射频功率测量电路设计

合集下载

射频(RF)电路板设计

射频(RF)电路板设计

射频(RF)电路板设计(RF)板设计胜利的RF设计必需认真注重囫囵设计过程中每个步骤及每个详情,这意味着必需在设计开头阶段就要举行彻底的、认真的规划,并对每个设计步骤的发展举行全面持续的评估。

而这种细致的设计技巧正是国内大多数企业文化所欠缺的。

近几年来,因为设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。

从过去到现在,RF电路板设计犹如电磁干扰(EMI)问题一样,向来是工程师们最难掌控的部份,甚至是梦魇。

若想要一次就设计胜利,必需事先认真规划和注意详情才干奏效。

射频(RF)电路板设计因为在理论上还有无数不确定性,因此常被形容为一种「黑色艺术」(black art) 。

但这只是一种以偏盖全的观点,RF 电路板设计还是有许多可以遵循的法则。

不过,在实际设计时,真正有用的技巧是当这些法则因各种限制而无法实施时,如何对它们举行折衷处理。

重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和睦波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。

微过孔的种类电路板上不同性质的电路必需分隔,但是又要在不产生电磁干扰的最佳状况下衔接,这就需要用到微过孔(microvia)。

通常微过孔直径为0.05mm至0.20mm,这些过孔普通分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。

盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的衔接,孔的深度通常不超过一定的比率(孔径)。

埋孔是指位于印刷线路板内层的衔接孔,它不会延长到线路板的表面。

上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。

第三种称为通孔,这种孔穿过囫囵线路板,可用于第1页共5页。

基于AD8362的射频功率计设计

基于AD8362的射频功率计设计

基于AD8362的射频功率计设计摘要:介绍了AD生产的真有效值功率检测器AD8362的性能和基本原理,给出了由单片机PIC16C71控制的基于AD8362的射频小功率计的设计思想,同时给出了一个射频小功率计的实现电路。

1 概述功率是表征射频信号特性的一个重要参数,随着移动通信技术的,对射频信号功率的精确测量已成为无线通信测量中的重要一环。

射频功率计通常由功率传感器(或称功率探头)和功率指示器两部分组成,根据功率计测量电路的连接方式,功率计可分为吸收式(又称终端式)和通过式两种,吸收式功率计以功率探头作为被测系统的终端负载.它吸收全部待测功率,并由指示器显示测得的功率值。

本文介绍一种基于AD8362芯片的吸收式小功率计的设计方法。

该设计利用AD的真有效值功率检测器AD8362制作功率探头,因此,电路简单,一致性好。

该功率计的工作频率为20k~250M,功率测量范围为-48dBm~12dBm.2 AD8362的原理及性能XX2.1 性能参数XXAD8362是AD生产的真有效值功率检测器,工作频率高达3G,它采用双平方电路比较转换技术和激光修整技术,因而测量线性度较高,其测量结果基本上与信号波形无关。

尤其是在大峰值因数时,能够胜任G、CDMA和W-CDMA等复杂信号对测量精度的要求,可广泛用于对信号功率需要准确测量的高频通信和仪器仪表系统中。

AD8362采用16脚TSSOP封装,可在-40℃~85℃的温度范围内工作。

其特点如下:●可进行真有效值功率测量;XX●具有以dB为单位的线性响应,而且具有优良的温度稳定性;XX●输入动态范围达60dB,对于50阻抗的系统而言,其信号输入可从-45dBm~15dBm;XX●具有从低频到2.7G的平坦输入/输出响应;XX●精度、线性度高,典型线性斜率为50mV/dB;XX●单电源工作,范围为4.5V~5.5V;XX●电源休眠?wer down?功能可降低功耗,休眠时?功耗小于100μW。

射频功率放大器电路设计

射频功率放大器电路设计

本文主要对射频功率放大器电路设计进行介绍,主要介绍了射频功率放大器电路设计思路部分,以及部分设计线路图一、阻抗匹配设计大多数PA都内部集成了到50欧姆的阻抗匹配设计网络,不过也有一些高功率PA 将输出端匹配放在集成芯片外部,以减小芯片面积。

常用的匹配设计有微带线匹配设计、分立器件匹配设计网络等,在典型设计中有可能会将两者共同使用,以改善因为分立器件数值不连续带来的匹配设计不佳的问题。

PA阻抗匹配设计原理和射频中的阻抗匹配相同,都是共轭匹配设计,主要实现功率的最大传输。

常用工具可以使用Smith圆图来观察阻抗匹配设计变化,同时用ADS软件来完成仿真。

二、谐波抑制由本人微博《射频功率放大器 PA 的基本原理和信号分析》得知,谐波一般是由器件的非线性产生的倍频分量。

谐波抑制对于CE、FCC认证显得尤为重要。

由于谐波的频率较分散,所以一般采用无源滤波器来衰减谐波分量,达到抑制谐波的效果。

不仅PA,其它器件包括调制信号输出端都有可能产生谐波,为了避免PA对谐波进行放大,有必要在PA输入端即添加抑制电路。

上图所示无源滤波器常用于2.4G频段的芯片输出端位置,该滤波器为五阶低通滤波器,截止频率约为3GHz,对2倍频和3倍频的抑制分别达到45.8dB和72.8dB。

使用无源滤波器实现谐波抑制有以下优点:l 简单直接,成本有优势l 良好的性能并且易于仿真l 可以同时实现阻抗匹配设计三、系统设计优化系统设计优化主要从电源设计,匹配网络设计出发,实现PA性能的稳定改善。

3.1 电源设计功率放大器是功耗较大的器件,在快速开关的时候瞬间电流非常大,所以需要在主电源供电路径上加至少10uF的陶瓷电容,同时走线尽量宽,让电容放置走线上,充分利用电容储能效果。

PA供电电源一般有开关噪声和来自其它模块的耦合噪声,可以在PA靠近供电管脚处放置一些高频陶瓷电容。

有必要也可以加扼流电感或磁珠来抑制电源噪声。

从SE2576L的结构框图可以看出,该PA一共由三级放大组成,每一级都单独供电,前面两级作为小信号电压增大以及开关偏置电路,其工作电流较小,最后一级功率放大,其电流很大。

2.4G射频双向功放电路设计

2.4G射频双向功放电路设计

2.4G 射频双向功放电路设计在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。

前者实现成本较高,现。

前者实现成本较高,而后者则相对较便宜,且容易实现。

而后者则相对较便宜,且容易实现。

而后者则相对较便宜,且容易实现。

现有的产品基本上通信距离都现有的产品基本上通信距离都比 较小,而且实现双向收发的比较少。

本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g 兼容的无线通信系统兼容的无线通信系统 中。

双向功率放大器的设计双向功率放大器的设计双向功率放大器设计指标:双向功率放大器设计指标:工作频率:2400MHz ~2483MHz 最大输出功率:+30dBm (1W )发射增益:≥27dB接收增益:≥14dB接收端噪声系数:< 3.5dB 频率响应:<±<±1dB 1dB 输入端最小输入功率门限:<?15dB m 具有收发指示功能具有收发指示功能具有电源极性反接保护功能具有电源极性反接保护功能根据时分双工TDD 的工作原理,收发是分开进行的,因此可以得出采用图1的功放整体框图。

图。

功率检波器信号输入端接在RF 信号输入通道上的定向耦合器上。

当无线收发器处在发射状态时,功率检波器检测到无线收发器发出的信号,产生开关切换信号控制RF 开关打向发射P A通路,LNA电路被断开,双向功率放大器处在发射状态。

当无线收发器处在接收状态时,功率检波器由于定向耦合器的单方向性而基本没有输入信号,这时通过开关切换信号将RF通路断开,此时双向功率放大器处在接收状态。

开关切换到LNA通路,P A通路断开,此时双向功率放大器处在接收状态。

射频电路设计原理与应用

射频电路设计原理与应用

【连载】射频电路设计——原理与应用相关搜索:射频电路, 原理, 连载, 应用, 设计随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。

微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。

通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。

但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。

下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。

作者介绍ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。

第1章射频电路概述本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用第2节射频电路概述第2章射频电路理论基础本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等第1节品质因数第2节无源器件特性第3章传输线工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

2.4G射频双向功放电路设计

2.4G射频双向功放电路设计

2.4G射频双向功放电路设计在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。

前者实现成本较高,而后者则相对较便宜,且容易实现。

现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。

本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。

双向功率放大器的设计双向功率放大器设计指标:工作频率:2400MHz~2483MHz最大输出功率:+30dBm(1W)发射增益:≥27dB接收增益:≥14dB接收端噪声系数:< 3.5dB频率响应:<±1dB输入端最小输入功率门限:<?15dB m具有收发指示功能具有电源极性反接保护功能根据时分双工TDD的工作原理,收发是分开进行的,因此可以得出采用图1的功放整体框图。

功率检波器信号输入端接在RF信号输入通道上的定向耦合器上。

当无线收发器处在发射状态时,功率检波器检测到无线收发器发出的信号,产生开关切换信号控制RF开关打向发射PA通路,LNA电路被断开,双向功率放大器处在发射状态。

当无线收发器处在接收状态时,功率检波器由于定向耦合器的单方向性而基本没有输入信号,这时通过开关切换信号将RF 开关切换到LNA通路,PA通路断开,此时双向功率放大器处在接收状态。

下面介绍重点部位的设计:发射功率放大(PA)电路发射功率放大电路的作用是将无线收发器输入功率放大以达到期望输出功率。

此处选择单片微波集成电路(MMIC)作为功率放大器件,并采用两级级联的方式来同时达到最大输出功率与增益的要求。

前级功率放大芯片选择RFMD公司的RF5189,该芯片主要应用在IEEE802.11b WLAN、2.4GHz ISM频段商用及消费类电子、无线局域网系统、扩频与MMDS 系统等等。

射频指标及测试方法

射频指标及测试方法

射频指标及测试方法射频指标是指在射频电路设计和测试中用来描述电路性能的参数。

它们包括射频功率、频率、增益、带宽、噪声系数、相位噪声等指标。

下面将介绍几个常见的射频指标及其测试方法。

1.射频功率:射频功率是指射频信号在电路中传输或输出时的功率大小。

常用的射频功率单位有瓦特(W)、分贝毫瓦(dBm)等。

测试射频功率的方法主要有功率计和功率分配器。

-功率计是一种可以测量射频信号功率的仪器。

它通过接收射频信号并测量其功率大小,适用于不同功率级别的测量。

-功率分配器是一种可以将射频信号分配给多个测量点的设备。

它通常包含多个输出端口和一个输入端口,可以将输入信号按照一定的功率比例分配到各个输出端口上,用于同时测量多个信号的功率。

2.频率:频率是指射频信号的振荡频率。

在射频电路设计和测试中,往往需要准确测量射频信号的频率。

常用的测量方法有频谱仪和频率计。

-频谱仪是一种可以将射频信号的频谱显示出来的仪器。

它可以显示出信号的频率分布情况,包括主要的频率成分和谐波成分。

通过观察频谱仪上的显示,可以准确测量射频信号的频率。

-频率计是一种可以直接测量射频信号的频率的仪器。

它可以通过连接到射频电路上,直接读取射频信号的频率值。

3.增益:增益是指射频信号在电路中传输或放大时的信号增强的程度。

在射频电路设计和测试中,测量增益是非常重要的。

常用的测量方法有功率计和射频网络分析仪。

-功率计测量增益的方法是通过测量射频信号的输入功率和输出功率,计算出功率的增益。

-射频网络分析仪是一种可以测量射频电路的传输属性的仪器。

它可以通过测量射频电路的S参数(散射参数),计算出射频信号在电路中的增益。

4.带宽:带宽是指射频信号的频率范围。

在射频电路设计和测试中,测量带宽是评估电路性能的重要指标。

常用的测量方法有频谱仪和网络分析仪。

-频谱仪测量带宽的方法是通过观察频谱仪上的显示,找到射频信号的起始频率和终止频率,计算出频率范围,即为带宽。

-网络分析仪测量带宽的方法是通过测量射频电路的S参数,找到电路的3dB带宽,即为带宽。

集成电路的射频功率放大器设计与测试

集成电路的射频功率放大器设计与测试

集成电路的射频功率放大器设计与测试随着移动通信技术的迅速发展,无线通信设备在人们生活和工作中的应用越来越广泛。

而射频(Radio Frequency,简称RF)功率放大器作为无线通信系统中不可或缺的关键器件之一,具有放大无线信号、提高通信距离和传输速率等主要作用。

本文将从集成电路的角度出发,探讨射频功率放大器的设计原理、常见技术、测试方法和应用前景。

一、射频功率放大器的设计原理射频功率放大器是一种用于向电子设备输入射频信号的放大器,能够输出较大的放大功率。

其通常由输入匹配网络、放大器、输出匹配网络和直流电源四部分组成。

其中,输入匹配网络用于匹配输入信号和功率放大器的输入阻抗;放大器是实现信号放大的核心部件;输出匹配网络用于匹配输出阻抗和负载(如天线、滤波器等);直流电源用于提供放大器所需的直流电压,以维持其正常工作。

在射频功率放大器设计中,需要考虑多个因素,如放大器的线性度、稳定性、带宽等。

其中,线性度是射频功率放大器的重要性能指标之一。

在信号输入量较小的情况下,射频功率放大器的增益输出与输入信号之间呈线性增加关系。

然而,当输入信号过大时,放大器的输出增益将不再呈线性增加,而是出现非线性失真现象,导致输出信号扭曲变形,降低通信系统的可靠性和稳定性。

二、射频功率放大器的常见技术射频功率放大器的设计和应用非常广泛,同时也涌现了不少新型的技术。

以下是其中的几种常见技术:1、高效率功率放大器技术高效率功率放大器技术是一种利用半导体材料研究高效功率放大器的技术。

该技术能够有效利用电源,提供功率放大器所需的电能。

在高速数码信号传输领域,该技术已被广泛应用。

2、宽带功率放大器技术宽带功率放大器技术是一种能够应对多种频率信号的功率放大器。

在现有的通信系统中,频率范围十分广泛,因此需要一种宽带功率放大器来满足各种信号的放大需求。

3、全固态功率放大器技术随着微电子技术的不断发展,全固态功率放大器技术也逐渐成熟。

该技术能够在多个频段实现全负载、多个模拟和数字信号的放大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频功率测量电路设计
近年来,随着3G 技术的快速发展,在进行通信系统设计时,射频功率的
控制和测量十分重要。

本文以美国ADI 公司的AD8318 单片射频功率测量芯片
为核心,设计了基于对数放大器检测方法的射频功率测量电路,该方法具有动态范围大,频率范围广,精度高和温度稳定性好的特点。

1 测量原理
射频功率测量方法有多种多样,其中对数放大器检测法是射频测量的主要方
向之一,下面从对数放大器内部结构进行分析,研究对数放大检测器如何检测射频信号。

射频信号检测的实质是如何实现将功率信号无失真地转换成电压信号,而这
个转换工作则由对数放大检测器来完成,因此,对数放大检测器是射频测量的关键。

它的核心是对数放大器,对数放大器之间采用直接耦合方式,分成N 级,每级由对数放大器和检波器组成。

每级的输出送到求和器,由求和输出经低通滤波器后得到一个电压信号。

N 一般取值为5~9 级,级数越多,单级增益越小,则输出特性曲线越趋向于线性,这里以5 级为例进行分析,具体电路如图
1 所示。

该对数放大检测器的传递函数为:U0=Ks(Pin-b) (1)式中:b 为截距;Ks 为对
数检测器的斜率,是一个常数;Pin 是输入信号的功率。

在一定的动态范围内,可通过Matlab 仿真软件得到对数放大器的特性曲线,如图2 所示。

从图2 可知,线性动态范围约为-3~67 dBm,在此范围内,输出电压与输入
功率之间呈线性关系。

图2 的横坐标是输入信号的功率,纵坐标为输出电压和误差值。

在坐标系上作图可知,该特性曲线的斜率约为18 mV/dB,截距约为
93 dBm,已知输入信号的情况下,可根据式(1)得到输出电压的大小。

若输入信。

相关文档
最新文档