功率测量的方法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电偶法

热电偶是由两种小同的金属材料组成的。如果把热电偶的热节点置于微波电磁场中,使之直接吸收微波功率,热节点的温度便上升,并由热电偶检测出温度差,该温差热电势便可作为微波功率的量度。用这种原理设计成的功率计称为热电偶式功率计。又因功率测量中热电偶是做成薄膜形式的,故又叫薄膜热电偶式功率计。

热电偶式功率计由两部分组成:一个用于能量转换的薄膜热电偶座,它将微波能量转化为电动势,另一个是高灵敏度的直流放大器,用来检测热电动势。

早期的薄膜热电偶式功率计的热电偶是用铋.锑金属薄膜制成的,这种热电偶的结构示意图如图2-8所示。图中所示的结构用于同轴功率座。热电偶的节点al和a2置于同轴传输线的高频电磁场,节点b2,b1,b3分别置于同轴线的内、外导体上,它的温度保持不变。当微波功率未输入时,热电堆节点之间没有温差,因而没有输出。当微波功率输入时,通过媒质基体的电容耦合,传输到铋-锑薄膜元件,由帕尔帖效应,在a1,a2节点的温度升高,这就与节点bl,b2,b3产生温差,由温差形成热电势,即贝克塞效应。由于这里的热电堆是串联的,因此,总电势等于每对的和。由于热电偶元件可以制成极薄的片状,因此功率灵敏度较高,动态范围也很宽。

功率指示器是一个高灵敏度的直流放大器,图2-9所示为其原理图。热电偶产生的热电势经斩波器转换成交流电压,前置放大器提供了大约60dB的增益。交流信号放大后进入解调器。解调后的输出信号与功率座吸收的微波功率成正比。为了便于修正功率指示器读数,仪器的读数设有“校准系数开关”,改变其位置,就可以使直流放大器的增益随之变化,从而使指示器得到修正。

薄膜热电偶式功率计具有响应速度快,灵敏度高、动态范罔宽、噪声低和零点漂移小等突出优点,适用于多种场合下的功率测量。它的缺点是过载能力差。此外,由于它的寄

牛电抗大,要使这种同轴功率座工作到18GHz以上是很困难的。1973年出现了半导体薄膜热电偶式功率计,它的工作原理同传统的铋一锑薄膜热电偶式功率计相同,但在热偶材料和功率座的结构上做了大的改进。它是在一个0.76mm平方大小的硅片上集成了两个热电

偶。每个热电偶的电阻为100Ω,它们对高频是并联的而对直流是串联的,其等效电路如图2-10所示。

为了使0.76mm平方人小的集成式双热电偶芯片与同轴传输线的阻抗相匹配,用共面传输线将它与同轴线相连接,共面线通过一段渐变线过渡与热电偶相接。这种结构保证了热电偶与

同轴线之间的良好阻抗匹配,从而使功率座的驻波比在0.01~18GHz频率范围内小于1.4。为了不使热电偶输出的微弱信号受到干扰,直流放大器的斩波器和前置放大器置于功率座内,然后用电缆与放大器连接。这种功率指示器实现了数字化读数和自动化操作,不仅能通过指示器面板上的键盘实现人机对话式操作,还具有信息存储和数据处理能力,从而能够采取某些措施消除和修正误差,提高了测量准确度。

热敏电阻法

热敏电阻是一种具有负温度系数的电阻元件,当它的温度升高时,电阻值就变小。由于它对温度非常敏感,因此被广泛的用于微瓦和毫瓦级的功率测量中。热敏电阻大都为珠形,其直径约为0.05~0.5mm,但也有杆形的。早期使用的热敏电阻元件大多用玻璃壳封装。

然而,由于玻璃介质的存在,增加了元件的微波损耗。近年来使用的热敏电阻元件为无外壳结构,因而减少了微波损耗。

(1)热敏电阻功率座

热敏电阻功率座是由热敏电阻元件和座体组成。热敏电阻功率座有波导座和同轴座两种形式。在同轴热敏电阻功率座中使用的热敏电阻元件是双元件结构:两个热敏电阻串联连接,中心电极与同轴线的内导体相接,两个外电极经过隔直电容器与同轴线的外导体连接,每个热敏电阻的工作阻值为100Ω。这样它们的阻抗对直流偏置功率是串联的,而对微波功率是并联的,呈现50Ω的阻抗,正好与同轴线的特性阻抗匹配。

波导热敏电阻座的工作带宽能覆盖波导的额定频段。例如,3cm波导热敏电阻座能工作在8.2~12.4GHz频率范围;8mm波导热敏电阻座能工作在26.5~40GHz频率范围。

随着微波宽带测量技术的发展,波导热敏电阻座的应用受到倍频程的限制,已不适应宽频带测量技术的要求,逐渐被具有宽频带特性的同轴热敏电阻座所代替。由于同轴热敏电阻座能跨越几个倍频程,因此已被广泛地应用于微波功率测量。

目前,具有双热敏电阻元件的同轴热敏电阻座的工作频率已达到18GHz。有的热敏电阻座除了同轴传输线末端的腔体内有一对热敏电阻外,在腔体外部,另有一对热敏电阻(副热

敏电阻对),以补偿环境温度变化对检测热敏电阻的影响,这样在功率测量过程中可以减少环境温度变化的影响。

(2)功率指示器

用热敏电阻测量功率时,最常用的是惠斯通电桥电路作为测量和指示装置,如图2.7所示。即把功率座中的热敏电阻作为电桥的一个臂,利用热敏电阻吸收微波功率后阻值的变化

来测量微波功率。电桥电路多为直流电源供电,有时也利用低频电源供电。

按测量方法分,有如下几种电桥:不平衡电桥、平衡电桥(需要两次读数来计算被测功率值)、自动平衡电桥、自动平衡双电桥等。后者已成为功率测量电桥的主要型式。

随着微波功率测量技术的发展,早期使用的电桥,如手动平衡电桥等,由于它们的测量准确度低、性能不稳定、使用不方便等缺点,已被淘汰。现在广泛使用的是温度补偿式双热敏电阻自动平衡电桥。这种新型电桥大大降低环境温度变化所带来的影响,而且又能直接读数。因而它己成为目前主要使用的功率测量的指示器。这类电桥测量功率的量程为luW~10mW,测量误差限为0.5%~1.0%。它与热敏电阻配合使用,可测量频率高达40GHz的微波功率。

量热计法

量热计法是将电磁能量转换成热能来测量。变换器是感应、吸收电磁能量的负载,称为量热体。负载吸收功率,使之转换成热能,从而量热体温度上升,检测其温差热电势,根据功率和热电势间的关系来确定被测功率。量热体有干负载、流体(水、油等)负载之分。实际测量中常采用替代技术来校准温度测量装置,用已知的直流(或低频)功率来替代被测射频或微波功率。量热式功率计的工作频段已达毫米波段,量程可分别做成大、中、小功率范围,单个仪器动态范围达30~40dB,测量误差可达千分之几。量热式功率计的主要优点是准确度高、可靠性好、动态范围大、阻抗匹配好;缺点是结构和测试技术复杂,对环境温度和测试设备要求苛刻,而且测试时间长。囚它能获得很高的测量准确度,世界各国都采用它作为国家功率标准。采用自动反馈电路可大大缩短测试时问,改善测量的精密度。量热式功率计可分为替代静止式和替代流动式量热计,其主要技术指标为:频率范围,同轴系统一般到

相关文档
最新文档