 等于A .60°B .55°C .45°D .30°12.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是A.75°B.60°C.54°D.67.5°13.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为_________.14.如图是一个平行四边形,当∠α的度数为________度时,两条对角线长度相等.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.16.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.17.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为__________.18.如图,等边三角形EBC在正方形ABCD内,连接DE,则ADE∠=__________.19.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.20.如图,已知四边形ABCD是正方形,延长BC到E,在CD上截取CF=CE,BF交DE于G,求证:BG⊥DE.21.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点.(1)求证:△BED是等腰三角形:学-科网(2)当∠BCD=________°时,△BED是等边三角形.22.如图,四边形ABCD 中,90A ABC ∠=∠=︒,1AD =,3BC =,E 是边CD 的中点,连接BE 延长与AD 的延长线相交于点F ,连接CF . (1)求证:四边形BDFC 是平行四边形. (2)已知CB CD =,求四边形BDFC 的面积.23.如图,在矩形ABCD 中,AD =12,AB =7,DF 平分∠ADC ,AF ⊥EF .(1)求证:AF =EF ; (2)求EF 长.24.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;(2)当AB ∶AD =__________时,四边形MENF 是正方形,并说明理由.能力拓展25.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠等于A .15°B .30°C .45°D .60°26.如图,在△ABC 中,∠BAC =90°,AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,若AB =8,AC =6,则△DEF 的周长为A .12B .13C .14D .1527.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO =20°,则∠CAD 的度数是A .20°B .25°C .30°D .40°28.如图,以A 点为圆心,以相同的长为半径作弧,分别与射线AM ,AN 交于B ,C 两点,连接BC ,再分别以B ,C 为圆心,以相同长(大于12BC )为半径作弧,两弧相交于点D ,连接AD ,BD ,CD .则下列结论错误的是A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形29.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是A.3 B.4 C.5 D.630.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为A.2B.22C.2+1 D.22+131.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.32.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.33.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是____________.34.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数;(3)求△AEF的面积.35.如图1,四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N为垂足.(1)求证:AM=CN;(2)如图2,在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满足什么条件时,四边形AECF是矩形?并加以证明.真题实战36.(2018·浙江台州)下列命题正确的是A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形37.(2018·江苏淮安)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是A.20 B.24 C.40 D.4838.(2018·山东烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为A.7 B.6 C.5 D.439.(2018·四川内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为A.31°B.28°C.62°D.56°40.(2018·湖北宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥A B.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于A.1 B.12C.13D.1441.(2018·黑龙江牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为A.6 B.5 C.4 D.342.(2018·广西贵港)如图,在菱形ABCD 中,AC =62,BD =6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE +PM 的最小值是A .6B .33C .26D .4.543.(2018·湖南湘潭)如图,已知点E 、F 、G .H 分别是菱形ABCD 各边的中点,则四边形EFGH 是A .正方形B .矩形C .菱形D .平行四边形44.(2018·浙江嘉兴)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是A .B .C .D .45.(2018·四川甘孜州)如图,在菱形ABCD 中,对角线AC 与BD 相交于点86O AC BD ==,,, OE AD ⊥于点E ,交BC 于点F ,则EF 的长为__________.46.(2018·辽宁锦州)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH .若OB =4,S 菱形ABCD =24,则OH 的长为__________.47.(2018·四川攀枝花)如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=1 3 S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.48.(2018·辽宁葫芦岛)如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为__________.49.(2018·四川广安)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.50.(2018·湖南郴州)如图,在ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.51.(2018·辽宁沈阳)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是__________.参考答案1. B2. A3. C4. B5. C6. B7. A8. B9. B 10. B 11. A 12. B 13. 2 14. 90 15. 9 16. 617. (18. 15°19. 485(cm ).20. ∵BC =CD ,∠BCF =∠DCE =90°,CF =CE , ∴△BCF ≌△DCE ,∴∠FBC =∠EDC . 又∵∠BFC =∠DFG ,∴∠DGF =∠BCF =90°, 即BG ⊥DE .21. (1)等腰三角形;(2)150° 22. (1)∵90A ABC ∠=∠=︒,∴∥BC AF ,∴CBE DFE ∠=∠, 又∵DE CE =,DEF BEC ∠=∠, ∴△BEC ≌△FED ,∴BE EF =,又∵CE DE =,∴四边形BDFC 是平行四边形. (2)如图,过D 作DH CB ⊥于H ,∴∠DHB =∠A =∠ABH =90°,∴四边形ADHB 是矩形,∴1BH AD ==, ∵3CB CD ==,∴2CH =,在Rt △CDH 中,∵90CHD ∠=︒,∴22325DH =-= ∴平行四边形BDFC S BC DH =⋅35= 23.(1)∵四边形ABCD 是矩形,∴∠B =∠C =∠ADC =90°,AB =DC =7,BC =AD =12,∴∠BAF +∠AFB =90°, ∵DF 平分∠ADC ,∴∠ADF =∠CDF =45°,∴△DCF 是等腰直角三角形, ∴FC =DC =7,∴AB =FC ,∵AF ⊥EF ,∴∠AFE =90°,∴∠AFB +∠EFC =90°,∴∠BAF =∠EFC , 在△ABF 和△FCE 中,BAF EFCAB FC B C ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴△ABF ≌△FCE (ASA ),∴EF =AF ;(2)BF =BC –FC =12–7=5,在Rt △ABF 中,由勾股定理得: AF 22227574AB BF +=+则EF =AF 7424.【解析】(1)∵四边形ABCD 是矩形, ∴AB=DC ,∠A =∠D =90°. ∵M 为AD 的中点,∴AM=MD ,∴△ABM ≌△DCM . (2)1∶2,理由:∵AB ∶AD =1∶2,∴AB =12AD . ∵AM =12AD ,∴AB=AM ,∴∠ABM =∠AMB . ∵∠A =90°,∴∠AMB =45°. ∵△ABM ≌△DCM ,∴BM=CM,∠DMC=∠AMB=45°,∴∠BMC=90°.∵E,F,N分别是BM,CM,BC的中点,∴EN∥CM,FN∥BM,EM=MF,∴四边形MENF是菱形.∵∠BMC=90°,∴菱形MENF是正方形.25.A26.A27.A28.D29.B30.B31.30°32.3.533.①②④⑤34.(1)如图,延长EB至G,使BG=DF,连接AG,∵正方形ABCD,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵在△ADF中,∠D=90°,∠DAF=15°,∴∠AFD=90°–15°=75°,∵△ABG≌△ADF,△AGE≌△AFE,∴∠AFE=∠AGE=∠AFD=75°,∴∠EFC=180°–∠DFA–∠AFE=180°–75°–75°=30°;(3)∵AB=BC3∠BAE=30°,∴BE=1,CE31,∵∠EFC=30°,∴CF=3S△CEF=12CE•CF3,由(1)知,△ABG≌△ADF,△FAE≌△GAE,∴S△AEF=S正方形ABCD–S△ADF–S△AEB–S△CEF=S正方形ABCD–S△AEF–S△CEF,∴S△AEF=12(S正方形ABCD–S△CEF)=2111)(3322-=35.(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠ADM=∠CBN.∵AM⊥BD,CN⊥BD,∴∠AMD=∠CNB=90°,在△AMD和△CNB中,===ADM CENAMD CNBAD BC∠∠∠∠⎧⎪⎨⎪⎩,∴△AMD≌△CNB.∴AM=CN.(2)猜想:当EF=AC时,四边形AECF是矩形.证明:由(1)得△AMD≌△CNB,∴DM=BN.∵BE=DF,∴DM+DF=BN+BE,即MF=NE.在△AMF和△CNE中,===MF NEAMF CNE AM CN∠∠⎧⎪⎨⎪⎩,∴△AMF≌△CNE.∴AF=CE,∠AFE=∠CEF.∴AF∥CE且AF=CE.即四边形AECF是平行四边形.又EF=AC,∴四边形AECF是矩形.36.C37.A38.D39.D40.B41.B42.C43.B44.C45.24 546.347.48.(2,﹣3)49.∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,在△ABM和△EFA中,EAF BMAAFE BAE AM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△EFA(AAS),∴AB=EF.50.∵在ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,EOD FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.51.(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形.学-科网(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC·BD=12×4×2=4,故答案为:4.。

北师大版九年级上册 第一章 单元练习题:《特殊的平行四边形》(含答案)

北师大版九年级上册 第一章 单元练习题:《特殊的平行四边形》(含答案)

单元练习题:《特殊的平行四边形》一.选择题1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.6km,则M,C两点间的距离为()A.0.8km B.1.2km C.1.3km D.5.2km5.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD6.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF7.已知矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.50 B.48 C.24 D.128.如图,矩形ABCD的对角线AC,BD相交于点O,AD=3,∠AOD=60°,则AB的长为()A.3 B.2C.3D.69.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°10.如图,在正方形ABCD中,E为对角线BD上一点,且BE=BC,则∠ACE=()A.20.5°B.30.5°C.21.5°D.22.5°11.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2 B.4.5 C.5.2 D.5.512.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.2二.填空题13.如果菱形的边长为17,一条对角线长为30,那么另一条对角线长为.14.如图,正方形ABCD的边长为5,点E在CD上,DE=2,∠BAE的平分线交BC于点F,则CF的长为.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P 分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为.16.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD 于点E,则BE的长为.17.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题18.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.19.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.22.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE ⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF 与EG的数量关系,并说明理由.23.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一.选择题1.解:A.平行四边形的对边相等,正确,不符合题意;B.菱形的对角线平分一组对角,正确,不符合题意;C.对角线互相垂直的四边形是菱形,错误,符合题意;D.矩形的对角线互相平分,正确,不符合题意.故选:C.2.解:A、错误,有一个角为90°的平行四边形是矩形B、错误,对角线互相垂直的平行四边形是菱形;C、正确,对角线相等的平行四边形是矩形;D、错误,一组邻边相等的平行四边形是菱形;故选:C.3.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.4.解:在Rt△ACB中,点M是AB的中点,∴CM=AB=×2.6=1.3(km),故选:C.5.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD1矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.7.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=48.故选:B.8.解:∵四边形AABCD是矩形,∴∠DAB=90°,OA=OD=OB,∵∠AOD=60°,∴△AOD是等边三角形,∴OA=OD=AD=3,∴BD=2OD=6,∴AB==3.故选:C.9.解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.10.解:设AC与BD交于点O,在四边形ABCD中,∠EOC=90°,∠1=∠2=45°.∵BE=BC,∴∠3=∠ECB=67.5°.∴∠ACE=OCE=90°﹣∠3=90°﹣67.5°=22.5°.故选:D.11.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.12.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P 1P 2∥CE 且P 1P 2=CE .当点F 在EC 上除点C 、E 的位置处时,有DP =FP .由中位线定理可知:P 1P ∥CE 且P 1P =CF .∴点P 的运动轨迹是线段P 1P 2,∴当BP ⊥P 1P 2时,PB 取得最小值.∵矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,∴△CBE 、△ADE 、△BCP 1为等腰直角三角形,CP 1=1.∴∠ADE =∠CDE =∠CP 1B =45°,∠DEC =90°.∴∠DP 2P 1=90°.∴∠DP 1P 2=45°.∴∠P 2P 1B =90°,即BP 1⊥P 1P 2,∴BP 的最小值为BP 1的长.在等腰直角BCP 1中,CP 1=BC =1.∴BP 1=.∴PB 的最小值是. 故选:C .二.填空题(共5小题)13.解:在菱形ABCD 中,AB =17,BD =30,∵对角线互相垂直平分,∴∠AOB =90°,BO =15,在Rt △AOB 中,AO ===8,∴AC =2AO =16.即另一条对角线长为16,故答案为:16.14.解:延长CD 到N ,使DN =BF ,连接AN ,如图所示:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABF=∠ADN=90°,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴∠BAF=∠DAN,∴∠NAF=90°,∴∠EAN=90°﹣∠FAE,∠N=90°﹣∠DAN=90°﹣∠BAF,∵∠BAF=∠FAE,∴∠EAN=∠N,∴AE=EN,∵,∴,∴,∴,故答案为:7﹣.15.解:∵在正方形ABCD中,对角线AC与BD相交于点O,∴AC⊥BD,AO=CO=BO=DO,∠EAP=45°,∵PE⊥AC,∴△AEP是等腰直角三角形,∴PE=AE,∵PF⊥BD,∴四边形OEPF是矩形,∴PF=OE,∴PE+PF=AE+OE=OA=5,=,∴S△AOD=4×=50.∴S正方形ABCD故答案为:50.16.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.17.解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.三.解答题(共6小题)18.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.19.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,即AF∥EC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:如图所示:∵四边形ABCD为菱形,四边形AECF为矩形,且BE=3,AD=5 ∴OA=OC,AB=BC=AD=5 DF=EB=3,∠AEC=90°,∴AE===4,CE=BC+BE=8,∴AC===4,∵OA=OC,∠AEC=90°,∴OE=OC=AC=×4=2.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为 4+或4﹣.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.23.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在DE上,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形专题
一、基础知识点复习:
(一)矩形:
1、矩形的定义:__________________________的平行四边形叫矩形.
2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________.
②.矩形既是对称图形,又是图形,它有条对称轴.
3、矩形的判定:①.有_____个是直角的四边形是矩形.
②.对角线____________________________的平行四边形是矩形.
③.对角线________________________________的四边形是矩形.
4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,
则矩形对角线AC长为______cm.
②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DO C.AB=BC,AO=CO D.AO=CO,BO=DO,AC ⊥BD
③.四边形ABCD中,AD//BC,则四边形ABCD是___________,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是_______________.
(二)菱形:
1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.
2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线
______________.
②.菱形既是对称图形,又是图形,它有条对称轴.
3、菱形的判定:①.__________________边都相等的四边形菱形.
②.对角线_____________________________的平行四边形是菱形.
③.对角线_____________________________________________的四边形是菱形.
4、菱形的面积与两对角线的关系是________________________
5、练习:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=_____.
②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于cm,面积=
cm2
A
B
C
D E
A
B
D
E
C
③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为 (三)正方形:
1、正方形的定义: 的平行四边形叫正方形。

2、正方形的性质:①.正方形的四个角是_____角,四条边_____,对角线_______________________.
②.正方形是______对称图形,又是 对称图形,它有______条对称轴.
3.正方形的判定:先判定这个四边形是矩形,•再判定这个矩形还是_____形;
或者先判定四边形是菱形,再判定这个菱形也是_____形.
4.练习:①正方形的面积为4,则它的边长为____,对角线长为_____. ②已知正方形的对角线长是4,则它的边长是 ,面积是 。

③如图所示,在△ABC 中,AB=AC ,点D ,E ,F 分别是边AB ,BC ,AC 的中点,连接DE ,EF ,要使四边形ADEF 是正方形,还需增加条件:_______. 二、复习练习: (一)、选择题:
1、矩形ABCD 的长AD=15cm ,宽AB=10cm ,∠ABC 的平分线分AD 边为AE 、ED
两部分,这AE 、ED 的长分别为( )
A .11cm 和4cm
B .10cm 和5cm
C .9cm 和6cm
D .8cm 和7cm 2、四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD
3、如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEBO ( ) A. 10° B .15° C .20° D .12.5°
4、如图,在菱形 ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2, 那么菱形ABCD 的周长是( ) A. 4 B .8 C .12 D .16
(二)、填空题
5、已知正方形ABCD 对角线AC ,BD 相交于点O ,•且AC=•16cm ,•则DO=•_____cm ,
•BO=____cm ,∠OCD=____度.
6、在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°, 且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。

7、一平行四边形的一条边长是9,两条对角线长分别是12和 56,它是 形,它的面积
x
y A B
D
0 C
E
F
是 ,周长是 。

8、如图ABCD 是一块正方形场地,在AB 边上取定了一点E ,量得EC=30 cm ,EB=10 cm ,则这块场地的面积是 cm 2,对角线的长是 cm (三)解答题:
9、如图,四边形ABCD 是菱形 ,∠ACD=30°,BD=6,求: (1)∠BAD,∠ABC 的度数; (2)边AB 及对角线AC 的长。

10、在Rt △ABC 中,∠ACB=90°CD ⊥AB 于点D ,∠BCD=3∠ACD ,点E 是斜边AB 的中点,求∠ECD 的度数。

11、如图,四边形ABCD 是菱形,对角线AC=8cm ,DB=6cm,DH ⊥AB 于点H ,求DH 的长. B
A C D
E A
B
C
D
E
12、如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,求证:四边形OCED 是菱形。

13、如图:AE ∥BF ,AC 平分∠BAD ,且交BF 于点C ,BD 平分∠ABC ,且交AE 于点D ,连接CD , 求证:四边形ABCD 是菱形
14、如图,E 、F 、M 、N 分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN ,
求证,四边形EFMN 是正方形 。

A
B
C
D O
E
F
15、如图,点E、F在正方形ABCD的边BC、CD上,AE、BF相交于点G,BE=CF。

想AE与BF的关系并证明
16、如图,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF∥DE,且交
AG于点F。

求证:AF=BF+EF
17在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等.
18以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD .
_ B _ C
_ F _ C
_B
_ F
19正方形ABCD 的对角线BD 上,取BE=AB ,若过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED .
20.平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA .
_
F _ G
_ C
_ D
_ B
_ F
21.在正方形ABCD 的边CD 上任取一点E ,延长BC 到F ,使CF=CE ,求证:BE ⊥DF
22、在正方形ABCD 中,P 是BD 上一点,过P 引PE ⊥BC 交BC 于E ,过P 引PF ⊥CD 于F ,求证:AP ⊥EF .
_ C
_ D
_F。

相关文档
最新文档