初三经典几何证明练习题含答案)
初中数学几何证明经典试题(含答案)【范本模板】

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证..如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
(完整版)初中几何证明题五大经典(含答案)

经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ 在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初三经典几何证明练习题(含问题详解)

初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD部的一点,∠PAD=∠PDA=15°。
求证:△PBC是正三角形.(初二)3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .证明:连接BD 交AC 于O 。
过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30° ∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .证明:连接BD ,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC ,又EG ⊥AC∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG =OD =21BD=21AC=21CE ∴∠GCE=30° ∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)证明:过点F 作FG ⊥CE 于G ,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF∵AP ⊥FP∴∠APB+∠FPG=90°∵∠APB+∠BAP=90°∴∠FPG=∠BAP又∠FGP=∠PBA∴△FGP ∽△PBA∴FG :PB=PG :AB4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)证明:过点E 作EK ∥BD ,分别交AC 、AF 于M 、K ,取EF 的中点H , 连接OH 、MH 、EC设AB=x ,BP=y ,CG=zz :y=(x-y+z ):x化简得(x-y )·y =(x-y )·z∵x-y ≠0∴y=z即BP=FG∴△ABP ≌△PGF∴∠CAE=∠CEA=21∠GCE=15° 在△AFC 中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE=180°-135°-30°=15°∵EH=FH∴OH ⊥EF ,∴∠PHO=90° 又PC ⊥OC ,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO又EK ∥BD ,∴∠HPO=∠HEK∴∠HCM=∠HEM∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题(四)1、已知:△ABC 是正三角形,P 是三角形一点,PA =3,PB =4求∠APB 的度数.(初二)解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD又AO=CO∴四边形ABCD 的对角证明:过点P 作AD 的平行线,过点A 作PD 的平行线, 两平行线相交于点E ,连接BE ∵PE ∥AD ,AE ∥PD ∴ADPE 是平行四边形 ∴PE=AD ,又ABCD 是平行四边形 ∴AD=BC ∴PE=BC又PE ∥AD ,AD ∥BC ∴PE ∥BC∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三) 证明:在BD 上去一点E ,使∠BCE=∠ACD ∵CD⌒ =CD ⌒ ∴∠CAD=∠CBD ∴△BEC ∽△ADC ∴ACBCAD BE∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD∵BC⌒=BC ⌒,∴∠BAC=∠BDC △BAC ∽△EDC又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB∴CDACDE AB∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)证明:过点D 作DG ⊥AE 于G ,作DH ⊥FC 于H ,连接DF 、DE ∴S △ADE =12AE ·DG ,S △FDC =12FC ·DH又S △ADE =S △FDC =12S □ABCD∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题(五)1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:3≤L <2. 证明:(1)将△BPC 绕B 点顺时针旋转60°的△BEF ,连接PE ,∵BP=BE ,∠PBE=60° ∴△PBE 是正三角形。
几何证明练习题带答案

几何证明练习题带答案一、选择题1. 已知三角形ABC中,AB=AC,点D在BC上,且BD=DC。
求证:∠BAD=∠CAD。
A. 利用等腰三角形性质B. 利用角平分线定理C. 利用等边三角形性质D. 利用相似三角形性质答案:B2. 已知线段AB和CD平行,且M是线段AB上的一点,N是线段CD上的一点,MN与AB、CD不平行。
求证:∠AMN≠∠CNM。
A. 利用平行线性质B. 利用内错角定理C. 利用同位角定理D. 利用补角定理答案:A二、填空题1. 在三角形ABC中,若∠A=90°,AB=AC,那么∠B=∠C=______。
答案:45°2. 已知三角形ABC中,AB=5,AC=7,BC=6,根据勾股定理可知这是一个______三角形。
答案:直角三、简答题1. 如何证明三角形内角和定理?答案:在三角形ABC中,延长BC至点D,根据外角定理,∠ACD=∠A+∠B。
又因为∠ACD+∠C=180°,所以∠A+∠B+∠C=180°,证明了三角形内角和为180°。
2. 如何证明圆内接四边形的对角互补?答案:设圆内接四边形ABCD,连接对角线AC和BD,由于AC和BD 都是圆的直径,根据圆周角定理,∠A+∠C=90°,∠B+∠D=90°。
因此,对角互补。
四、证明题1. 已知三角形ABC中,AB=AC,点D在BC上,且BD=DC。
证明∠BAD=∠CAD。
证明:由于AB=AC,根据等腰三角形性质,∠ABC=∠ACB。
又因为BD=DC,根据等边三角形性质,∠ABD=∠ACD。
因此,∠BAD=∠ABC-∠ABD=∠ACB-∠ACD=∠CAD。
2. 已知圆O中,弦AB和CD相交于点P,PA=PB,PC=PD。
证明:OP垂直于AB和CD。
证明:由于PA=PB,根据圆周角定理,∠APB=∠PBA。
同理,∠CPD=∠PDC。
因为∠APB+∠CPD=180°,所以∠OPB+∠OPD=90°。
初三经典几何证明练习题(含问题详解)

初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD部的一点,∠PAD=∠PDA=15°。
求证:△PBC是正三角形.(初二)3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.证明:连接BD 交AC 于O 。
过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30°∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .证明:连接BD ,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC ,又EG ⊥AC ∴BD ∥EG 又DE ∥AC∴ODEG 是平行四边形又∠COD=90° ∴ODEG 是矩形∴EG =OD =21BD=21AC=21CE∴∠GCE=30°∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)证明:过点F 作FG ⊥CE 于G ,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF ∵AP ⊥FP ∴∠APB+∠FPG=90° ∵∠APB+∠BAP=90° ∴∠FPG=∠BAP 又∠FGP=∠PBA ∴△FGP ∽△PBA 设AB=x ,BP=y ,CG=z z :y=(x-y+z ):x 化简得(x-y )·y =(x-y )·z ∵x-y ≠0 ∴y=z 即BP=FG∴△ABP ≌△PGF∴∠CAE=∠CEA=21∠GCE=15°在△AFC 中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE =180°-135°-30°=15° ∴∠F=∠CEA ∴AE=AFPE PB A∴FG :PB=PG :AB4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)证明:过点E 作EK ∥BD ,分别交AC 、AF 于M 、K ,取EF 的中点H , 连接OH 、MH 、EC ∵EH=FH∴OH ⊥EF ,∴∠PHO=90° 又PC ⊥OC ,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO 又EK ∥BD ,∴∠HPO=∠HEK ∴∠HCM=∠HEM ∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题(四)1、已知:△ABC 是正三角形,P 是三角形一点,PA =3,PB =4,PC =5. 求∠APB 的度数.(初二)解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)证明:过点P 作AD 的平行线,过点A 作PD 的平行线, 两平行线相交于点E ,连接BE ∵PE ∥AD ,AE ∥PD∴ADPE 是平行四边形∴PE=AD ,又ABCD 是平行四边形∴AD=BC∴PE=BC又PE ∥AD ,AD ∥BC ∴PE ∥BC ∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD 又AO=CO ∴四边形ABCD 的对角线互相平分 ∴ABCD 是平行四边形 ∴AB=DC ,BC=AD 又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三) 证明:在BD 上去一点E ,使∠BCE=∠ACD ∵CD⌒ =CD ⌒ ∴∠CAD=∠CBD ∴△BEC ∽△ADC∴ACBC AD BE = ∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD ∵BC⌒=BC ⌒,∴∠BAC=∠BDC △BAC ∽△EDC ∴CDACDE AB =∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)证明:过点D 作DG ⊥AE 于G ,作DH ⊥FC 于H ,连接DF 、∴S △ADE =12AE ·DG ,S △FDC =12FC ·DH又S △ADE =S △FDC =12S □ABCD∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题(五)1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:3≤L <2. 证明:(1)将△BPC 绕B 点顺时针旋转60°的△BEF ,连接PE , ∵BP=BE ,∠PBE=60° ∴△PBE 是正三角形。
初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,D .求证:AB =DC ,BC =AD .(初三)经典题1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1。
初中几何证明题【绝对经典】

几何证明1.点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ∆和BCF ∆,连接AF ,CE .取AF 、CE 的中点M 、N ,连接BM ,BN , MN .(1)若ABE ∆和FBC ∆是等腰直角三角形,且090=∠=∠FBC ABE (如图1),则M B N ∆是三角形.(2)在ABE ∆和BCF ∆中,若BA =BE ,BC =BF ,且α=∠=∠FBC ABE ,(如图2),则M B N∆是 三角形,且=∠MBN .(3)若将(2)中的ABE ∆绕点B 旋转一定角度,(如同3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.2.如图,将一三角板放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于Q .探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与PB 之间有怎样的数量关系?试证明你的猜想;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数关系,并写出函数自变量x 的取值范围;(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由.3.(1)如图1,四边形ABCD 中,CB AB =,︒=∠60ABC ,︒=∠120ADC ,请你猜想线段DA 、DC 之和与线段BD 的数量关系,并证明你的结论;(2)如图2,四边形ABCD 中,BC AB =,︒=∠60ABC ,若点P 为四边形ABCD 内一点,且︒=∠120APD ,请你猜想线段PA 、PD 、PC 之和与线段BD 的数量关系,并证明你的结论.4. (1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ; 图1 图2 图3 (2) 如图2在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明.(3) 如图25-3在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.5. 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE的中点.探究:AM 与DE 的位置及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;图2图1(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.6.如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90?,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.(3)若m = tn (t >1)时,试探究点E 在边OB 的何处时,使得EF =(t + 1)AE 成立?并求出点E 的坐标.7.B AP ((2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明;(3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.8. 如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.(1)求NC ,MC 的长(用t 的代数式表示); (2)当t 为何值时,四边形PCDQ 构成平行四边形?(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)探究:t 为何值时,△PMC 为等腰三角形?9.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =21BD ,EN 图1 AC B EQF P 图2A B E QP F C(如图3)CB=21CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是________________;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; (2)若AB =k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明. 1、解:(1)等腰直角 (2)等腰 α (3)结论仍然成立 证明: 在ABF EBC ∆∆和中, ∴△ABF ≌△EBC. ∴AF=CE. ∠AFB=∠ECB ∵M,N 分别是AF 、CE 的中点, ∴FM=CN. ∴△MFB ≌△NCB.∴BM=BN. ∠MBF=∠NBC∴∠MBN=∠MBF+∠FBN=∠FBN+∠NBC=∠FBC= 2、解:(1) PQ =PB过P 点作MN ∥BC 分别交AB 、DC 于点M 、N 在正方形ABCD 中,AC 为对角线 ∴AM =PM 又∵AB =MN ∴MB=PN ∵∠BPQ =900∴∠BPM +∠NPQ =900 又∵∠MBP +∠BPM =900∴∠MBP = ∠N PQ ∴Rt △MBP ≌Rt △NPQ, ∴PB =PQ(2)∵S 四边形PBCQ =S △PBC +S △PCQ ∵ AP =x ∴ AM =22x N MQ PDC B A∴CQ=C D -2NQ =1-2x 又∵S △PBC =21BC ·BM =21·1·(1-22x )= 21-42xS △PCQ =21CQ ·PN =21(1-2x )·(1-22x )=221x -x 423+21 ∴S 四边形PBCQ =221x -2x +1 . (0≤x ≤22)(3)△PCQ 可能成为等腰三角形.① 当点P 与点A 重合时,点Q 与点D 重合, PQ=QC ,此时,x=0.② 当点Q 在DC 的延长线上,且CP=CQ 时, 有:QN=AM=PM =x 22,CP =2-x , CN =CP 22=1-x 22 CQ=Q N -CN =x 22-(1-x 22) =2x -1 ∴ 当2-x =x 2-1时 ,x =13、解:(1)如图1,延长CD 至E ,使DA DE =.可证明EAD ∆是等边三角形. 联结AC ,可证明BAD ∆≌CAE ∆. 故BD CE CD DE CD AD ==+=+.(2)如图2,在四边形ABCD 外侧作正三角形D B A ',可证明C B A '∆≌ADB ∆,得DB C B ='. ∵ 四边形DP B A '符合(1)中条件, ∴ PD AP P B +='. 联结C B ',N M QPDCBA 图 1图2ⅰ)若满足题中条件的点P 在C B '上, 则PC B P C B +'='. ∴ PC PD AP C B ++='.∴ PC PD PA BD ++= . ⅱ)若满足题中条件的点P 不在C B '上, ∵ PC B P C B +'<', ∴ PC PD AP C B ++<'.∴ PC PD PA BD ++<.综上,PC PD PA BD ++≤. 4、答案(1)证明:延长EB 到G ,使BG=DF ,联结AG .∵∠ABG =∠ABC=∠D =90°, AB =AD , ∴△ABG ≌△ADF .∴AG =AF, ∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD .∴∠GAE=∠EAF . 又AE =AE ,∴△AEG ≌△AEF .∴EG =EF . ∵EG=BE+BG .∴EF= BE +FD(2) (1)中的结论EF= BE +FD 仍然成立.(3)结论EF=BE +FD 不成立,应当是EF=B E -FD . 证明:在BE 上截取BG ,使BG=DF ,连接AG . ∵∠B+∠ADC =180°,∠ADF+∠ADC =180°, ∴∠B =∠ADF . ∵AB =AD ,∴△ABG ≌△ADF .∴∠BAG =∠DAF,AG =AF . ∴∠BAG+∠EAD =∠DAF+∠EAD=∠EAF =12∠BAD .∴∠GAE=∠EAF . ∵AE =AE ,∴△AEG ≌△AEF . ∴EG =EF ∵EG=BE -BG ∴EF=B E -FD .5、答案:解:(1)DE AM ⊥,12AM DE =(2)结论仍然成立。
中考数学几何证明题--(专题练习 答案详解)

几何证明题专题1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G 为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形ABCD的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.7、已知:如图, ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD 为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.(2)求证:ED=BE+FC.28、(2005•镇江)已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF 的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.参考答案1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G 为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,,∴…(5分)(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,∴OF∥BE.(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.∴AC=BD,∴平行四边形ABCD是矩形.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H 在边BF 上,且∠HDF=∠E ,连接CH ,求证:∠BCH=45°﹣∠EBC .(1)解:连接BD ,由∠ABC=90°,AD ∥BC 得∠GAD=90°,又∵BF ⊥CD ,∴∠DFE=90°又∵DG=DE ,∠GDA=∠EDF ,∴△GAD ≌△EFD ,∴DA=DF ,又∵BD=BD ,∴Rt △BAD ≌Rt △BFD (HL ),∴BF=BA=,∠ADB=∠BDF 又∵CF=6,∴BC=,又∵AD ∥BC ,∴∠ADB=∠CBD ,∴∠BDF=∠CBD ,∴CD=CB=8.(2)证明:∵AD ∥BC ,∴∠E=∠CBF ,∵∠HDF=∠E ,∴∠HDF=∠CBF ,由(1)得,∠ADB=∠CBD ,∴∠HDB=∠HBD ,∴HD=HB ,由(1)得CD=CB ,CBD CDBCBD HDF CDB CBH∴∠=∠∴∠-∠=∠-∠∠∠∴即BDH=HBDHB=HD∴△CDH ≌△CBH ,∴∠DCH=∠BCH ,∴∠BCH=∠BCD==.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形ABCD的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.解:(1)连AC,过C作CM⊥AD于M,如图,在Rt△ABC中,AB=6,sin∠ACB==,∴AC=10,∴BC=8,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE(SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.(1)证明:连接PC.∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.∵BE=DF,∴△ABE≌△ADF.(SAS)∴∠BAE=∠DAF,AE=AF.∴∠EAF=∠BAD=90°.∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.又AD=CD,PD公共,∴△PAD≌△PCD,(SSS)∴∠ADP=∠CDP,即DP平分∠ADC;(2)作PH⊥CF于H点.∵P是EF的中点,∴PH=EC.设EC=x.由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.在Rt△ABE中,22+(2﹣x)2=(x)2解得x1=﹣2﹣2(舍去),x2=﹣2+2.∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.=(﹣2+4)×=3﹣5.∴S△DPF10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.(1)证明:∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.∵E为CD的中点,∴ED=EC.∴△ADE≌△FCE.∴EF=EA.(5分)(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.∵DG⊥BC,∴四边形ABGD是矩形.∴BG=AD,GA=BD.∵BD=BC,∴GA=BC.由(1)得△ADE≌△FCE,∴AD=FC.∴GF=GC+FC=GC+AD=GC+BG=BC=GA.∵由(1)得EF=EA,∴EG⊥AF.(5分)11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E 是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)∵∠DAB=90°,∠EAD=15°,AD=AB(2分)∴∠FAE=∠BAE=75°,AB=AF,(3分)∵AE为公共边∴△FAE≌△BAE(4分)∴EF=EB(5分)(2)解:如图,连接EC.(6分)∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°∴GE=GB.(8分)∵点G是BC的中点,∴EG=CG∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2∴CE=,∴BC=(10分);解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.∴∠DBC=∠ADB=30°.∴∠BDC=90°.(1分)由已知AE⊥BD,∴AE∥DC.(2分)又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.∴EF∥AD.∴四边形AEFD是平行四边形.(3分)∴AE=DF(4分)∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)∴AE=GF.(6分)(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.∴AE﹣AB=AC﹣AF,即FC=BE;(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.∴AG=CG,∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.(2)答:△ABF是等腰直角三角形.理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)∴AD=AE;(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△GBE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:EF=CG=(BC﹣BG)=(BC﹣AD)=×(14﹣4)=5.答:EF的长为5.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.∴CD=BE.(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.∴AE=AC﹣CE=2.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)在Rt△DEC中,∠CED=90°,∴DC==.(5分)19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF﹣ED;(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;在Rt△AFE中,AE==5;(2)延长AF、BC交于点N.∵AD∥EN,∴∠DAF=∠N;∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD..21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)∵AD∥BC,∴四边形ACED为平行四边形.(2分)∴CE=AD,DE=AC.∵四边形ABCD为等腰梯形,∴BD=AC=DE.∵AC⊥BD,∴DE⊥BD.∴△DBE为等腰直角三角形.(4分)∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)(2)∵AD=CE,∴.(7分)∵△DBE为等腰直角三角形BD=DE=6,∴.∴梯形ABCD的面积为18.(8分)注:此题解题方法并不唯一.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△ABE≌△DAF(SAS).(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.∴∠BPF=∠ABE+∠BAP=∠BAE.而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°∴∠DBC=30°∴∠ABC=60°(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.(2)求证:ED=BE+FC.解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C=3×2+6+3﹣3=9+3,梯形ABCD答:梯形ABCD的周长是9+3.(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使MN=BE,∴CN=CE,可证∠NCD=∠DCE,∵CD=CD,∴△DEC≌△DNC,∴ED=EN,∴ED=BE+FC.28、(2005•镇江)已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.∴△BCE≌△AFE(AAS).(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.∴AF=BC=4.∵EF2=AF2+AE2=9+16=25,∴EF=5.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF 的延长线交DC于点E.(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.∴AD=BG.∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.又∵∠3=∠4,∴△DFE≌△BFG.∴DE=BG,EF=GF.∴AD=DE.(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.∵DG=AB,∴BE=AB.∵C=DF+FE+DE=6,△DFE∴BF+FE+DE=6,即:EB+DE=6.∴AB+AD=6.又∵AD=2,∴AB=4.∴DG=AB=4.∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.又∵DC=BC=5,在△DGC中∵42+32=52∴DG2+GC2=DC2∴∠DGC=90°.=(AD+BC)•DG∴S梯形ABCD=(2+5)×430、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.解答:解:(1)证明:∵AD∥BC,DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5又∵AB=AD,AO⊥BD,∴AD=BE=5,=.∴OB=OD,∴S梯形ABCD又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD∴四边形ABCD是菱形.(2)∵四边形ABCD是菱形,∴AD=DE=BE,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA=15°。
求证:△PBC是正三角形.(初二)3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD 并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .证明:连接BD 交AC 于O 。
过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30° ∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .证明:连接BD ,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC ,又EG ⊥AC ∴BD ∥EG 又DE ∥AC∴∠CAE=∠CEA=21∠GCE=15° 在△AFC 中∠F =180°-∠FAC-∠ACF∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG =OD =21BD=21AC=21CE ∴∠GCE=30° ∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)证明:过点F 作FG ⊥CE 于G ,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF∵AP ⊥FP∴∠APB+∠FPG=90°∵∠APB+∠BAP=90°∴∠FPG=∠BAP又∠FGP=∠PBA∴△FGP ∽△PBA∴FG :PB=PG :AB4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)证明:过点E 作EK ∥BD ,分别交AC 、AF 于M 、K ,取EF 的中点H , 连接OH 、MH 、EC ∵EH=FH设AB=x ,BP=y ,CG=zz :y=(x-y+z ):x化简得(x-y )·y =(x-y )·z∵x-y ≠0∴y=z即BP=FG∴△ABP ≌△PGF∴OH ⊥EF ,∴∠PHO=90° 又PC ⊥OC ,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO又EK ∥BD ,∴∠HPO=∠HEK∴∠HCM=∠HEM∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求∠APB 的度数.(初二)解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)证明:过点P 作AD 的平行线,过点A 作PD ∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD 又AO=CO∴四边形ABCD 的对角线两平行线相交于点E ,连接BE ∵PE ∥AD ,AE ∥PD ∴ADPE 是平行四边形 ∴PE=AD ,又ABCD 是平行四边形 ∴AD=BC ∴PE=BC又PE ∥AD ,AD ∥BC ∴PE ∥BC∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三) 证明:在BD 上去一点E ,使∠BCE=∠ACD ∵CD⌒ =CD ⌒ ∴∠CAD=∠CBD ∴△BEC ∽△ADC ∴ACBCAD BE∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD ∵BC⌒=BC ⌒,∴∠BAC=∠BDC △BAC ∽△EDC又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB∴CDACDE AB∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)证明:过点D 作DG ⊥AE 于G ,作DH ⊥FC 于H ,连接DF 、∴S △ADE =12AE ·DG ,S △FDC =12FC ·DH又S △ADE =S △FDC =12S □ABCD∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:3≤L <2. 证明:(1)将△BPC 绕B 点顺时针旋转60°的△BEF ,连接PE ,∵BP=BE ,∠PBE=60° ∴△PBE 是正三角形。
∴PE=PB 又EF=PC ∴L=PA+PB+PC=PA+PE+EF当PA 、PE 、EF 在一条直线上的时候,L=PA+PE+EF 的值最小(如图)在△ABF 中,∠ABP=120°∴AF=3BGB∴L=PA+PB+PC ≤3(2)过点P 作BC 的平行线分别交AB 、AC 于D 、G 则△ADG 是正三角形 ∴∠ADP=∠AGP ,AG=DG ∵∠APD >∠AGP ∴∠APD >∠ADP∴AD >PA …………………………① 又BD+PD >PB ……………………② CG+PG >PC ……………………③ ①+②+③得AD+BD+CG+PD+PG >PA+PB+PC ∴AB+CG+DG=AB+CG+AG=AB+AC >PA+PB+PC=L ∵AB=AC=1∴L <2由(1)(2)可知:3≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.解:将△BCP 绕点B 顺时针旋转60°得△BEF ,连接PE , 则△BPE 是正三角形 ∴PE=PB∴PA +PB +PC=PA+PE+EF∴要使PA +PB +PC 最小,则PA 、PE 、EF 应该在一条直线上(如图)此时AF=PA+PE+EF过点F 作FG ⊥AB 的延长线于G则∠GBF=180°-∠ABF=180°-150°=30°∴GF=12,BG=23∴AF=22AG GF +=2212321⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛=32+ ∴PA +PB +PC 的最小值是32+3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长. 证明:将△ABP 绕点B 顺时针旋转90°得△BCQ ,连接PQ 则△BPQ 是等腰直角三角形,∴PQ=2PB=2×2a=22a 又QC=AP=a∴QP 2+QC 2=(22a)2+a 2=9a 2=PC 2∴△PQC 是直角三角形 ∴∠BQC=135°∵BC 2=BQ 2+CQ 2-2BQ ·CQ ·cos ∠BQC=PB 2+PA 2-2PB ·PAcos135°=4a 2+a 2-2×2a ×a ×(-22) 解得BC=a 225+∴正方形的边长为a 225+4、如图,△ABC 中,∠ABC =∠ACB =80°,D 、E 分别是AB 、AC 上的点,∠DCA =30°,∠EBA =20°,求∠BED 的度数.解:在AB 上取一点F ,使∠BCF=60°,CF 交BE 于G ,连接EF 、DG ∵∠ABC=80°,∠ABE=20°,∴∠EBC=60°,又∠BCG=60° ∴△BCG 是正三角形∴BG=BC∵∠ACB=80°,∠BCG=60°∴∠FCA=20°∴∠EBA=∠FCA 又∵∠A=∠A ,AB=AC ∴△ABE ≌ACF ∴AE=AF ∴∠AFE=∠AEF=12(180°-∠A )=80°又∵∠ABC=80°=∠AFE ∴EF ∥BC ∴∠EFG=∠BCG=60° ∴△EFG 是等边三角形∴EF=EG ,∠FEG=∠EGF=∠EFG=60° ∵ACB=80°,∠DCA=30°∴∠BCD=50°∴∠BDC=180°-∠BCD-∠ABC=180°-50°-80°=50°∴∠BCD=∠BDC ∴BC=BD 前已证BG=BC ∴BD=BG ∠BGD=∠BDG=12(180°-∠ABE )=80°∴∠FGD=180°-∠BGD-∠EGF=180°-80°-60°=40° 又∠DFG=180°-∠AFE-∠EFG=180°-80°-60°=40°∴∠FGD=∠DFG ∴DF=DG 又EF=EG ,DE=DE ∴△EFD ≌△EGD ∴∠BED=∠FED=12∠FEG=12×60°=30° 5、如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,若AC=6,BC=8,求线段PD 的长。