环境水力学-射流、羽流及浮射流
静止液体中射流和羽流污染混合区的理论分析

l t esa dpu sp o u e yd n i ei e c f i p c tt iud h a e e t n lme r d cdb e s y d f in yi i i t s aesai l i ,tep p r nj t c nnne c q
t e n z l n t n a d c n e t a i n i lm e t d b h t re v r n n u c i n z n s h o ze a d s a d r o c n r t o mp e n e y t e wa e n io me tf n to o e ,
第 3 卷第 4 1 期
V0 1No 42 1 L3 . 0 0
青 岛 理 工 大 学 学 报
J u n l fQig a c n lgc l iest o r a n d oTe h oo i v riy o a Un
静 止 液 体 中 射 流 和 羽 流 污 染 混 合 区 的 理 论 分 析
关键 词 : 静止液体 ; 射流 ; 羽流 ; 污染混合 区; 准曲线 ; 标 解析方法
中 图分 类 号 : 1 ቤተ መጻሕፍቲ ባይዱX5 X4; 2 文献标志码 : A 文 章 编 号 :6 3 4 O (O O 0 — 0 1一 O 17— 6 2 2 1 ) 4 0 2 7
An l tc lS l to o Po l t ntM i i g Zo e o a y i a o u i n t lu a x n n f
武周 虎
( 青岛理工大学 环境 与市政工程学院 , 青岛 2 6 3 ) 6 0 3
摘
要: 以无 限 空 间静 止 液 体 中 自由紊 动 射 流 和 密 度 差 产 生 羽 流 的浓 度 分 布 理 论 解 为 基 础 , 水 环 境 功 能 区 从
环境水力学-射流、羽流及浮射流(ppt 38页)

– 式中,u为射流的特征流速, L为特征长度,
ρ为射流密度, ρa为环境流体密度。
– 密度佛汝德数Fd反映了作用于射流的惯性力与 浮力之比。当Fd很大时,表明射流是由动量起 支配作用,当Fd很小时,则由浮力起支配作用。 若以当Fd0代表射流出口处密度佛汝德数,显然, 是由动量起支配作用,当Fd0 →0时,属于浮力 羽流。若Fd0 →∞,浮力作用趋于零,为纯射流。 若Fd0处于两者之间则为浮射流。
19.06.2020
4
基本概念
• 分类
– 按射流周围环境边界条件来分:
• 自由射流:射流射入无限空间时,称为自由射流。 • 有限空间射流:射流射入有限空间时,称为非自由射
流。其中:
– 若射流是沿着固壁发展的,叫做附壁射流; – 沿水体自由水表面发展的,叫做表面射流。
– 按射流进入的流体介质来分:
• 淹没射流:射流射入性质一样的同种流体中。 • 非淹没射流
C u((xx,,yy))uC00y b
式中,b’为射流核心区的半宽度;u0为射流出口流速; C0为射流物质浓度。
19.06.2020
9
2、平面淹没紊动射流
• 在核心区以外
Cu((xx,,yy))uC00eexxpp[[((yy(b2bbb))2)22]]y b
• 式中,b’为核心区的宽度; b为射流扩散宽度; u为x方向的速度分量; λ为浓度与速度宽度之比,一般为常数。
– 浮射流(Buoyancy jet):是兼受动量和浮力两 种作用而运动的射流。
19.06.2020
3
• 从水力学的观点来看,浮射流产生的稀释扩 散与环境水流被动的紊流扩散规律有一定的 差别。
– 因为后者的流速场与浓度场无关,并且许多问 题是与固体中热传导规律相似。浮射流排放问 题,则必须把流速场和浓度场耦合起来联立求 解。
流体力学中的流体中的湍流射流动力学

流体力学中的流体中的湍流射流动力学流体力学是研究流体运动规律和力学性质的学科。
在流体力学中,湍流是一种流动状态,具有不规则、混沌和难以预测的特点。
湍流流动具有高速度、各向异性和旋转等特点,广泛应用于工业生产、能源转换和自然界中的诸多领域。
湍流射流是流体力学中的一个重要研究课题。
射流是指通过限制区域内的一个孔道或喷嘴,使流体以较高速度射出。
湍流射流的运动过程复杂多样,涉及到湍流结构、湍流能量耗散和湍流边界层等问题。
湍流射流的动力学是研究湍流射流中流体运动规律和力学性质的科学。
在湍流射流中,流体以高速度从喷嘴中射出,形成射流,并在周围环境中发生与射流相互作用的复杂现象。
湍流射流的动力学研究涉及到湍流射流的生成机理、能量耗散、湍流结构分析以及流动特性的数值模拟等内容。
湍流射流的生成机理是湍流射流动力学研究的首要问题。
湍流射流的生成过程涉及到流体的压力、速度、密度和温度等物理参数的相互作用。
由于射流的高速度和高能量,射流与周围环境发生相互作用时,会产生涡旋、涡流和湍流结构等现象。
湍流射流的能量耗散是湍流射流动力学研究中的重要内容。
射流在流动过程中具有高速度和强烈的湍流运动,会导致能量的损失和耗散。
湍流的能量耗散与湍流结构的演化密切相关,对于理解湍流射流的动力学行为具有重要意义。
湍流射流的湍流结构分析是湍流射流动力学研究的核心内容之一。
湍流结构是指湍流中存在的各种涡旋和湍流涡旋的集合体。
湍流射流的湍流结构分析可以通过实验和数值模拟等手段进行研究,为湍流射流的动态行为提供详细的描述和分析。
湍流射流的流动特性的数值模拟是湍流射流动力学研究的重要方法之一。
通过数值模拟可以模拟湍流射流的流动过程,获得湍流射流中各种物理参数的分布和变化规律。
数值模拟方法的应用可以为湍流射流的优化设计和控制提供理论依据和技术支持。
综上所述,流体力学中的湍流射流动力学是一个涉及湍流生成机理、能量耗散、湍流结构分析和流动特性数值模拟等内容的研究领域。
环境流体力学(第五章)

z 一般在0.1-0.2范围之间。 1.顺直均匀明渠中,
2.弯道和边壁的不规则系数使 z 增大。 z 在天然河道中很少小于0.4, 如弯道较缓,边壁不规则度适中, z 在0.4-0.8范围内。建议
z 0.6(1 0.5)
对于弯道曲率较大和几何特征变化较快的明渠可以采用较高值,但没有
天然河流区别于均匀矩形明渠,由于:
1.水深无规则变化; 2.平面上多有弯曲; 3.边壁不规则.如有局部突出的河岸,丁坝,护堤等.以上因素对垂向扩散,没 有明显的影响,但对横向扩散将发生强烈的影响.
2 2 z 费希尔观测结果: hu ( u ) ( R ) 比例常数约为25。 * x
E
u
h
式中R弯道曲率半径。 与室内观测结果较吻合,与现场资料也基本吻合。但室内观测和现场试 验的 Ez (无量纲横向扩散系数)仍然不同。 总结:
的反射,需在上式加上边界反射项。在考虑边界反射时,
点源的位置是一个重要参数。假定点源位于横坐标 z z0 处,
采用无量纲纵横坐标和无量纲相对浓度来表达浓度分布函
Ez ' z x x 2 数。令无量纲横坐标 z ' B ,无量纲纵坐标 uB ,无 量纲点源坐标 z0 ' z0 ,起始断面平均浓度c0 M ,得到 B uhB
浓度分布函数为:
M uz 2 C ( x, z ) exp( ) 4 Ez x uh 4 Ez x / u
上式在河道断面各点流速等于断面平均流速情况下是正确的。这个 限制在宽矩形渠道中可以接受实验室示踪剂垂向流速很快平均化,并 无明显横向变化。
坐标z从原点算起,坐标原点设在点源中心,针对扩散区为 无限平面。因河流的宽度B为有限,且两侧均有河岸边界
第六章 射流、羽流及浮射流

式中,bm ——混合区的厚度; bc ——核心区的半厚度;
y b c u u 0 exp b m
2
(3)混合区内流速(浓度)分布
y b c c c0 exp b m
2
q udy 2
0
y 2 um exp dy be u m b e
令孔口出射的初始单宽流量为
, q0 2b0u0
q be u m q0 2 b0 u 0
由
2
u b 2u b
2 m e
2 0 0
2 be 2u 0 b0 2 um 2
1 2
0.154
1 2b0 u m 2.28 u 0(与 x 2 成反比) x
任意断面任意点上流速:
y 2b0 u 2.28 u 0 exp b x e
2
(2)流量沿程变化 由于射流边界上的卷吸作用,流量将沿程增大。任意断面上 单宽流量
0
y u m exp b e
2
dy
2c m u m
2 1 y exp 2 1 b dy e
2be 1
2
cm u m
§6-3 圆形淹没紊动射流
圆形喷口在实际问题中极为常见,设所考虑的情况仍然是下游环 境为无限空间同种静止液体。
求解射流问题一般有两种途径:一种是以动量守恒为基础进行积
分,另一种是求解运动微分方程式。下面介绍用求解运动微分方
环境流体力学

环境流体力学环境流体力学是环境类各专业的一门主要基础课,同时又是一门实用性强的技术基础科学。
实践证明理论联系实际是学习环境流体力学行之有效的学习方法,在这方面水力学实验(实训)起着不可替代的重要作用。
如水力计算中应用较广泛的谢才公式、水跃长度计算公式等等,完全是建立在大量实验研究基础上而产生的经验公式。
在现代水力学的研究和发展中,水力学理论分析,数值计算和实验研究二者互为补充、相互促进,形成研究水力学的二个重要方面。
在众多解决环境问题的工作中都会涉及到流体流动的问题。
广义来说,环境流体力学包括研究所有和环境有关的流体运动的知识;但从狭义来说,则其中重要而普遍的部分,即污染物质宰各种水域和大气中扩散与输移的规律为主要内容。
由于流体运动所导致的对含有物质的扩散,输移作用总占重要地位而需要先行分析清楚,这在排放口近区主要是射流运动性质,在远区则属随流扩散性质。
一般研究常从简单情况出发,先不考虑污染物质的存在对流动的影响,即把它作为一种标志物质即示踪物质来分析,而将污染物质的特性部分另行专门处理。
由于紊流和扩散的密切关系,以及对环境流动已有不少引用较精确的紊流模型进行分析,故首先介绍基础流体力学和水力学课程很少涉及的紊流基础知识,然后介绍扩散理论,剪切流中的离散,紊动射流(包括浮力羽流和浮射流)分层流以及地下水中弥散等方面较专门的基础理论和分析方法,以为分析各种环境流体域中物质的扩散,混合与输移问题的基础。
一、紊流脉动的能量方程: 从紊流的总能量方程:_____2''111()()()()()222j j i i i i i j i i i j j j j i j i j j u u u u u q p p u u u u u u u t t x x x x x x x x γγρρ--------∂∂∂∂∂∂∂∂∂∂+=-+++-+-∂∂∂∂∂∂∂∂∂∂'''''2'()()(3.21)j j i i i j j i i i j j j j i j i ju u u u u u u u u q u x x x x x x x x γγ-----∂∂∂∂∂∂∂∂-++-+∂∂∂∂∂∂∂∂ 式中2'''2'2'2123i i q u u u u u ==++ 中减去时均流动部分的能量方程(3.22)____()()()()()()22j j j i i i i i i i i j i j i j i j j j j j i j i j u u u u u u u u u u p u u u u u u u t x x x x x x x x x γγρ--------------∂∂∂∂∂∂∂∂∂∂++=--+-⋅++-+∂∂∂∂∂∂∂∂∂∂即得到紊流脉动部分的能量方程如下:_____'''''222'1()()()(3.23)222j j j i i i i j i j i j j j j j i j i j u u u u u u u q q p q u u u u t x x x x x x x x x γγρ---------∂∂∂∂∂∂∂∂∂∂+=-+-++-+∂∂∂∂∂∂∂∂∂∂上式各项都是对单位质量流体在单位时间内的变化量,其物理意义如下:(1)_22122j ju q q t x --∂∂+∂∂紊动动能的变化,包括当地变化和时均流产生的迁移变化; (2)2()2j j p q u x ρ--∂-+∂紊动对总紊动机械能的扩散,或解释为流体的紊动总动压22p q ρ-+所做的功; (3)i i j ju u u x ---∂-∂紊动应力对流体在时均流中的变形所做的功; (4)__'''()j i i j j iu u u x x x γ-∂∂∂+∂∂∂紊动的粘性切应力对流体所做的功 (5)__'''()j i i j i j u u u x x x γ-∂∂∂+∂∂∂紊动动能的粘性损耗(通过粘性切应力及紊动变形做功所耗损。
环境水力学(教案)

环境水力学(教案)第一章液体流动的基本概念和基本方程(4学时) 1.1基本概念:一.研究对象:①连续介质假定,使物理量为空间坐标和时间的函数。
②描述流体运动特性的物理量v ,p ,ρ,T ,C 。
基本特征参量。
③lagrange Method (拉格朗日) Euler Method (欧拉)④两种方法研究对象不同:流体质点空间点流体微团微团控制体流体系统控制体二.基本参量表示法:用两种方法表示的基本参量方法不同。
Lagrange 法:标量(p ,T ,C ) p=(a ,b ,c ,t )质点迹线γ= γ(a ,b ,c ,t )矢量(,,,)d a b c t dt t γγυυ?===?d a dtυ=Euler 法:(,,,)x y z t υυ=①x ,y ,z 变,()d a dt tυυυυ?==+②附体性dx udt = dy udt = dz udt =i j kx y z ui v j wk υ=++=++?所以i i i i j u u a u t u ??=+?? (张量形式)三.迹线和流线。
迹线:dx udt dy udt dz udt =??=??=?流线:0d υγ?=dx dy dz u v w== (恒定流时重合)四.质点导数。
液体质点的流动参数B 随时间的变化律的欧拉法表示。
也称为随体导数。
DB B Dt t υ?? ?=+ ? ? ? ???迁移变率当地变率算子恒定流:B 0t=?均匀流:()0B υ??=不可压:0D Dtρ= 五.任意度量中系统体积分的随体导数。
①0B d ττ=B 为0τ系统体内积分。
例:?ρ=0d m τρτ=0DmDt=(连续性方程积分形式)(一般将其变为欧拉法形式)ρυ=0()d M τρυτ=动量DMF Dt=∑(动量方程) 2()2e υ?ρ=+20()2e d E τυρτ+=DEW Dt=(外力所做功) e 为内能(随温度、压力变化的能量)单位质量流体所具有的内能,状态函数。
《环境流体力学》课程教学大纲

《环境流体力学》课程教学大纲课程中文名称(英文名称):环境流体力学(Environmental Fluid Mechanics)课程代码:B03135课程类别:专业课程课程性质:必修课课程学时:48学时(理论48学时)学分:3学分适用专业:环境科学和工程专业,及相关环境类专业先修课程:《大学数学(二)》(已修偏微分方程内容)、《大学物理》,并最好先修《水文学》、《环境工程学》一、课程介绍《环境流体力学》课程是环境类各专业的一门主要专业基础课,是以理论性为主同时又是一门实用性强的技术基础科学,大多数院校作为研究生专业课程选修课,少数院校也作为环境工程专业本科高年级的选修课。
从学科角度来讲,该课程是一门综合水利学科与环境学科的课程,是水力学的延伸与发展,适应当前国家水体污染控制与治理的发展需求。
在众多解决环境问题的工作中都会涉及到流体流动的问题。
广义来说,环境流体力学包括研究所有和环境有关的流体运动的知识;但从狭义来说,则其中重要而普遍的部分,即污染物质在各种水域和大气中扩散与迁移的规律及其应用。
本课程系统介绍了环境流体力学的基本概念、基本理论和最新研究成果。
内容主要包括:环境水力学发展概况、水环境基本概念、迁移扩散理论、剪切流离散、射流、羽流、浮射流、水质模型、地下水污染模型、分层流、生态水力学等。
二、课程教学目的和任务通过本课程的学习,旨在使学生能系统地掌握环境流体力学的基本原理、基本方法,学会分析水流现象,揭示水流内在规律;并熟悉相关物理概念,能够熟练使用计算方法进行计算和建模,引导学生用计算机来完成计算;探求因混合、迁移而形成的污染物浓度随空间和时间的变化关系,为水质评价与预报、水质规划与管理、排污工程的规划设计以及水资源保护的合理措施提供基本依据,培养学生独立分析和解决环境工程问题的基本素质与创新能力。
三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明环境流体力学为专业基础课,属交叉学科,内容广泛,而学时有限,因此,贯彻“少而精”的原则,精选有代表性的、有广泛应用的、最基本的、较现代化的内容作为基本要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fd
u
a gL
静水中平面浮射流紊动扩散
– 式中,u为射流的特征流速, L为特征长度,
ρ为射流密度, ρa为环境流体密度。
– 密度佛汝德数Fd反映了作用于射流的惯性力与 浮力之比。当Fd很大时,表明射流是由动量起 支配作用,当Fd很小时,则由浮力起支配作用。 若以当Fd0代表射流出口处密度佛汝德数,显然, 是由动量起支配作用,当Fd0 →0时,属于浮力 羽流。若Fd0 →∞,浮力作用趋于零,为纯射流。 若Fd0处于两者之间则为浮射流。
• 流动主体段,x>6.2D
C u((xx,,rr))uCmm((xx))eexxpp[([(br)rb2])2],x6.2D
• 式中,Cm为轴心浓度,它与射流出口浓度有 如下关系。
Cm 5.49 d
C0
x
静止均质环境淹没紊动射流主要特性表
参数 断面上最大流速um 断面上最大浓度Cm
射流半宽度b 轴线稀释度 断面平均稀释度 浓度分布与速度分 布宽度比λ 卷吸系数α
• 射流断面上的静止压力近似为常数且可假设等于外部 压力。
• 靠近排出口,x<5.2B的范围内是初始段。该段的紊动 扩散还未完全透入射流中心部分,形成中间的主流核 心区。在流动形成段内,射流带流速和浓度分布可表 示为
C u((xx,,yy))uC00y b
式中,b’为射流核心区的半宽度;u0为射流出口流速; C0为射流物质浓度。
环境水力学
射流. 平面淹没紊动射流 3. 圆形淹没紊动射流 4. 静止液体中的浮力羽流 5. 静止均质及线性密度分层环境中圆形浮射流 6. 流动环境中的紊动射流
1、基本概念
• 定义:
– 射流(Jet):一股流体从几何尺寸远小于接纳 流体所占空间尺寸的喷口注入接纳流体,并与 之混合的流动状态,叫做射流。 实际问题多为 紊动射流。
– 羽流(Plume):射流的初始动量很小,靠浮力 的作用使其混合,其扩散云团形似羽毛漂浮在 空中,故称羽流。如废水泄入含盐量大的海水; 废热水排入河流。
– 浮射流(Buoyancy jet):是兼受动量和浮力两 种作用而运动的射流。
• 从水力学的观点来看,浮射流产生的稀释扩 散与环境水流被动的紊流扩散规律有一定的 差别。
断面流速分布
断面浓度分布
二维平面射流
um 2.28 x 12
u0 Cm
B
2.34
x
12
C0
B
b0.15x4
1
Sm
0.43 x B
2 1
S q 0.62 x 2
q0
B
1.41
0.069
u(x,y)umexp(by)2
C(x,y)Cmex p(yb)2
轴对称射流
um 6.2 D
u0
x
Cm 5.59 D
C0
x
b0.11x4
Sm
0.18 x D
S Q 0.32x
Q0
D
1.12
0.056
u(x,r)umexp(br)2
C(x,r)Cmex p(rb)2
4、静止环境水体中的浮射流
• 实际的扩散质排放出流是介于纯射流和纯羽 流之间,其密度佛汝德数Fd为有限值,这种 浮射流在排放口附近动量的影响占优势,而 在远离排放口的地方,出流的动能已经耗散, 于是完全混合的水流就像纯羽流一样了。
断面流速分布
• 射流轴线流速um沿程变化可据动量守恒得到,
将上式代入下式
M ud mu2dy
m
• 可得半经验公式:
um 2.28
2b0 x
u0
• 断面流速分布公式:u2.282xb0u0ex p([by)2]
断面浓度分布
• 同样,根据物质守恒原理,可得断面浓度分 布公式:
C2.342xb0C0ex p(b [y)2]
C u((xx,,yy))uCmm((xx))eexxpp[([(by)yb2])2],x5.2B
• 式中,um,Cm分别表示射流带轴线的流速和浓度值。 2b为射流带宽度;
λ为浓度与速度宽度之比,一般为常数。
射流的横向尺度与纵向尺度相比是较小的, b(x)<<x,并且,射流在横向上的扩展是线性的, 即射流边界扩展角度为常数。
• 平面淹没紊动射流又称二维紊动射流
– 假设一个起始流速u0为的长孔紊动射流,长孔宽 度为B,浓度为C0的污染物射入同密度的静止环 境水体中,如图所示。
静水中平面射流紊动扩散
2、平面淹没紊动射流
初始段
主体段
B C0 u0
b u y
um
2、平面淹没紊动射流
– 通过试验观测可得平面淹没紊动射流的一般特性:
– 因为后者的流速场与浓度场无关,并且许多问 题是与固体中热传导规律相似。浮射流排放问 题,则必须把流速场和浓度场耦合起来联立求 解。
基本概念
• 分类
– 按射流周围环境边界条件来分:
• 自由射流:射流射入无限空间时,称为自由射流。 • 有限空间射流:射流射入有限空间时,称为非自由射
流。其中:
– 若射流是沿着固壁发展的,叫做附壁射流; – 沿水体自由水表面发展的,叫做表面射流。
2、平面淹没紊动射流
• 在核心区以外
Cu((xx,,yy))uC00eexxpp[[((yy(b2bbb))2)22]]y b
• 式中,b’为核心区的宽度; b为射流扩散宽度; u为x方向的速度分量; λ为浓度与速度宽度之比,一般为常数。
– x>5.2B的范围内是流动主体段。该段的紊动已完 全透入射流核心区,流速和浓度分布都是自相似 的,可表示为
– 按射流进入的流体介质来分:
• 淹没射流:射流射入性质一样的同种流体中。 • 非淹没射流
– 另外:若喷口是一很长的狭缝,则可以处理成 平面射流;喷口是一圆孔,则为孔口射流。
– 喷口法线方向沿铅直向的射流,叫做铅直射流; 沿水平向的,叫做水平射流;与水平向呈一角 度的,叫做倾斜射流。
2、平面淹没紊动射流
• 浮射流的轨迹线如图所示。由于浮射流取决于起始出 流角度、浮力、惯性力和紊动剪切力,所以轨迹曲线 是未知的。在局部的“自然”坐标系统(s,n)中, 可写出连续性方程、动量方程和质量守恒方程,这里 s是沿浮射流带轴线在水流方向的坐标,而n是垂直于 s方向的坐标。
3、圆断面紊动射流
• 二维紊动射流的许多试验特征也适用于圆形 孔口的射流情况 :
– 扩散厚度呈线性扩展;
– 静水压力近似为常数; – 对此种轴对称情况,主流核心区长度一般为
6.2D,D为圆孔直径;
• 流速和浓度分布为
– 流动形成段,x<6.2D
Cu((xx,,yy))uC00r b
射流核心区
Cu((xx,,yy))uC00eexxpp[[((rr(b2bbb))2)22]]r b 核心区以外