2015-2016学年湖北省武汉市硚口区八年级(上)期中数学试卷

合集下载

武汉各区八年级上试卷集锦 学生版

武汉各区八年级上试卷集锦 学生版

江岸区2015~2016学年度第一学期期中考试八年级数学试卷(一)一、选择题(共10小题,每小题3分,共30分)9.在△ABC 与△DEF 中,下列各组条件,不能判定这两个三角形全等的是() A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DE ,∠B =∠E ,∠A =∠F C .AC =DF ,BC =DE ,∠C =∠DD .AB =EF ,∠A =∠E ,∠B =∠F10.如图,△ABC 中,点D 是BC 上一点 ,已知∠DAC =30°,∠DAB =75°,CE 平分∠ACB 交AB 于点E ,连接DE ,则∠DEC =() A .10° B .15° C .20°D .25°二、填空题(本大题共6个小题,每小题3分,共18分)11.用直尺和圆规作一个角等于已知角的示意图如下,则利用三角形全等能说明∠A ′O ′B ′=∠AOB 的依据是_________15.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =42°,则∠E =_________度 16.已知△ABC 中,∠A =50°,△ABC 的高BD 、CE 所在的直线交于点F ,则∠BFC =____度 三、解答题(共8题,共72分)23.(本题14分)在平面直角坐标系中,A (3,0)、B (0,3),点P 为线段AB 上一点,且21BP AP ,连接OP (1) 求P 点坐标(2) 作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC =OP(3) 在(2)的条件下,在直线AM 上一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ =ON ,连接点D (3,3)与点Q 的线段交x 轴于点E ,当OE =2,则Q 点坐标为___________(请同学们自己画图,并直接写出结果)武汉二中广雅中学2015—2016学年度上学期期中考试(二)一、选择题(每小题3分,共30分)第9题图第10题图9.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB =()A.35°B.40°C.45°D.55°10.如图,在△ABC中,边AB、BC的垂直平分线相交于点P,下列结论:①P A=PB=PC;②P点到△ABC三边的距离相等;③若∠BAC=70°,则∠BPC=140°;④∠ABC+∠ACP为定值.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)15.如图,在△ABC中,AB=AC,∠B=∠C,∠BAC=52°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为___________度.第15题图第16题图16.图中有三个正方形,则两个小正方形的面积的和与大正方形的面积比为__________.三、解答题(共72分)24.如图1,在平面直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足8+ba+|a-2b+4|=0.-(1)求证∠OAB=∠OBA;(2)如图2,点P为第一象限内一点,且P A=OA,AC⊥x轴交OP于点C,AD平分∠P AC交OP于点D,求∠ODB 的度数.(3)如图3,点A关于y轴对称点为F,点B关于x轴对称点为E,点M在AB的延长线上,点N在BF的延长线上,且∠MEN=45°,试着判断线段MN、AM、FN之间的数量关系并证明你的结论.武珞路中学2015~2016学年度八年级上学期期中测试数学试卷(三)一、选择题(共10小题,每小题3分,共30分)9.如图,在三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使C点落在AB边上的点E处,折痕为BD,则△AED的周长等于()A.7 B.6 C.5 D.810.如图,△ABM和△CDM均为等边三角形,直线BC交AD于点F,点E、N分别为AD、BC的中点,下列结论:①AD =BC;②ME⊥CB;③AF-BF=MF;④△MNE为等边三角形;⑤FM平分∠BME,其中一定成立的有()个A.4 B.3 C.2 D.1二、填空题(本大题共6个小题,每小题3分,共18分)15.点P的坐标为(a,-3),它关于x轴对称点Q的坐标为(5,b),则a+b=_________16.如图,△ABC中,∠ABC=150°,CD是角平分线,BC=a,AC=b,AB=c.点E、F分别是BC、CD上两点,则BF+EF的最小值是__________(用含a、b、c的代数式表示)三、解答题(共8题,共52分)23.(本题10分)在平面直角坐标系中,点A坐标为(8,0),点B坐标为(0,8),点C为OA中点(1) 如图1,过点O作OD⊥BC于点E,交AB于点D,求证:∠OBC=∠AOD(2) 点M从C点出发向x轴正方向运动,同时点N从C点出发向x轴负方向运动,点M、N运动速度均为每秒1个单位长度,运动时间为t秒.射线OE⊥BM于点E,交AB于点D,直线ND交BM于点K①如图2,当0<t<4时,请证明△KNM为等腰三角形②当t>4时,△KNM是否还是等腰三角形,请画出图形,并说明理由2015~2016学年度第一学期期中考试(四)八年级数学试题一、选择题(共8小题,每小题3分,共24分)22.已知直线l 经过点(0,2)且与x 轴平行,则点(6,5)关于直线l 的对称点为 A .(-1,5) B .(6,-1) C .(1,-5) D .(6,1)23.如图,在△ABC 中,∠BAC=110°,MP 、NQ 分别垂直平分AB 、AC ,交BC 于点P 、Q ,则∠PAQ 等于 A .70° B .45° C .40° D .55°二、填空题(共8小题,每小题3分,共24分)第15题图 第16题图15.如图,点D 、E 在AB 上,点F 在AC 上,∠1=∠2=25°,∠3=∠4,则∠5=. 16.如图,△ABC 中, ∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E .AB =6cm ,则△DEB 的周长为_____________ cm .三、解答题(共5小题,共52分) 28.(本题12分)如图1,点A 、B 分别在x 轴负半轴和y 轴正半轴上,点C (2,-2),CA 、CB 分别交坐标轴于D 、E ,CA ⊥AB ,且CA =AB .(1)求点B 的坐标;(2)如图2,连接DE ,求证:BD -AE =DE ;(3)如图3,若点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.FEDCBA54321图2图3Q PNM CBA第11题2009-2010学年度上学期武汉市部分学校期中联考(五)八 年 级 数 学 试 卷一、选择题(每小题3分,共36分)11、如图,△ABC 中,AB=AC ,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,则下列五个结论:①AD 上任意一点到AB 、AC 两边的距离相等;②AD 上任 意一点到B 、C 两点的距离相等;③AD ⊥BC ,且BD=CD ;④∠BDE=∠CDF ; ⑤AE=AF .其中,正确的有( ) A 、2个B 、3个C 、4个D 、5个12、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点, 连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好在BC 上,则AP 的长是( )A 、4B 、5C 、6D 、8 二、填空题(每小题3分,共12分) 15、已知点A (a ,2)、B (-3,b ),关于X 轴对称,求a +b=___________.16、如图,D 为等边三角形ABC 内一点,AD=BD ,BP=AB ,∠DBP=∠DBC ,则∠BPD=___________.26、(12分),如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4) (1)求B 点坐标;(2)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式OFFMAM =1是否成立?若成立,请证明:若不成立,说明理由.POD CBA第12题第16题2015武汉名校八年级(上)期中试卷精选(六)一、选择题(共12小题,每小题3分,共30分)9.如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°10.如图,△ABC中,AB的垂直平分线与∠ACB的外角平分线交于点D,DE⊥AC于E,DF⊥BC于F,则下列结论:①△ADE≌△BDF;②AE=CE+CB;③∠ADB=∠ACB;④∠DCF+∠ABD=90°,其中一定成立有()A.1个B.2个C.3个D.4个二、填空题(本题共6个小题,每小题3分,共18分)15.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,则五边形ABCDE的面积为_________cm216.如图,△ABC中,AB=AC,∠BAC=40°,边AB绕点A逆时针旋转m°,(0<m<360)得到线段AD,连接BD、DC.若△BDC为等腰三角形,则m所有可能的取值是___________三、解答题(本题共9小题,共72分)24.(本题12分)已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC=25.点P 从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点(1) 求D点的坐标(2) 设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等(3) 若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由(七)(江岸卷)24.(本题12分)如图,在平面直角坐标系中,△ABC 的顶点A (-3,0),B (0,3),AD 丄BC 于D 交y 轴于点E (0,1) (1) 求证:AE =BC ,OE =OC(2) 将线段CB 绕点C 顺时针旋转90º后得线段CF ,连结BF ,求△BCF 的面积(3) 点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP 丄PC ,且QP =PC ,连结QO ,分过点Q 作QR 丄x 轴于R ,求OPQROC 定值黄陂区2014年秋部分学校期中调研考试八年级数学试卷(八)一、选择题(共10小题,每小题3分,共30分)9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.如图,OC平分∠AOB,且∠AOB=60°,点P为OC上任意点,PM⊥OA于M,PD∥OA,交OB于D,若OM=3,则PD的长为()A.2 B.1.5 C.3 D.2.5二、填空题(共6小题,每小题3分,共18分)15.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC,若∠AEB=50°,求∠EBC的度数是__________16.Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为__________三、解答题(共9小题,共72分)25.(本题12分)在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F(1) 如图1,连CF,求证:∠ABE=∠ACF(2) 如图2,当∠ABC=60°时,请写出AF、EF、BF的数量关系,不需证明(3) 如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF武汉市梅苑中学2014-2015学年八年级(上)期中试卷(九)一、选择题(共10小题,每小题3分,共30分)9.(3分)(2013秋•昆明校级期末)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.210.(3分)(2012•义乌市模拟)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE 于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个第9题第10题二、填空题(本题共6个小题,每小题3分,共18分)15.(3分)(2015春•海门市期末)如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,则五边形ABCDE的面积为.16.(3分)(2014秋•武汉校级期中)如图,△ABC中,AB=AC,∠BAC=40°,边AB绕点A逆时针旋转m°,(0<m<360)得到线段AD,连接BD、DC.若△BDC为等腰三角形,则m所有可能的取值是.第15题第16题三、解答题(本题共9小题,共72分)25.(12分)(2014秋•武汉校级期中)已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC=25.点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.(1)求D点的坐标;(2)设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等;(3)若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由.武珞路中学2014~2015学年度上学期八年级数学期中模拟试卷(十)一、选择题(共10小题,每小题3分,共30分)9.下列命题中,真命题的个数是( )① 如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等 ② 如果两个三角形有两条边和其中一边上的高对应相等,那么这两个三角形全等 ③ 如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等 ④ 如果两个直角三角形有两条边对应相等,那么这两个三角形全等 A .1个B .2个C .3个D .4个10.(2012·武汉五月调考)如图,在△ABC 中,∠B 、∠C 的角平分线交于点F ,分别过B 、C 作BF 、CF 的垂线,交CF 、BF 的延长线于点D 、E ,且BD 、EC 交于点G .则下列结论:① ∠D +∠E=∠A ;② ∠BFC -∠G =∠A ;③ ∠BCA +∠A =2∠ABD ;④ AB ·BC =BD ·BG ,正确的有( ) A .①②④ B .①③④C .①②③D .①②③④二、填空题(共6小题,每小题3分,共18分)15.在△ABC 中,∠ABC =80°,AB =BC ,点P 是的外角∠DBC 、∠BCE 的平分线的交点,连接AP ,则∠CPA =__________ 16.在平面直角坐标系中,点A(2,0)、B(0,4),以AB 为斜边作等腰直角△ABC ,则点C 坐标为_______________________第15题 第16题 三、解答题(共72分)24.(2013·黄陂区期中)如图所示,在平面直角坐标系中,A 点坐标为(-2,2) (1) 如图(1),在△ABO 为等腰直角三角形,求B 点坐标(2) 如图(1),在(1)的条件下,分别以AB 和OB 为边作等边△ABC 和等边△OBD ,连结OC ,求∠COB 的度数(3) 如图(2),过点A 作AM ⊥y 轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,∠MKJ =90°,过点A 作AN ⊥x 轴交MJ 于点N ,连结EN .则:① NE OE AN +的值不变;② NEOEAN -的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其。

【月考试卷】湖北省武汉市2015-2016学年八年级上月考数学试卷(12月)

【月考试卷】湖北省武汉市2015-2016学年八年级上月考数学试卷(12月)

2015-2016学年湖北省武汉市钢城十一中八年级(上)月考数学试卷(12月份)一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(2a3)2=2a6B.a3÷a3=1(a≠0)C.(a2)3=a5D.a5÷a=a53.如图,AB与CD相交于点E,AD=CB,若使△AED≌△CEB,则应补充的条件是()A.∠A=∠C B.AE=CE C.DE=BE D.不用补充条件4.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2) C.(4,﹣2)D.(4,2)5.计算(﹣2x﹣3y)(2x﹣3y)的结果为()A.3y2﹣2x2B.4x2﹣9y2C.4x2﹣12xy+9y2 D.9y2﹣4x26.将一副三角板按图中方式叠放,则∠m的度数为()A.30° B.45° C.60° D.75°7.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y) D.4x2﹣2xy+y2=(2x﹣y)28.(x2﹣5x+q)的展开式中,不含x3和x2项,则p﹣q的值是()A.22 B.﹣22 C.32 D.﹣329.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE的长为()A.1cm B.2cm C.3cm D.4cm10.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC 边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二.填空题:11.分解因式:4x2﹣1= .12.若x+y=5,xy=﹣4,则x2+y2= .13.若4x2﹣2(m﹣1)x+9是完全平方式,则m= .14.在实数范围内因式分解:x4﹣4= .15.如图,A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接CD、AE交于点P,并分别交BE、BD于N、M,连接MN,下列结论中:①AE=CD;②AM=DP;③MN∥AC;④若AB=2BC,连接DE,则DE⊥BE;⑤BP平分∠APC.正确的结论有:(填写出所有正确的序号)16.已知a+=3,则a2+的值是.三.解答(共8题,共72分)17.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)18.运用乘法公式计算:(1)(2a﹣3b)(﹣2a+3b)﹣(2a+3b)2(2)(2a﹣b﹣3c)(﹣2a+b﹣3c).19.分解因式:(1)3x﹣12x3;(2)9a2(x﹣y)+4b2(y﹣x).20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.22.如图,△ABC的两条高AD、BF交于E,连EC,∠AEB=105°,∠ABC=45°.(1)求∠DEC的度数;(2)求证:AB﹣BE=CE.23.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF= ;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.24.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.2015-2016学年湖北省武汉市钢城十一中八年级(上)月考数学试卷(12月份)参考答案与试题解析一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列运算正确的是()A.(2a3)2=2a6B.a3÷a3=1(a≠0)C.(a2)3=a5D.a5÷a=a5【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法、幂的乘方与积的乘方的运算法则分别进行计算,即可得出答案.【解答】解:A、(2a3)2=4a6,故本选项错误;B、a3÷a3=1(a≠0),故本选项正确;C、(a2)3=a6,故本选项错误;D、a5÷a=a4,故本选项错误;故选B.【点评】此题考查了同底数幂的除法、幂的乘方与积的乘方,关键是熟练掌握有关法则,注意指数的变化和结果的符号.3.如图,AB与CD相交于点E,AD=CB,若使△AED≌△CEB,则应补充的条件是()A.∠A=∠C B.AE=CE C.DE=BE D.不用补充条件【考点】全等三角形的判定.【分析】根据对顶角相等得到∠AED=∠BEC,加上AD=CB,利用“AAS”判断△AED≌△CEB需补充∠A=∠C 或∠D=∠B.【解答】解:∵AD=CB,而∠AED=∠BEC,∴当∠A=∠C时,可判断△AED≌△CEB.故选A.【点评】本题考查了全等三角形的判定:判定两个三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.4.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2) C.(4,﹣2)D.(4,2)【考点】坐标与图形变化-对称.【分析】根据对称的性质,在题中标示出对称点的坐标,然后根据有关性质即可得出所求点的坐标.【解答】解:∵轴对称的性质,y轴垂直平分线段AA',∴点A与点A'的横坐标互为相反数,纵坐标相等.点A(﹣4,2),∴A'(4,2).故选D.【点评】本题主要考查如下内容:1、坐标平面内的点与有序实数对是一一对应的2、掌握好对称的有关性质.5.计算(﹣2x﹣3y)(2x﹣3y)的结果为()A.3y2﹣2x2B.4x2﹣9y2C.4x2﹣12xy+9y2 D.9y2﹣4x2【考点】平方差公式.【分析】根据平方差公式进行计算,即可得出结果【解答】解:(﹣2x﹣3y)(2x﹣3y)=(﹣3y)2﹣(2x)2=9y2﹣4x2;故选:D.【点评】本题考查了平方差公式;熟练掌握平方差公式是解决问题的关键.6.将一副三角板按图中方式叠放,则∠m的度数为()A.30° B.45° C.60° D.75°【考点】三角形的外角性质.【分析】首先根据三角板可知:∠CBA=60°,∠BCD=45°,再根据三角形内角和为180°,可以求出∠m 的度数.【解答】解:∵∠CBA=60°,∠BCD=45°,∴∠m=180°﹣60°﹣45°=75°,故选D.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.7.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y) D.4x2﹣2xy+y2=(2x﹣y)2【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】计算题.【分析】根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.【解答】解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.【点评】本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.8.(x2+px﹣2)(x2﹣5x+q)的展开式中,不含x3和x2项,则p﹣q的值是()A.22 B.﹣22 C.32 D.﹣32【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把原式展开,根据题意列出算式,计算即可.【解答】解:(x2+px﹣2)(x2﹣5x+q)=x4﹣5x3+qx2﹣5px2+px3+pqx﹣2x2+10x﹣2q=x4+(p﹣5)x3+(q﹣5p﹣2)x2+(pq+10)x﹣2q,由题意得,p﹣5=0,q﹣5p﹣2=0,解得,p=5,q=27,则p﹣q=﹣22,故选:B.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.9.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE的长为()A.1cm B.2cm C.3cm D.4cm【考点】角平分线的性质;平行线的性质.【分析】由角平分线的定义和平行线的性质易得DF=AF=4m,∠DFC=∠BAC=30°,作DG⊥AC于G,根据角平分线的性质可得,DG=DE,在Rt△FDG中,易得DG=DF=2cm,即可求得DE.【解答】解:作DG⊥AC于G,∵AD平分∠BAC,∴∠BAD=∠CAD,DE=DG,∵DF∥AB,∴∠ADF=∠BAD,∠DFC=∠BAC=30°,∴∠ADF=∠CAD,∴DF=AF=4m,∴Rt△FDG中,DG=DF=2cm,∴DE=2cm.故选B.【点评】此题主要考查角平分线、平行线的性质和直角三角形中30°锐角所对直角边等于斜边的一半,作辅助线是关键.10.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC 边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④【考点】旋转的性质;线段垂直平分线的性质.【分析】先利用旋转的性质得到AB=AC,AC=AE,∠BAC=∠EAC,则可判断△ABD为等边三角形,所以∠BAD=∠ADB=60°,则∠EAC=∠BAD=60°,再计算出∠DAC=30°,于是可对①进行判断;接着证明△AEC为等边三角形得到EA=EC,加上DA=DC,则根据线段垂直平分线的判定方法可对②进行判断;然后根据等边三角形的性质得DE平分∠AEC,则∠AED=30°,则可对③进行判断;接下来证明∠EAD=90°,则利用含30度的直角三角形三边的关系得到ED=2AD,所以ED=2AB,则可对④进行判断.【解答】解:在Rt△ABC中,∵∠ACB=30°,∴∠ABC=60°,∵△ABC绕直角顶点A逆时针旋转到ADE的位置,∴AB=AC,AC=AE,∠BAC=∠EAC,∴△ABD为等边三角形,∴∠BAD=∠ADB=60°,∴∠EAC=∠BAD=60°,∵∠BAC=90°,∴∠DAC=30°=∠ACB,∴∠DAC=∠DCA,所以①正确;∵AC=AE,∠EAC=60°,∴△AEC为等边三角形,∴EA=EC,而DA=DC,∴ED为AC的垂直平分线,所以②正确;∴DE平分∠AEC,∴∠AED=30°,∴∠BED<30°,所以③错误;∵∠EAD=∠EAC+∠CAD=60°+30°=90°,在Rt△AED中,∵∠AED=30°,∴ED=2AD,∴ED=2AB,所以④正确.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定和性质、线段垂直平分线的判定.二.填空题:11.分解因式:4x2﹣1= (2x+1)(2x﹣1).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式即可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4x2﹣1=(2x+1)(2x﹣1).故答案为:(2x+1)(2x﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.若x+y=5,xy=﹣4,则x2+y2= 33 .【考点】完全平方公式.【分析】把x2+y2写出(x+y)2﹣2xy的形式,然后把已知代入即可求值.【解答】解:∵x+y=5,xy=﹣4,∴x2+y2=(x+y)2﹣2xy=52﹣(﹣8)=33,故答案为33.【点评】本题考查了完全平方公式的应用,用了整体代入思想,此题难度不大.13.若4x2﹣2(m﹣1)x+9是完全平方式,则m= ﹣5或7 .【考点】完全平方式.【分析】根据完全平方公式得出﹣2(m﹣1)=±2×2×3,求出即可.【解答】解:∵4x2﹣2(m﹣1)x+9是完全平方式,∴﹣2(m﹣1)=±2×2×3,解得:m=﹣5或7.故答案为:﹣5或7.【点评】此题考查了对完全平方公式的应用,注意;完全平方式有a2+2ab+b2和a2﹣2ab+b2.14.在实数范围内因式分解:x4﹣4= (x2+2)(x+)(x﹣).【考点】实数范围内分解因式.【专题】计算题.【分析】先运用平方差公式,分解成(x2+2)(x2﹣2),再把x2﹣2写成x2﹣,符合平方差公式的特点,可以继续分解.【解答】解:x4﹣4=(x2+2)(x2﹣2)=(x2+2)[x2﹣]=(x2+2)(x+)(x﹣).故答案为:(x2+2)(x+)(x﹣).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.15.如图,A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接CD、AE交于点P,并分别交BE、BD于N、M,连接MN,下列结论中:①AE=CD;②AM=DP;③MN∥AC;④若AB=2BC,连接DE,则DE⊥BE;⑤BP平分∠APC.正确的结论有:①③④⑤(填写出所有正确的序号)【考点】三角形综合题.【分析】根据等边三角形的性质得到AB=BD,BE=BC,∠ABD=∠CBE=60°,证得△ABE≌△DBC,由全等三角形的性质得到AE=CD,故①正确;由全等三角形的性质得到∠BAP=∠BDC,由A、B、C在一条直线上,求得∠DBN=180°﹣∠ABD﹣∠CBE=60°,推出△ABM≌△DBN,得到AM=DN,BM=BN,由DN>PD,得到AM>PD,故②错误;推出△BMN是等边三角形,得到∠MNB=60°,根据平行线的性质即可得到MN∥AC,故③正确;取BD的中点O,连接EO,DE,由AB=2BC,得到BD=2BE,证得△BEM是等边三角形,根据直角三角形的判定得到∠BED=90°,得到DE⊥BE;故④正确;过B作BG⊥CD于G,BH⊥AE于H,通过△ABH≌△DBG,得到BH=BG,根据角平分线的性质得到BP平分∠APC;故⑤正确;当A、B、C在一条直线上时,∠ABM=∠DBN=60°,∠DBE≠60°,则∠ABM≠∠DBN,于是得到△ABM与△DBN不全等,推出AM≠DN,故⑥错误.【解答】解:∵△ABD、△BCE均为等边三角形,∴AB=BD,BE=BC,∠ABD=∠CBE=60°,∴∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△DBC,∴AE=CD,故①正确;∵△ABE≌△DBC,∴∠BAP=∠BDC,∵A、B、C在一条直线上,∴∠DBN=180°﹣∠ABD﹣∠CBE=60°,∴∠ABD=∠DBN,在△ABM与△BDN中,,∴△ABM≌△DBN,∴AM=DN,BM=BN,∵DN>PD,∴AM>PD,故②错误;∵BM=BN,∠MBN=60°,∴△BMN是等边三角形,∴∠MNB=60°,∴∠MNB=∠NBC,∴MN∥AC,故③正确;取BD的中点O,连接EO,DE,∵AB=2BC,∴BD=2BE,∴BE=BM=DM,∵∠MBE=60°,∴△BEM是等边三角形,∴EM=BM=DM,∴∠BED=90°,∴DE⊥BE;故④正确;过B作BG⊥CD于G,BH⊥AE于H,∴∠AHB=∠DGB=90°,在△ABH与△DBG中,,∴△ABH≌△DBG,∴BH=BG,∴BP平分∠APC;故⑤正确;∵当A、B、C在一条直线上时,∠ABM=∠DBN=60°,∠DBE≠60°,则∠ABM≠∠DBN,∴△ABM与△DBN不全等,∴AM≠DN,故⑥错误.故答案为:①③④⑤.【点评】此题考查了等边三角形的判定与性质与全等三角形的判定与性质,平行线的判定和性质,此题图形比较复杂,解题的关键是仔细识图,找准全等的三角形.16.已知a+=3,则a2+的值是7 .【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.三.解答(共8题,共72分)17.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.运用乘法公式计算:(1)(2a﹣3b)(﹣2a+3b)﹣(2a+3b)2(2)(2a﹣b﹣3c)(﹣2a+b﹣3c).【考点】平方差公式;完全平方公式.【分析】根据乘法公式即可求出答案.【解答】解:(1)原式=﹣(2a﹣3b)(2a﹣3b)﹣(2a+3b)2=﹣(4a2﹣12ab+9b2)﹣(4a2+12ab+9b2)=﹣8a2﹣18b2;(2)原式=﹣(2a﹣b﹣3c)(2a﹣b+3c)=﹣[(2a﹣b)﹣3c][(2a﹣b)+3c]=﹣(2a﹣b)2+9c2=9c2﹣4a2+4ab﹣b2【点评】本题考查整式运算,涉及平方差公式,完全平方公式.19.分解因式:(1)3x﹣12x3;(2)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣3x(4x2﹣1)=﹣3x(2x+1)(2x﹣1);(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.【考点】因式分解的应用.【专题】几何图形问题;探究型;因式分解.【分析】由2a2+2b2+2c2=2ab+2ac+2bc分组因式分解,利用非负数的性质得到三边关系,从而判定三角形形状.【解答】解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,所以(a﹣b)2=0,(a﹣c)2=0,(b﹣c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.【点评】此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.考查学生综合运用数学知识的能力.22.如图,△ABC的两条高AD、BF交于E,连EC,∠AEB=105°,∠ABC=45°.(1)求∠DEC的度数;(2)求证:AB﹣BE=CE.【考点】全等三角形的判定与性质.【分析】(1)首先证明△BDE≌△ADC,推出DE=EC,延长即可解决问题.(2)如图2中,延长EF到M使得FM=EF.只要证明△ECM是等边三角形,BA=BM即可证明.【解答】(1)解:如图1中,∵△ABC的两条高AD、BF交于E,∴∠ADB=∠ADC=∠AFE=90°,∵∠ABC=45°,∴∠BAD=90°﹣∠ABC=45°,∴∠ABD=∠ADB,∴BD=AD,∵∠DBE+∠ACB=90°,∠DAC+∠ACD=90°,∴∠DBE=∠DAC,在△BDE和△DAC中,,∴△BDE≌△ADC,∴DE=DC,∴∠DEC=∠DCE=45°.(2)证明:如图2中,延长EF到M使得FM=EF.∵∠AEB=105°,∴∠AEF=∠BED=75°,∴∠DBE=∠DAC=15°,∴∠MEC=∠EBC+∠ECD=60°,∵AC⊥EM,EF=FM,∴AE=AM,CE=CM,∴△ECM是等边三角形,∴EC=EM,∴∠AEM=∠AMB=75°,∠FAE=∠FAM=15°,∴∠BAM=∠BAD+∠DAM=75°,∴∠BAM=∠BMA,∴BA=BM,∴AB=BE+EM=BE+EC,∴AB﹣BE=EC.【点评】本题考查全等三角形的判定和性质.等腰直角三角形的性质、等边三角形的判定和性质,线段的垂直平分线的性质定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考常考题型.23.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF= 2 ;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.【考点】含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.【专题】动点型.【分析】(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.【解答】(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.【点评】本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.24.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.【考点】一次函数综合题.【分析】(1)由非负数的性质可求得a、b、d的值,可求得A、B、D的坐标;(2)由条件可证明△ABO≌△BED,可求得DE和BD的长,可求得E点坐标,再求得直线AE的解析式,可求得F点坐标;(3)过E作EG⊥OA于点G,EH⊥PQ于点Q,可证明四边形GEHP为正方形,在GA上截GI=QH,可证明△IGE≌△QHE,可证得∠IEM=∠MEQ=45°,可证明△EIM≌△EQM,可得到IM=MQ,再结合条件可求得PH=AI=PQ,可求得答案.【解答】解:(1)∵++(2﹣d)2=0,∴a=﹣1,b=3,d=2,∴A(0,3),B(﹣1,0),D(2,0);(2)∵A(0,3),B(﹣1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,在△ABO和△BED中,,∴△ABO≌△BED(AAS),∴DE=BO=1,∴E(2,1),设直线AE解析式为y=kx+b,如图1,把A、E坐标代入可得,解得,∴直线AE的解析式为y=﹣x+3,令y=0,可解得x=3,∴F(3,0);(3)过E作EG⊥OA,EH⊥PQ,垂足分别为G、H,在GA上截取GI=QH,如图2,∵E(2,1),P(﹣1,0),∴GE=GP=GE=PH=2,∴四边形GEHP为正方形,∴∠IGE=∠EHQ=90°,在Rt△IGE和Rt△QHE中,∴△IGE≌△QHE(SAS),∴IE=EQ,∠1=∠2,∵∠QEM=45°,∴∠2+∠3=45°,∴∠1+∠3=45°,∴∠IEM=∠QEM,在△EIM和△EQM中,,∴△EIM=EQM(SAS),∴IM=MQ,∴AM﹣MQ=AM﹣IM=AI,由(2)可知OA=OF=3,∠AOF=90°,∴∠A=∠AEG=45°,∴PH=GE=GA=IG+AI,∴AI=GA﹣IG=PH﹣QH=PQ,∴==1.【点评】本题主要考查一次函数的综合应用,涉及知识点有非负数的性质、全等三角形的判定和性质、待定系数法、正方形的判定和性质知.在(1)中掌握非负数的性质是解题的关键,在(2)中证明△ABO≌△BED求得DE的长是解题的关键,在(3)中构造三角形全等证明AM﹣MQ=AI=PQ是解题的关键.本题涉及知识点较多,综合性较强,难度较大,特别是第(3)问中条件∠QEM=45°角的应用是解题的关键点.。

2015-2016武汉市江夏区八年级上学期期中调研测试数学试卷

2015-2016武汉市江夏区八年级上学期期中调研测试数学试卷

2015-2016武汉市江夏区八年级上学期期中调研测试数学试卷(时间:120分钟总分:120分)一、选择题(共10小题,每小题3分,共30分)1.在△ABC 中,∠A=58°,∠B=72°,则∠C=( ).A.60°B.50°C.55°D.65°2.已知三角形的两边长分别是4、9,则第三边的长a 的取值范围是( )A.5<a <13B.5≤a ≤13C.a >5D.a <133.一个多边形的每个内角都是108°,则这个多边形是( )A.五边形B.六边形C.七边形D.八边形4.下列说法正确的是( )A.形状相同的两个三角形是全等三角形B.面积相等的两个三角形是全等三角形C.三个角对应相等的两个三角形是全等三角形D.三条边对应相等的两个三角形是全等三角形5.如图,在△ABC 中,AD 是角平分线,AB=8,AC=6,则S △ABC :S △ACD =( )A.8:6B.4:3C.7:3D.7:46.如图,△ABC 中,AD ⊥BC 于D ,M 为AD 上一点,连BM 、CM ,∠AMB=115°,则∠MBC=( )A.65°B.55°C.35°D.25°7.已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大60°,则∠A=( )A.10°B.20°C.30°D.40°8.如图△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,若BE=2,BC=8,则△BDE 的周长是( )A.12B.10C.8D.69.如图,∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,连AE ,若AD=15,DC=6,则AB=( )A.11B.10C.9D.810.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,要使∠A=∠D ,还需添加个条件是( )A.∠ABC=∠DEFB.∠ACB=∠FC.AC ∥DFD.BE=CF二、填空题(共6小题,每小题3分,共18分)11.角是轴对称图形,它的对称轴是___________.12.若正n 边形的每个内角都等于150°,则其内角和为_________.13.△ABC ≌△DEF ,且△ABC 的周长为16,若AB=5,EF=7,则AC=_______.14.长为3,5,7,10的四条线段,选其中的三条线段拼成三角形,有________种选法.15.如图,△ABC 中,∠A=50°,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,∠DCB=48°,则∠B 的度数为_________. B D C A 5题图 B D C AM 6题图 A B E C F D10题图 D C E A B 9题图 A E B D C 8题图 D A ’ BE F16.如图,点D 为线段BC 的中点,线段DE 、DF 满足DE ⊥DF ,连BE 、CF 、EF ,则(EF-CF)与BE 之间的数量关系是_________.三、解答题(共8小题,共72分)17.(本小题满分8分)如图,AB ⊥BC ,AD ⊥DC ,垂足分别为B 、D ,AC 平分∠BAD ,请补充完整过程,说明△ABC ≌△ADC. 证明:∵AB ⊥BC ,AD ⊥DC ∴∠____=∠_____=90°(垂直的定义)∵AC 平分∠BAD∴∠______=∠_______(角平分线的定义) 在△ABC 和△ADC 中____________ _____________ _____________∴△ABC ≌△ADC( )18.(本小题满分8分)已知:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等.(要求:写出作法,并保留作图痕迹,写出结论)19.(本小题满分8分)如图,AB=CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,CE=BF.求证:AB ∥CD.20.(本小题满分8分)小强家门口有一池塘,池塘两岸相对的有两棵树A 、B ,小强为了测量A 、B 的距离,在池塘外取AB 的垂线BF 上的两点C 、D ,使BC=CD ,过D 作DE ⊥BD 于D ,并使E 与A ,C 在一条直线上,则测得DE 的长度就知道AB 的距离了,你知道这是为什么吗?请说明理由.19题图C D F E AB 18题图 A O BN M 17题图A BD C21.(本小题满分8分)如图,已知Rt △ABC ≌Rt △ADE ,∠ABC=∠ADE=90°,BC 与DE 相交于点F ,连接CD ,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.22.(本小题满分10分)如图,把一个直角三角形△ACB(∠ACB=90°)绕着顶点B 顺时针旋转60°,使得点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置,F 、G 分别是BD 、BE 上的点,BF=BG ,延长CF 与DG 交于点H.(1)求证:CF=DG ; (2)求∠FHG 的度数.23.(本小题满分10分)在△ABC 中,∠ACB=90°,AC=a ,BC=b ,其中a ,b 是方程组⎩⎨⎧4a +3b =507a -5b =26的解.点P 以3个单位/s 的速度从A 出发沿A →C →B 路径运动,l 为过点C 的任意一条直线,过P 作PD ⊥l 于D.(1)求a ,b 的值.(2)过点B 作BE ⊥l 点E ,当点P 在线段AC 上时,求t 是多少时,△PDC ≌△CEB ?画图并解答.此时,PD ,BE 和DE 三条线段满足的关系式是什么(直接写出)?(3)直线1,如图所示,点Q 以1个单位/s 的速度从B 点同时出发沿B →C →A 路径运动,P ,Q 两点有一点到达相应的终点B 和A 时才能停止运动,过点Q 作QF ⊥l 于点F.问:点Q 运动多少时间时,△PDC 和△QFC 全等?并说明理由.24.如图,△ABC 中,AB=AC ,AE ⊥BC 于E ,D 为△ABC 外一点,且∠ABD=∠ACD ,BD 交AC 于O ,AM ⊥BD 于M ,连AD. (1)求证:∠BDC=2∠BAE(2)求证:∠DBC+∠BCD=2∠ADB(3)求BD-CD DM的值. 24题图A D M O EB Cl 23题图C BA 22题图B F H G D EC A 21题图A DBC F2015-2016学年度上学期期中考试八年级数学参考答案一、选择题:1.B2.A3.A4.D5.C6.D7.C8.B9.C 10.D二、填空题:11.角平分线所在的直线 12.1800° 13.4 14.2 15. 34° 16.BE>EF-CF三、解答题:17.∠B=∠D ,∠BAC=∠DAC ,证△ABC ≌△ADC(AAS)(每空1分)18.作法:1.作∠AOB 的平分线OC 交直线MN 于点P.2.则点P 就是所求的点.结论:角平分线上的点到角的两边的距离相等.(作图4分,作法2分,结论2分)19.证△CFD ≌△BEA ,(6分)∴∠C=∠B(1分),∴AB ∥CD(1分)20.证△ABC ≌△DEC(6分), ∴AB=ED(1分),∴测得DE 的长就知道AB 的距离了.(1分)21.(1)△ADC ≌△ABE ,△DCF ≌△BEF(2分)⑵连AF ,证△ABF ≌△ADF ,∴BF=DF ,∴BC-BF=DE-DF ,∴CF=EF(6分)22.(1)证△CBF ≌△DBG(5分)(2)120°(5分)23.(1)a=8,b=6(各2分,共4分)(2)t=23(2分);PD+BE=DE(1分)(共3分) (3)t=1或72(计算出一个给2分,计算出两个给3分。

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。

武汉市各区(集合)2015-2016学年八年级上期中数学试卷及答案

武汉市各区(集合)2015-2016学年八年级上期中数学试卷及答案

粮道街中学2015~2016学年度上学期期中考试八年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.点P(2,-3)关于y轴对称的点的坐标为()A.(-2,3) B.(-2,-3) C.(3,-2) D.(-3,2)3.以下长度的三条线段,不能组成三角形的是()A.9、15、7 B.4、9、6 C.15、20、6 D.3、8、44.已知三角形△ABC的三个内角满足∠B+∠C=3∠A,则此三角形()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三甲性5.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.3 B.4 C.5 D.66.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC 等于()A.140°B.120°C.130°D.无法确定7.如图所示,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC =EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组8.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.169.下列命题中,真命题的个数是()①如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等②如果两个三角形有两条边和其中一边上的高对应相等,那么这两个三角形全等③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等④如果两个直角三角形有两个角对应相等,那么这两个三角形全等A.1个B.2个C.3个D.4个10.等腰直角三角形中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,过A作AT⊥BE于T点,有下列结论:①∠ADC=135°;②BC=AB+AE;③BE=2AT+TE;④BD-CD=2AT,其中正确的是()A.①②③B.①②④C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一个三角形有两条边长度分别是4、9,则第三边x的范围是__________12.一个正多边形的每个外角都等于30°,则这个多边形的边数是__________13.在直角坐标系中,已知A(-a,2)、B(-3,b)关于y轴对称,求a+b=__________14.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C=__________15.如图,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点.若AB=12 cm,BC=10 cm,∠A=49°,则△BCE的周长=__________,∠EBC=__________16.在平面直角坐标系中,点A(4,0)、B(0,8),以AB为斜边作等腰直角△ABC,则点C坐标为__________三、解答题(共8题,共72分)17.(本题8分)△ABC中,∠B=∠C+10°,∠A=∠B+10°,求△ABC的各个内角的度数18.(本题8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC =DF19.(本题8分)如图,利用关于坐标轴对称的点的坐标特点(1) 作出△ABC关于x轴对称的图象(2) 写出A、B、C的对应点A′、B′、C′的坐标(3) 直接写出△ABC的面积__________20.(本题8分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4求证:(1) △ABC≌△ADC;(2) BO=DO21.(本题8分)如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G,求证:BD=CG22.(本题10分)如图,已知△ABC为等边三角形,延长BC到D,延长BA到AE=BD,连接CE、DE,求证:EC=ED23.(本题10分)已知△ABC和△ADE的顶点公共,点B、A、E在一条直线上.AB=AC,AD=AE,∠BAC=∠DAE,PB=PD,PC=PE(1) 如图1,若∠BAC=60°,则∠BPC+∠DPE=_________(2) 如图2,若∠BAC=90°,则∠BPC+∠DPE=_________(3) 在图2的基础上将等腰Rt△ABC绕点A旋转一个角度,得到图3,则∠BPC+∠DPE=_________,并证明你的结论24.(本题12分)如图,在平面直角坐标系中,A(0,a)、B(b,0)、C(c,0),且2a+|b-2|+(c+2)2=0(1) 直接写出A、B、C各点的坐标:A_________、B_________、C_________(2) 过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H,证明:PA=PH(3) 在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论粮道街中学2015~2016学年度上学期期中考试八年级数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案C B D A B C C A A B二、填空题(共6小题,每小题3分,共18分)11.5<x<13 12.12 13.-114.92°15.22 cm,16.5°16.(6,6)、(-2,2)三、解答题(共8题,共72分)17.解:∠A=70°,∠B=60°,∠C=50°18.证明:∵FB=CE∴FB+FC=CE+FC即BC=EF∵AB∥ED∵AC ∥FD ∴∠ACB =∠DFE 在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠D F E A C B EF BC E B∴△ABC ≌△DEF (ASA ) ∴AC =DF 19.解:(3) 3.5 20.解:略21.证明:∵ABC 为等腰直角三角形,且CH ⊥AB ∴∠ACG =45°∵∠CAG +∠ACE =90°,∠BCF +∠ACE =90° ∴∠CAG =∠BCF 在△ACG 和△CBD 中⎪⎩⎪⎨⎧∠=∠=∠=∠C B D A C G CB AC BCD CAG∴△ACG ≌△CBD (ASA ) ∴BD =CG22.证明:延长BD 至F ,使DF =BC ,连接EF ∵AE =BD ,△ABC 为等边三角形 ∴BE =BF ,∠B =60° ∴△BEF 为等边三角形 ∴∠F =60°∴BE =EF ,∠B =∠F =60°,BC =DF ∴△ECB ≌△EDF ∴EC =ED 23.解:(1) 120° (2) 180°(3) ∠BPC +∠DPE =180°,理由如下: 连接BE 、DC可证:△BAE ≌△CAD (SAS ) ∴CD =BE ,CD ⊥BE ∴△BPE ≌△DPC (SSS ) 设BE 、CD 交于点F∴∠BPD =∠BFD =90°,∠CPE =∠CFE =90° ∴∠BPC +∠DPE =180°24.解:(1) A (0,2)、B (2,0)、C (-2,0) (2) 过点P 作PD ⊥AB 于D ,PE ⊥MN 于N ∵PB 平分∠ABH∵∠APH=∠DPE=90°∴∠APD=∠HPE可证:△PAD≌△PHE(ASA)∴PA=PH(3) PG=OG,PG⊥OG等腰直角三角形共底角顶点旋转的基本模型2015-2016学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.14.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS6.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于__________.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为__________.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是__________.15.各边长度都是整数、最大边长为8的三角形共有__________个.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直接写出∠A与∠BFC的数量关系.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探索∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),继续这样的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是__________.(3)如果把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是__________ (用含有n的代数式表示).22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直接写出CE的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2015-2016学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.6.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分这个角为底角和顶角两种情况,利用三角形内角和定理求解即可.【解答】解:当这个内角为顶角时,则顶角为40°,当这个内角为底角时,则两个底角都为40°,此时顶角为:180°﹣40°﹣40°=100°,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.【点评】此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】根据题意直接动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于75°.【考点】三角形内角和定理.【分析】根据已知条件设∠A=3x,∠B=4x,∠C=5x,然后根据三角形的内角和列方程即可得到结果.【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠C=5x=75°,故答案为:75°.【点评】本题考查了三角形的内角和,熟练掌握三角形的内角和是解题的关键.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,此时周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.各边长度都是整数、最大边长为8的三角形共有20个.【考点】三角形三边关系.【分析】利用三角形三边关系进而得出符合题意的答案即可.【解答】解:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.故答案为:20.【点评】此题主要考查了三角形三边关系,正确分类讨论得出是解题关键.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【考点】圆周角定理.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.【考点】作图—复杂作图;三角形的面积.【专题】作图题.【分析】(1)过点A作AM⊥BC于M,过点C作CN⊥AB于N,则AM、BN为△ABC的高;(2)根据三角形面积公式得到AM•BC=CN•AB,然后利用比例性质求BC与AB的比值.【解答】解:(1)如图,AM、CN为所作;(2)∵AM、BN为△ABC的高,∴S△ABC=AM•BC=CN•AB,∴===.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.【考点】全等三角形的判定.【分析】取BC中点D,作直线AD,利用SSS即可证明△ABD≌△ACD.【解答】解:如图,取BC中点D,作直线AD,则直线AD将△ABC分成两个全等的三角形,即△ABD≌△ACD.理由如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直接写出∠A与∠BFC的数量关系.【考点】三角形内角和定理.【分析】(1)根据角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,再根据三角形内角和定理求出即可;(2)根据角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,然后表示出∠FBC+∠FCB,再根据三角形的内角和等于180°列式整理即可得证.【解答】解:(1)∵∠ABC=42°,∠A=60°,∴∠ACB=78°,∵∠ABC、∠ACB的平分线相交于点F,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°﹣(∠FBC+∠FCB)=120°;(2)∠BFC=90°+A,理由是:∵∠ABC与∠ACB的平分线相交于点F,∴∠FBC=∠ABC,∠FCB=∠ACB,∴∠FBC+∠FCB=(∠ABC+∠ACB),在△FBC中,∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探索∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),继续这样的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是360°.(3)如果把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是360°(n﹣2)(用含有n的代数式表示).【考点】翻折变换(折叠问题).【分析】(1)运用折叠原理及四边形的内角和定理即可解决问题;(2)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6的度数和;(3)利用(1)(2)的计算方法:类比得出答案即可.【解答】解:(1)连接AA′,∵∠1=∠BAA′+∠AA′E,∠2=∠CAA′+∠AA′D,∴∠1+∠2=∠BAA′+∠AA′E+∠CAA′+∠AA′D=∠BAC+∠DA′E,又∵∠BAC=∠DA′E,∴∠1+∠2=2∠BAC;(2)∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°;(3)∠1+∠2+∠3+…+∠2n=2(∠B+∠C+∠A)(n﹣2)=360°(n﹣2).【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,掌握折叠的性质是解决问题的关键.22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB 于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直接写出CE的长.【考点】全等三角形的判定与性质.【分析】(1)根据SAS证明△ACD≌△BDE即可;(2)根据全等三角形得出AC=BD,进而得出BD=BC,利用角的计算即可解答;(3)过E作EF⊥AB于F,DH⊥BC于H,根据等腰直角三角形的性质求出EF的长,根据题意求出∠CED=∠DEF,根据角平分线的性质求出EH=EF,根据等腰三角形的性质得到答案.【解答】证明:(1)在△ACD与△BDE中,,∴△ACD≌△BDE(SAS),(2)∵△ACD≌△BDE,∴AC=BD,CD=DE,∵AC=BC,∴BD=BC,∴∠BCD=67.5°,∴∠CED=∠BCD=67.5°,∴∠BED=112.5°;(3)过E作EF⊥AB于F,DH⊥BC于H,∵EF⊥AB,∠B=45°,∴EF=BF=1,∵∠FEB=45°,∠CED=67.5°,∴∠DEF=67.5°,∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,∴EH=EF=1,∵DC=DE,DH⊥BC,∴CE=2EH=2.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【考点】全等三角形的判定与性质.【分析】(1)①根据等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②延长CE交BA的延长线于点G,如图1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,在△ABD与△ACG中,,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;(2)结论:BE﹣CE=2AF.过点A作AH⊥AE,交BE于点H,如图2:∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.【点评】本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.2015—2016学年上学期C 组联盟期中检测八 年 级 数 学 试 卷2015.11一、选择题.(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )A .B .C .D .2、下列各组线段中,能组成三角形的是( )A .2,4,6B .2,3,6C .2,5,6D .2,2,6 3.一个多边形内角和是1080°,则这个多边形是( )A .六边形B .七边形C .八边形D .九边形4.如果,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( )A .AC =ADB .BC =BDC .∠C =∠D D .∠ABC =∠ABD5.如图,CD 丄AB 于D ,BE 丄AC 于E ,BE 与CD 交于O ,OB =OC ,则图中全等三角形共有( )A .2对B .3对C .4对D .5对6、如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②7.如图,已知AB =CD ,BC =AD ,∠B =23°,则∠D 是( )A .23°B .46°C .67°D.无法确定8.到三角形三个顶点距离相等的点是三角形的( )的交点A .三条中线B .三个角平分线C .三条高D .三条边的垂直平分线9、如图,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( )A..60 B 70 C 80 D 5010.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是以BC 为中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =21S △ABC ;④ 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),BE +CF =EF ,上述结论中始终正确的有( ) A .1个 B .2个 C .3个 D .4个二.填空题(共6小题,每小题3分,共18分)11.点M (1,2)关于x 轴对称的点的坐标为_________12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为13.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为________14、已知等腰三角形一边长等于5,一边长等6,则它的周长是15、如图所示,求∠1+∠2+∠3+∠4+∠5+∠6的度数 。

武汉市武昌区C组联盟八年级上期中数学试题及答案.doc

武汉市武昌区C组联盟八年级上期中数学试题及答案.doc

2015—2016学年上学期C组联盟期中检测八年级数学试卷2015.11一、选择题.(共10小题,每小题3分,共30分)1.下列图形中不是轴对称图形的是()A.B.C.D.2、下列各组线段中,能组成三角形的是()A.2,4,6 B.2,3,6 C.2,5,6 D.2,2,63.一个多边形内角和是1080°,则这个多边形是()4.如果,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()A.AC=AD B.BC=BDC.∠C=∠D D.∠ABC=∠ABD5.如图,CD丄AB于D,BE丄AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对Array6、如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②7.如图,已知AB =CD ,BC =AD ,∠B =23°,则∠D 是( )A .23°B .46°C .67°D .无法确定8.到三角形三个顶点距离相等的点是三角形的( )的交点A .三条中线B .三个角平分线C .三条高D .三条边的垂直平分线9、如图,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( )A..60 B 70 C 80 D 5010.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是以BC 为中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =21S △ABC ;④ 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),BE +CF =EF ,上述结论中始终正确的有( ) A .1个 B .2个 C .3个 D .4个二.填空题(共6小题,每小题3分,共18分)11.点M (1,2)关于x 轴对称的点的坐标为_________12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为13.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为________14、已知等腰三角形一边长等于5,一边长等6,则它的周长是15、如图所示,求∠1+∠2+∠3+∠4+∠5+∠6的度数。

武汉市重点中学八年级上学期期中考试数学试卷及答案解析(共6套)

武汉市重点中学八年级上学期期中考试数学试卷(一)一、选择题1、一个多边形的内角和是外角和的2倍,则这个多边形是()A、四边形B、五边形C、六边形D、八边形2、张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A、正三角形B、正方形C、正六边形D、正八边形3、如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A、56°B、68°C、124°D、180°4、若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A、3B、5C、7D、95、能使两个直角三角形全等的条件是()A、斜边相等B、两直角边对应相等C、两锐角对应相等D、一锐角对应相等6、点P(2,﹣3)关于x轴的对称点是()A、(﹣2,3)B、(2,3)C、(﹣2,3)D、(2,﹣3)7、已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A、0<x<3B、x>3C、3<x<6D、x>68、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A、160°B、150°C、140°D、130°9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A、55B、35C、65D、2510、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A、P是∠A与∠B两角平分线的交点B、P为∠A的角平分线与AB的垂直平分线的交点C、P为AD、AB两边上的高的交点E、P为AF、AB两边的垂直平分线的交点11、小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A、B、C、D、12、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A、100°B、80°C、70°D、50°13、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A、6B、9C、12D、1514、一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A、150°B、180°C、135°D、不能确定15、如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S=7,△ABCDE=2,AB=4,则AC长是()A、4B、3C、6D、5二、解答题16、已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.17、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.18、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19、如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB 边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.20、如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.21、如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC延长线于G.求证:BF=CG.22、如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.23、某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?24、在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.答案解析部分一、<b >选择题</b>1、【答案】C【考点】多边形内角与外角【解析】【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【分析】此题可以利用多边形的外角和和内角和定理求解.2、【考点】平面镶嵌(密铺)【解析】【解答】解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.故选D.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.3、【答案】C【考点】旋转的性质【解析】【解答】解:∵∠B=34°,∠C=90°∴∠BAC=56°=180°﹣56°=124°∴∠BAB1即旋转角最小等于124°.故选C.【分析】找到图中的对应点和对应角,根据旋转的性质作答.4、【答案】C【考点】三角形三边关系【解析】【解答】解:∵7+2=9,7﹣2=5,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故选C.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数选择.5、【考点】直角三角形全等的判定【解析】【解答】解:A选项,无法证明两条直角边对应相等,因此A错误.C、D选项,在全等三角形的判定过程中,必须有边的参与,因此C、D选项错误.B选项的根据是全等三角形判定中的SAS判定.故选:B.【分析】要判断能使两个直角三角形全等的条件首先要看现在有的条件:一对直角对应相等,还需要两个条件,而AAA是不能判定三角形全等的,所以正确的答案只有选项B了.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【分析】根据平面直角坐标系中对称点的规律解答.7、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:在△ABC中,AB=AC=x,BC=6.根据三角形三边关系得:AB+AC>BC,即x+x>6,解得x>3.故选:B.【分析】此题可根据三角形三边关系两边之和大于第三边得出.8、【答案】D【考点】三角形的外角性质【解析】【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.9、【答案】A【考点】平行线的性质【解析】【解答】解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选:A.【分析】先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.10、【答案】B【考点】角平分线的性质,线段垂直平分线的性质【解析】【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【分析】根据角平分线及线段垂直平分线的判定定理作答.11、【答案】D【考点】生活中的轴对称现象【解析】【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.故选D.【分析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.12、【答案】A【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.13、【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.【分析】由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB 与BC的和,又由AB=AC=9,BC=6,即可求得答案.14、【答案】A【考点】角的计算【解析】【解答】解:根据图象,∠CME+∠BNF=∠AMN+∠ANM,∵∠A=30°,∴∠CME+∠BNF=180°﹣∠A=150°.故选A.【分析】根据∠CME与∠BNF是△AMN另外两个角,利用三角形的内角和定理即可求解.15、【答案】B【考点】三角形的面积,角平分线的性质【解析】【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC 交AC于点F,∴DF=DE=2.又∵S△ABC =S△ABD+S△ACD, AB=4,∴7= ×4×2+ ×AC×2,∴AC=3.故选B.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC =S△ABD+S△ACD及三角形的面积公式得出结果.二、<b >解答题</b>16、【答案】证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定与性质【解析】【分析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.17、【答案】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD= ∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.18、【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC= ∠BAC,故∠DAE=∠EAC﹣∠DAC.19、【答案】解:如下图所示:由对称的性质可知:A′D′=A′D=AD=6,BD=10﹣6=4,∴AB=6﹣4=2.易证Rt△ADE∽Rt△ABF,∴∴BF= = =2∴S= AB•BF= ×2×2=2,△CEF即:△CEF的面积为2.【考点】翻折变换(折叠问题)【解析】【分析】由翻折变换(轴对称)的性质可知:AD=6,BD=10﹣6=4,AB=6﹣4=2,再证明Rt△ADE∽Rt△ABF,从而得出BF的长,由此可计算出△CEF的面积.20、【答案】证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【考点】角平分线的定义,全等三角形的判定与性质【解析】【分析】连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.21、【答案】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.22、【答案】(1)解:AB、AC边的中垂线交于点O,∴AO=BO=CO,∴∠OAB=∠OBA,∠OCA=∠OAC,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α(2)解:∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC= (180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°【考点】线段垂直平分线的性质【解析】【分析】(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.23、【答案】(1)解:工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元(2)解:设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以:(5000+1250x)×8=25000+12500x,解得:x=6.2006+6=2012.答:到2012年每位股东年平均利润是每位工人年平均工资的8倍【考点】一元一次方程的应用【解析】【分析】(1)工人的平均工资=工人工资总额÷20,股东的平均利润=股东总利润÷2,结合图形分别计算,再填表即可;(2)由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍,列方程求解.24、【答案】(1)解:FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴ .∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH(2)解:FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG= BC,DC= AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC【考点】全等三角形的判定与性质,三角形中位线定理【解析】【分析】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G 为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出.武汉市重点中学八年级上学期期中考试数学试卷(二)一、精心选择1、在下列各电视台的台标图案中,是轴对称图形的是()A、B、C、D、2、下列说法正确的是()A、三角形三条高的交点都在三角形内B、三角形的角平分线是射线C、三角形三边的垂直平分线不一定交于一点D、三角形三条中线的交点在三角形内3、已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A、﹣1B、﹣7C、7D、14、正多边形的每个内角都等于135°,则该多边形是()A、正八边形B、正九边形C、正十边形D、正十一边形5、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A、M点B、N点C、P点D、Q点6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A、CB=CDB、∠BAC=∠DACC、∠BCA=∠DCAD、∠B=∠D=90°7、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的面积是28cm2, AB=20cm,AC=8cm,则DE的长是()A、4cmB、3cmC、2cmD、1cm8、如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A、6B、8C、9D、10二、细心填空9、如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为________.10、一个等腰三角形的边长分别是4cm和7cm,则它的周长是________11、如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC 的周长为22,BC=6,则△BCD的周长为________.12、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.13、在△ABC中,∠B、∠C的平分线相交于点O,∠BOC=115°,则∠A的度数是________.14、已知直线l经过点(0,2),且与x轴平行,那么点(6,5)关于直线l 的对称点为________15、如图,在△ABC中,AD是它的角平分线,AB:AC=8:5,则CD:BD=________.16、如图,在直角平面坐标系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB为直角边在AB边的上方作等腰直角△ABE,则点E的坐标是________.三、用心解答17、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.18、已知AB=AD,BC=DC.求证:AC平分∠BAD.19、已知:在△ABC中,AD⊥BC,BE平分∠ABC交AD于F,∠ABE=23°.求∠AFE的度数.20、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.21、如图,已知∠A=90゜,AB=BD,ED⊥BC于D,求证:DE+CE=AC.22、如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°(1)求证:CE=BD;(2)求证:CE⊥BD.四、灵活应用23、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.24、如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足+(b2﹣16)2=0.(1)求A、B两点的坐标,∠OAB的度数;(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG=3,的中线,且S△BHE①求点E到BH的距离;②求点G的坐标;(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.答案解析部分一、<b >精心选择</b>1、【答案】C【考点】轴对称图形【解析】【解答】解:只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故选C.【分析】关于某条直线对称的图形叫轴对称图形.2、【答案】D【考点】三角形的角平分线、中线和高【解析】【解答】解:A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;故选D【分析】根据三角形的角平分线、中线和高的定义及性质进行判断即可.3、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(x,4)与点B(3,y)关于y轴对称,∴x=﹣3,y=4,所以,x+y=﹣3+4=1.故选D.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出x、y的值,然后相加计算即可得解.4、【答案】A【考点】多边形内角与外角【解析】【解答】解:∵正多边形的每个内角都等于135°,∴多边形的外角为180°﹣135°=45°,∴多边形的边数为360°÷45°=8,故选A.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣135°=45°,再利用外角和360°除以外角的度数可得边数.5、【答案】A【考点】角平分线的性质【解析】【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.6、【答案】C【考点】全等三角形的判定【解析】【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.7、【答案】C【考点】角平分线的性质【解析】【解答】解:∵AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∴ ×AB×DE+ AC×DF=S=28,即×20DE+ ×8DE=28,解得DE=2.△ABC故选C.【分析】根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.8、【答案】D【考点】全等三角形的判定与性质【解析】【解答】解:如图,作BF⊥AD与点F,,∵BF⊥AD,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BAF和△BEC中,,∴△BAF≌△BEC,∴AF=EC.∵CD=BC=8,DE=6,∴DF=8,EC=2,∴AF=2,∴AD=8+2=10.故选:D.【分析】首先作BF⊥AD与点F,推得BF∥CD,判断出四边形BCDF是矩形;然后根据BC=CD=8,可得四边形BCDF是正方形,所以BF=BC;最后根据全等三角形的判定方法,证明△BCE≌△BAF,即可推得AF=CE,进而求出AD的长为多少即可.二、<b >细心填空</b>9、【答案】4【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.10、【答案】15cm或18cm.【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①当腰是4cm,底边是7cm时,能构成三角形,则其周长=4+4+7=15cm;②当底边是4cm,腰长是7cm时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm或18cm.【分析】等腰三角形两边的长为4m和7m,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.11、【答案】14【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC﹣AD=AC﹣BD,∴△BDC的周长=BC+BD+AC﹣BD=BC+AC,∵BC=6,AC=AB=(22﹣6)÷2=8,∴△BDC的周长=CB+AC=6+8=14.故答案为:14.【分析】先根据线段垂直平分线的性质求出AD=BD,再通过等量代换求出CD=AC ﹣BD即可求解.12、【答案】120°.【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFO=60°,EF=60°,由翻转变换的性质可知,∠AEF=∠A1=120°,∴∠AEA1故答案为:120°.【分析】根据平行线的性质得到∠AEF=∠EFO=60°,根据翻转变换的性质解答即可.13、【答案】50°【考点】角平分线的定义,三角形内角和定理【解析】【解答】解:∵∠BOC=115°,∴∠OBC+∠OCB=65°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,∴∠BAC=50°.故答案为:50°【分析】根据三角形内角和定理易得∠OBC+∠OCB=65°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,进而利用三角形内角和定理可得∠A度数.14、【答案】(6,﹣1)【考点】平行线的性质,坐标与图形变化-对称【解析】【解答】解:∵直线l经过点(0,2),且与x轴平行,∴直线l解析式为y=2,∴点(6,5)关于直线l的对称点为(6,﹣1),故答案为(6,﹣1).【分析】先确定出直线l解析式,进而根据对称性即可确定出结论.15、【答案】5:8【考点】平行线分线段成比例【解析】【解答】解:由角平分线的性质可知,= = ,∴CD:BD=5:8,故答案为:5:8.【分析】根据角平分线的性质定理列出比例式,计算即可.16、【答案】(﹣1,2)或(2,3)【考点】坐标与图形性质,等腰直角三角形【解析】【解答】解:如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.在△AOB和△FBC中,,∴△OAB≌△FBC,∴CF=OB=1,BF=OA=3,当B为直角顶点时,同理可得EH=1,BH=2,∴E(﹣1,2),当A为直角顶点时,同理可得,AG=1,E′G=3,∴E′(2,3),综上所述,点E坐标(﹣1,2)或(2,3).故答案为(﹣1,2)或(2,3)【分析】如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.由△AOB≌△FBC≌△HBE≌△E′GA,可得CF=EH=AG=1,BH=BF=E′G=OA=3,由此即可解决问题.三、<b >用心解答</b>17、【答案】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.【考点】作图—基本作图【解析】【分析】由条件可知发射塔要再两条高速公路的夹角的角平分线和线段AB的中垂线的交点上,分别作出夹角的角平分线和线段AB的中垂线,找到其交点就是发射塔修建位置.18、【答案】证明:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC是∠BAD的平分线【考点】全等三角形的判定与性质【解析】【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.19、【答案】解:∵AD⊥BC,∴∠ADB=90°,∵BE平分∠ABC,∠ABE=23°,∴∠FBD=∠ABE=23°,∴∠BFD=180°﹣∠ADB﹣∠FBD=67°,∴∠AFE=∠BFD=67°【考点】三角形内角和定理【解析】【分析】根据垂直求出∠ADB,根据角平分线定义求出∠FBD,根据三角形内角和定理求出∠BFD即可.20、【答案】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.21、【答案】证明:连BE,∵ED⊥BC,∴∠EDB=90°,在Rt△ABE和Rt△DBE中,∴△ABE≌△DBE (HL),∴DE=AE.∴DE+CE=AC.【考点】全等三角形的判定与性质【解析】【分析】连接BE,利用HL定理得出△ABE≌△DBE 即可得出答案.【答案】(1)证明:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD(2)证明:延长BD交CE于F,如图所示:∵△CAE≌△BAD,∴∠ACE=∠ABD,∵∠CAB=90°,∴∠ABC+∠ACB=90°,即∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠ACE=90°,即∠DBC+∠BCF=90°,∴∠BFC=90°,∴CE⊥BD.【考点】全等三角形的判定与性质【解析】【分析】(1)由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;(2)延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.四、<b >灵活应用</b>【答案】(1)解:如图1,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN,∴S△PBM =S△PCN∵AC:PC=2:1,PC=4,∴AC=8,∴由(2)可得,AB=AC=8,PB=PC=4,∴S四边形ANPM =S△APN+S△APB+S△PBM=S△APN +S△APB+S△PCN=S△APC +S△APB= AC•PC+AB•PB = ×8×4+×8×4=32【考点】三角形的面积,全等三角形的判定与性质,角平分线的性质【解析】【解答】解:(2)AM+AN=2AC .∵∠APB=90°﹣∠PAB,∠APC=90°﹣∠PAC,点P 为∠EAF 平分线上一点, ∴∠APC=∠APB,即AP 平分∠CPB,∵PB⊥AB,PC⊥AC,∴AB=AC,又∵BM=CN,∴AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;故答案为:AM+AN=2AC .【分析】(1)根据PB=PC ,∠PBM=∠PCN=90°,利用HL 判定Rt△PBM≌Rt△PCN,即可得出BM=CN ;(2)先已知条件得出AP 平分∠CPB,再根据PB⊥AB,PC⊥AC,得到AB=AC ,最后根据BM=CN ,得出AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;(3)由AC :PC=2:1,PC=4,即可求得AC 的长,又由S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB , 即可求得四边形ANPM 的面积.24、【答案】(1)解:∵ +(b 2﹣16)2=0,∴a﹣b=0,b 2﹣16=0,解得:b=4,a=4或b=﹣4,a=﹣4,∵A点在x轴正半轴,B点在y轴正半轴上,∴b=4,a=4,∴A(4,0),B(0,4),∴OA=OB=4,∴∠OAB=45°(2)解:①如图1,作EF⊥y轴于F,∵B(0,4),H(0,1),∴BH=OB﹣OH=4﹣1=3,∵OA=OB=4,∴△OAB为等腰直角三角形,∴∠OBA=∠OAB=45°,∴△BFE为等腰直角三角形,∴BF=EF=2,∴OF=OB﹣BF=4﹣1=3,∴E(2,3),∴E(2,3)为GH的中点,=3,∵S△BHE∴ BH×EF=3,即×3×EF=3,∴EF=2,故点E到BH的距离为2.②设G(m,n),则∵BE为△BHG的中线,∴ ,,解得m=4,n=5,∴G点坐标为(4,5)(3)解:如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA,∵MN⊥AD,∴∠DON+∠NOA=90°,∴∠3+∠NOA=90°,∵∠NOA+∠1=90°,∴∠3=∠1,在△KOB和△OAD中,,∴△KOB≌△OAD(ASA),∴KB=OD,∠2=∠7,∵BC=OD,∴KB=BC,∵OB=OA,∠BOA=90°,∴∠OBA=45°,∴∠9=∠8=45°,在△MKB和△MCB中,,∴△MKB≌△MCB(SAS),∴∠6=∠5,∵∠7+∠6=180°,∴∠2+∠5=180°,即∠ADO+∠BCM=180°.【考点】三角形的面积,全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.武汉市重点中学八年级上学期期中考试数学试卷(三)一、细心选一选1、下列图形中,不是轴对称图形的是()A、B、C、D、2、△ABC中BC边上的高作法正确的是()A、B、C、D、3、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、124、下列判断中错误的是()A、有两角和其中一个角的对边对应相等的两个三角形全等B、有一边相等的两个等边三角形全等C、有两边和一角对应相等的两个三角形全等D、有两边和其中一边上的中线对应相等的两个三角形全等5、三角形中,若一个角等于其他两个角的差,则这个三角形是()A、钝角三角形B、直角三角形C、锐角三角形。

武汉市硚口区八年级上期中考试数学试卷和答案.doc

2017~2018武汉市硚口区八年级上册期中数学试卷八年级数学第一学期期中试卷分析一、选择题(每小题3分,共30分)下列各题中均有4个答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A、 B、 C、 D、答案:A分析:A轴对称,B中心对称,CD不对称难度:★2.下列图形中具有稳定性的是()A、三角形B、四边形C、五边形D、六边形答案:A分析:只有三角形具有稳定性难度:★3.下列长度的三条线段能组成三角形的是()A、1,2,3B、4,5,10C、8,15,20D、5,8,15答案:C分析:两边和大于第三边,两边差的绝对值小于第三边难度:★4.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为()A、100°B、120°C、135°D、150°答案:C分析:45度的补角 难度:★★5.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为( ) A 、21 B 、16 C 、27 D 、21或27 答案:C分析:两边和大于第三边,两边差的绝对值小于第三边,所以11只能做腰边不能做底边。

难度:★★6.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( ) A 、SSS B 、SAS C 、ASA D 、AAS 答案:C 分析:角边角 难度:★★7.如图,在△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D ,交边AC 于E 点, 若△ABC 与△EBC 的周长分别是40,24,则AB 为( ) A 、8 B 、12 C 、16 D 、20 答案:C分析:中垂线定理,中垂线上的点到两边距离相等 难度:★★8.如图,D 是△ABC 的边BC 上一点,AB =AD =DC ,∠BAD =40°,则∠C 的度数第4题图DCB第6题图第7题图EDB第8题图DCBA为( )A 、35° B、25° C、40° D 、50° 答案:A分析:等腰三角形两底角相等 难度:★★9.AD 是△ABC 的边BC 上的中线,若AD =4,AC =5,则AB 的取值范围是( ) A 、3<AB <9 B 、1<AB <9 C 、3<AB <13 D 、1<AB <13 答案:C分析:两边和大于第三边,两边差的绝对值小于第三边 难度:★★10.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( ) A 、ED 的最小值是2 B 、ED 的最小值是1 C 、ED 有最大值D 、ED 没有最大值也没有最小值 答案:B分析:等边三角形手拉手,及几何最值问题 △ACO 和△ADB 全等,从而得小值为1 难度:★★★二、填空题(每小题3分,共18分)11.点P (-3,2)关于x 轴对称点M 的坐标为__________. 答案:(-3,-2)分析:对称轴坐标不变,另一坐标变相反数 难度:★12.等腰三角形的底角度数为80°,则是它的顶角的度数为__________. 答案:20°分析:等腰三角形两底角相等第10题图EOB C13.十边形的对角线一共有__________条 答案:35分析:多边形对线公式 n(n-3)/2 难度:★14.CD 是△ABC 的高,∠ACD =65°,∠BCD =25°,则∠ACB 的度数为__________. 答案:40°或90° 分析:三角形分类讨论 难度:★★15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =m ,BD =n ,则BC 的长为__________.(用含m ,n 的式子表示)答案:2n+m分析:截长补短 难度:★★16.如图,平面直角坐标系中,A (0,3),B (4,0),BC ∥y 轴,且BC <OA ,第一象限的点P (a ,2a -3),使△ACP 是以AC 为斜边的等腰直角三角形,则点P 的坐标为__________. 答案:(2,1)(10/3,11/3)分析:几何代数结合,此题等腰三角形,直角方向可上,可下,注意图形变化 难度:★★★三、解答题(共8小题,共2分)17.(本题8分)一个多边形的内角和比四边形的外角和多540°,求这个多边形的边数.第15题图B Dx y第16题图BAOC分析:多边形内角和公式 难度:★18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF , 求证:AB ∥DE 答案:SSS 全等分析:全等三角形的性质 难度:★19.(本题8分)如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE =DF 答案:角平线到两边的距离相等 分析:等腰三角形三线合一 难度:★★20.(本题8分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,5)、B (-3,2)、C (-1,1)(1)画出△ABC 关于y 轴对称的△AB 1C 1,并写出B 1的坐标.(2)将△ABC 向右平移8个单位,画出平移后的△A 1B 2C 2,写出B 2的坐标. (3)在(1)、(2)的基础上,指出△AB 1C 1与△A 1B 2C 2有怎样的位置关系? (4)x 轴上一点P ,使PB +PC 的值最小,标出P 点的位置.(保留画图痕迹)DB FEC F E BA答案:略 分析:略 难度:★★21.(本题8分)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,D 是AC 上一点,AE ⊥BD 于E ,CF ⊥BD 于F . (1)求证:CF =BE ;(2)若BD =2AE ,求证:∠EAD =∠ABE 答案:(1)AAS (2)SAS 分析:分析全等条件 难度:★★22.(本题10分)D 为等边△ABC 的边AC 上一点,E 为直线AB 上一点,E 为直线AB 上一点,CD =BE . (1)如图1,求证:AD =DE ; (2)如图2,DE 交CB 于点P . ①若DE ⊥AC ,PC =4,求BP 的长;②求证:PD =PEF E ACD 图1EABD图2PEBD答案:1、△AED 是等边三角形 2、(1)BP=2 (2)三角形两边取等值,连线平分分析:分析全等条件 难度:★★23.(本题10分)在等腰△ABC 中,AB =BC ,∠BAC =30°,D 、E 、F 分别为线段AB 、BC 、AC 上的点,∠ABF =∠BED ,DE 交BF 于点G . (1)如图1,求∠BGD 的度数;(2)如图2,已知BD =CE ,点H 在BF 的延长线上,BH =DE ,连接AH . ①求证:AH ∥BC ;②若43 DE BF ,直接写出AB AH的值为__________.答案:如图 分析:如图 难度:★★★图2GFEB AD图1G FEA BD24.(本题12分)如图1,在平面直角坐标系中,A(-3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC 于点F,求BF的长.答案:如图xy图1DBCA Oxy图2FBCOE分析:如图难度:★★★2017~2018武汉市硚口区八年级上册期中数学试卷和答案八年级数学第一学期期中试卷分析2017---2018学年度第一学期期中考试八年级数学答案一、选择题(每小题3分,共30分)1.A2.A3.C4.C5.C6. C7. C8.A9. C10.B二、填空题(每题3分,共18分)11.(-3,-2) 12.200 13.35 14. 400或90015.m+2n 16.(310,311) 三、解答题( 共8道小题,共72分)17.解:设多边形的边数为n, 可得(n-2)·180º=360º+540º…………………………5分∴n=7 ∴这个多边形的边数为7.…………………………………………………8分18.证明:∵BE=CF ∴CE+BE=CF+CE ∴BC=EF ……………………………………………2分在△ACB 和△DFE 中 AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌DEF (SSS ) (6)分∴∠B =∠DEF ∴AB ∥DE …… ………………………………………………………8分19.证明:∵AB =AC ,∴∠B =∠C ……………………………………………………………2分又∵DE ⊥AB ,DF ⊥AC ∴∠BED =∠CFD=90º……………………………………………3分∵点D 为BC 中点∴DB =DC ……………………………………………………………………4分∴ 在△DBE 和△DCF 中⎪⎩⎪⎨⎧=DC DB ∠BED=∠CFD ∠B=∠C ∴△DBE ≌DCF(AAS )……………………7分∴DE =DF.…………………………………………………………………………………8分 方法二:也可先连接AD ,证明△DBA ≌DCA (SSS )得AD 平分∠BAC 也可.20.(1) 画图……………………………1分)2,3(1B ………………………………2分(2)画图………………………3分B 2(5,2), ……………………………4分(3)关于直线x=4轴对称 ………………………………………………………………6分(3)画图 …………………………………………………………………………………8分21.证明::(1) ∵∠ABC =90°,CF ⊥BD ,AE ⊥BD ,∴∠ABE+∠EBC =90º=∠EBC+∠BCF, ∴∠ABE =∠BCF,………………………………2分又∵∠AEB =∠BFC=90º,AB=CB,∴ΔABE≌ΔBCF,∴CF =BE ……………………………4分(2)由(1)ΔABE≌ΔBCF 得BF=AE,∠ABE =∠BCF ……………………………5分又∵BD=BF+FD=2AE, ∴BF=DF ∴又CF ⊥BD 于F ∴CB=CD,………………6分 ∴CF 平分∠ACB,又∵AE ∥CF ∴.∠EAD =∠ACF,…………………………………………7分∵∠ABE =∠BCF=∠ACF ∴∠EAD =∠ABE ………………………………………………8分22.证明:(1)∵△ABC 是等边三角形 ∴AB=AC, ∠A=60º, ………1分 又∵CD=BE ∴AB -BE=AC -CD ∴AD=AE , …………2分又∵∠A=60º ∴ΔADE 是等边三角形,∴AD=DE …………………3分(2)①∵DE ⊥AC,∴∠E=30º,又∵∠ABC=60º,∴∠E =∠BPE=30º=∠CPD ∴CD=21PC=2, ……………4分 又∵CD=BE ∴BE=2=BP …………………5分②过点D 作DQ ∥AB 交BC 于点Q,可证ΔDCQ 是等边三角形,………7分 ∴CD=DQ=BE ,可证ΔDQP ≌ΔEBP(AAS), ……………………9分∴PD=PE.………………………………………………………………………10分23. 解:(1) ∵AB=BC,∠BAC=30º∴∠ABC=120º ………………………1分∵∠BGD =∠GBE+∠BED, 又∵∠ABF =∠BED∴∠BGD =∠GBE+∠ABF=∠ABC=120º …………………………………3分①方法一:在BA 上截取BI =BE ,连接IH,可证ΔIBH≌ΔBED(SAS), ……………………5分∴BD=IH,∠BIH =∠EBD=120º,∴∠AIH =60º,∴又BD=CE,AB=BC,∴AD =BE,又∵BI =BE,∴BI =BE=AD,∴BI=AD ∴AI =DB 又∵BD=IH ∴AI =IH,……………………7分∴等边ΔAIH,∴∠IAH =60º,∴∠IAH+∠ABE=180º∴AH ∥BC ……………8分方法二:延长EB 到点M 使EM=BA,证等边ΔBDM 也可.② __31_ ……………………………………………10分24. 解:(1)在四边形ABCD 中,∵∠ABC +∠ADC=180°,∴∠BAD +∠BCD=180°, ……………………1分∵BC ⊥CD ∴∠BCD =90º∴∠BAD =90°∴∠BAC +∠CAD=90°,…………2分又∵∠BAC +∠ABO=90° ∴∠ABO =∠CAD.. ……………………3分(2) 过点A 作AF ⊥BC 于点F ,作AE ⊥CD 的延长线于点E,作DG ⊥x 轴于点G ,∵B (0,7),C (7,0)∴OB=OC ∴,∠BCO=45°……………………………………4分又∵BC ⊥CD ∴∠BCO=∠DCO=45°又∵AF ⊥BC ,AE ⊥CD ∴AF=AE,∠FAE=90°, ∴∠BAF =∠DAE,∴ΔABF ≌ΔADE(AAS) …………………………………6分∴AB=AD,又∵∠AGD=∠BOA=90°∴ΔABO ≌ΔDAG(AAS) ……………………7分∴DG=AO,BO=AG又∵A(-3,0)B(0,7)∴D(4,-3),S四ABCD =21AC. (BO+DG )=50 (8)分(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,又∵∠BCO=∠BEO=45º∴∠EBC=∠EOC∴ΔEBH≌ΔEOG(AAS) ……………………………………………10分∴EB=EO又∵∠BEO=45º,∴∠EBO=∠EOB=67.5º又∠OBC=45º∴∠BOE=∠BFO=67.5º∴BF=B0=7. ………………………………………………12分。

人教版初中数学八年级上册湖北省武汉市硚口区期中考试试卷和答案


17.(本题 8 分)一个多边形的内角和比四边形的外角和多 540°,求这个多边形的边数.
答案:7
分析:多边形内角和公式
难度:★
18.(本题 8 分)如图,点 B、E、C、F 在同一条直线上,AB=DE,AC=DF,BE=CF,
求证:AB∥DE
AD
答案:SSS 全等
分析:全等三角形的性质
难度:★
BE
答案:20°
分析:等腰三角形两底角相等
难度:★
13.十边形的对角线一共有__________条
答案:35
分析:多边形对线公式 n(n-3)/2
难度:★
14.CD 是△ABC 的高,∠ACD=65°,∠BCD=25°,则∠ACB 的度数为__________.
答案:40°或 90°
分析:三角形分类讨论
A、1,2,3 B、4,5,10 C、8,15,20 D、5,8,15
答案:C
分析:两边和大于第三边,两边差的绝对值小于第三边
难度:★
4.如图,把一副含 30°角和 45°角的直角三角板拼在一起,那么图中∠ADE 的度数为
()
A、100°
B、120° C、135° D、150°
答案:C
分析:45 度的补角
CF
19.(本题 8 分)如图,在△ABC 中,AB=AC,D 为 BC 的中点,DE⊥AB,DF⊥ADF
答案:角平线到两边的距离相等
分析:等腰三角形三线合一
难度:★★
E
F
B
D
C
TB:小初高题库
人教版初中数学
20.(本题 8 分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A(0,5)、 B(-3,2)、C(-1,1) (1)画出△ABC 关于 y 轴对称的△AB1C1,并写出 B1 的坐标. (2)将△ABC 向右平移 8 个单位,画出平移后的△A1B2C2,写出 B2 的坐标. (3)在(1)、(2)的基础上,指出△AB1C1 与△A1B2C2 有怎样的位置关系? (4)x 轴上一点 P,使 PB+PC 的值最小,标出 P 点的位置.(保留画图痕迹)

2014---2015武汉市八年级(上)期中试卷精选及答案

2015武汉名校八年级(上)期中试卷精选学号-----姓名-------一、选择题(共12小题,每小题3分,共30分)1.全等三角形是()A.面积相等的三角形B.角相等的三角形C.周长相等的三角形D.完全重合的三角形2.下列图形中,是轴对称图形的是()3.如图,CD丄AB于D,BE丄AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.如图,点B、F、C、E在一条直线上,FB=CE,AB∥DE,下列条件中,不能判定△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.∠ACE=∠DFB D.AC=DF5.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2∶1 B.1∶1 C.5∶2 D.5∶46.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E;AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.以上都不是7.已知△ABC≌△DEF,AB=2,AC=4,若要使△DEF的周长是奇数,则EF为()A.3 B.4 C.5 D.3或58.如图,△ABC的三条中线AD、BE,CF交于点O,S阴影部分=4,则S△ABC=()A.8 B.12 C.16 D.不能确定9.如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°10.如图,△ABC中,AB的垂直平分线与∠ACB的外角平分线交于点D,DE⊥AC于E,DF⊥BC于F,则下列结论:①△ADE≌△BDF;②AE=CE+CB;③∠ADB=∠ACB;④∠DCF+∠ABD=90°,其中一定成立有()A.1个B.2个C.3个D.4个二、填空题(本题共6个小题,每小题3分,共18分)11.如图,在四边形ABCD中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有_________对12.已知△ABC≌△A′B′C′,A与A′,B与B′是对应点,△A′B′C′周长为9 cm.AB=3 cm,BC=4 cm,则AC=_________cm13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为_______14.如图,O是中∠ABC和∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E.若BC=10 cm,则△ODE的周长等于_________cm15.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,则五边形ABCDE的面积为_________cm2 16.如图,△ABC中,AB=AC,∠BAC=40°,边AB绕点A逆时针旋转m°,(0<m<360)得到线段AD,连接BD、DC.若△BDC为等腰三角形,则m所有可能的取值是___________三、解答题(本题共9小题,共72分)17.(本题6分)已知三角形两边的长是2 cm和7 cm,第三边的长为奇数,求这个三角形的周长18.(本题6分)已知△ABC中,∠B-∠A=70°,∠B=2∠C,求∠A、∠B、∠C的度数19.(本题6分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F,求证:△ABC≌△DEF20.(本题7分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图,保留作图痕迹)(1) 画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1(2) 在DE上画出点P,使PB1+PC最小(3) 在DE上画出点Q,使QA+QC最小21.(本题12分)已知BC=ED,AB=AE,BE,F是CD的中点,求证:AF⊥CD22.(本题12分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点(1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明23.(本题12分)D为等边△ABC外一点,且BD=CD,∠BDC=120°,点M、N分别在AB、AC上,若BM +CN=MN(1) ∠MDN=_________度(2) 作出三角形△DMN的高DH,并证明:DH=BD(3) 在第(2)的基础上,求证:MD平分∠BDH24.(本题12分)已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC =25.点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接P A、PB,D为线段AC的中点(1) 求D点的坐标(2) 设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等(3) 若P A=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案D A CD D A D B C C二、填空题(共6小题,每小题3分,共18分)11.3 12.2 13.∠A =∠D 14.10 15.4 16.20°;80°;200°;320° 15.提示:△ABC ≌△AEF ;△ACD ≌△ADF15.提示:共四种情况三、解答题(本大题共72分) 17.解:设第三边的长为x⎪⎪⎩⎪⎪⎨⎧>>+>+>+0722772x x x x ,解得5<x <9∵x 为奇数 ∴x =7此时三角形的周长为2+7+7=16 cm 18.解:∵∠B -∠A =70° ∴∠A =∠B -70° ∵∠B =2∠C ∴∠C =21∠B 在△ABC 中,∠A +∠B +∠C =180° ∴∠B -70°+∠B +21∠B =180°,解得:∠B =100° ∴∠A =30°,∠C =50° 19.证明:∵BE =CF ∴BE +CE =CF +CE 即BC =EF∵AB∥DE∴∠ABC=∠DEF在△ABC和△DEF中⎪⎩⎪⎨⎧∠=∠=∠=∠DFEACBEFBCDEFABC∴△ABC≌△DEF(ASA)20.解:21.证明:连接AC、AD在△ABC和△AED中⎪⎩⎪⎨⎧===EDBCCECBAEAB∴△ABC≌△AED(SSS)∴AC=AD∵F为CD的中点∴FC=FD在△ACF和△ADF中⎪⎩⎪⎨⎧===AFAFFDFCADAC∴△ACF≌△ADF(SSS)∴∠ACF=∠AFD=90°即AF⊥CD22.证明:(1) ∵AC=BC,∠ACB=90°∴△ACB为等腰直角三角形∴∠CAE=45°∵D是AB的中点∴∠CAD=∠BCD=45°∵∠ACE+∠ECB=90°,∠CBG+∠ECB=90°∴∠ACE=∠CBG在△ACE和△CBG中⎪⎩⎪⎨⎧∠=∠=∠=∠CBG ACE CB AC BCG CAE∴△ACE ≌△CBG (ASA ) ∴AE =CG(2) BE =CM ,理由如下:根据“三垂直”模型,易证△CAH ≌△BCF (AAS ) ∴BF =CH∵∠HCM +∠CED =90°,∠FBE +∠CED =90° ∴∠HCM =∠FBE 在△HCM 和△FBE 中⎪⎩⎪⎨⎧∠=∠=∠=∠BFE CHM BF CH FBEHCM∴△HCM ≌△FBE (ASA ) ∴BE =CM 23.解:(1) 60°(2) 延长MB 至E ,且使BECN∵∠EBD +∠ABD =180°,∠NCD +∠ABD =180° ∴∠EBD =∠NCD 在△EBD 和△NCD 中⎪⎩⎪⎨⎧=∠=∠=CN BE NCD EBD CDBD∴△EBD ≌△NCD (SAS ) ∵MB +NC =MB +BE =ME ∴MN =ME可证:△DME ≌△DMN (SSS ) ∴∠DME =∠DMN 且∠DBM =30°+60°=90° 又DH ⊥MN ∴DB =DH(3) 在Rt △DMB 和Rt △DMH 中 ⎩⎨⎧==DM DM DH DB∴Rt △DMB ≌Rt △DMH (HL )∴∠BDM =∠ADM 即MD 平分∠BDH 24.解:(1) 105° 如图,CB =CD∴∠CBD =∠CDB =90°-21∠C∵DA =DB∴∠DAB =∠DBA =45°-41∠C ∴∠ABC =∠ABD +∠CBD =45°-41∠C +90°-21∠C =135°-43∠C(1) 36°;108°;90° 25.解:(1) D (25-,25-) (2) 过点D 作DM ⊥x 轴于M ,DN ⊥y 轴于N ∴DM =DN ,∠MDN =90°∵∠MDB +∠BDN =90°,∠DNP +∠BDN =90° ∴∠MDB =∠DNP可证:△MDB ≌△NDP (ASA ) ∴PN =BM =7.5,PC =5 ∴t =5(3) △APQ 为等腰三角形,理由如下: 在y 轴负半轴上取一点M ,使得AM =AB ∴△ABM 为等边三角形∵∠PBQ +∠QAB =30°,∠PBQ +∠PBM =30° ∴∠QAB =∠PBM ∵∠BMO =∠ABQ =30° 可证:△ABQ ≌△BMP (ASA ) ∴AQ =BP 又BP =AP ∴AQ =AP∴△APQ 为等腰三角形(硚口卷)25.(1)3, 450……(2分)(2)∵∠BFA=∠BOA =900,∴∠OAE=∠OBF ……(3分)∵OM ∥AB ∴∠BOM=450, ……(4分) 方法1:在AE 上截取AN=BM ,连接ON,可证△OAN ≌△OBM , ……(5分)∴ON=OM ,∠AON=∠BOM=450=∠BON , ……(6分) 可证△MOE ≌△NOE ,∠OEM=∠OEN=∠BEF. ……(7分) 方法2:在AE 上截取AN=BM ,连接ON,可证△OAN ≌△OBM ,∴ON=OM ,∠AON=∠BOM=450=∠BON ,可证△MOE ≌△NOE ,∠OEM=∠OEN=∠BEF.(3)连接OH,则OH=OA=OB ∴∠OAH=∠OHA,∠OBH=∠OHB ………(8分)又∠HBO=2∠HAO ,由△ABH 的内角和可求出∠HAO=150,∠OBH=300………(9分)在△OHD 中,∠DOH=∠DHO =300 ∴OD=DH ,………(10分)在Rt △OBD 中,∠OBD=300∴BD=2DO=2DH ,即BD:BH=2:3………(11分)∴S △ABD :S △ABH= BD:BH=2:3………(12分)(江岸卷)24.(本题12分)如图,在平面直角坐标系中,△ABC 的顶点A (-3,0),B (0,3),AD 丄BC 于D 交y 轴于点E (0,1) (1) 求证:AE =BC ,OE =OC(2) 将线段CB 绕点C 顺时针旋转90º后得线段CF ,连结BF ,求△BCF 的面积(3) 点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP 丄PC ,且QP =PC ,连结QO ,分过点Q 作QR 丄x 轴于R ,求OPQROC -定值∴ANFDMHDEC ∠∠+∠=2为定值资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 24.证明:(1) ∵OA ∠OB ,∠AOB =90°∴△AOB 为等腰直角三角形可证:△AOE ≌△BOC (ASA )∴AE =BC ,OE =OC(2) 过点F 作FG ⊥x 轴于G可证:△BOC ≌△CGF (AAS )∴FG =OC =1,CG =DB =3∴S △BCF =S 梯形BOGF -S △BOC -S △CFG =5(3) 过点Q 作QD ⊥y 轴于D∵PQ =PC 且PQ ⊥PC可证:△PQD ≌△CPP (AAS )∴OC =PD∴OC -QR =PD -OD =OP∴OP QROC =1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年湖北省武汉市硚口区八年级(上)期中数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()
A.B.C.D.
2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A.B.C.D.
3.以下列每组长度的三条线段为边能组成三角形的是()
A.2、3、6B.2、4、6C.2、2、4D.6、6、6
4.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB 的距离是()
A.3B.4C.5D.6
5.BD是锐角等腰△ABC腰上的高,∠A=40°,则∠CBD的度数为()
A.25°B.30°C.20°D.50°
6.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定
△OAB≌△OA′B′的理由是()
A.边角边B.角边角C.边边边D.角角边
7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()
A.A点B.B点C.C点D.D点
8.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N两点,AB=7,AC=8,CB=9,则△AMN的周长是()
A.14B.16C.17D.15
9.如图,平面上到两两相交的三条直线a、b、c的距离都相等的点一共有()
A.1个B.4个C.2个D.3个
10.如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P、Q分别是边OB,OA上的动点,记∠AMP=∠1,∠ONQ=∠2,当MP+PQ+QN最小时,则关于∠1,∠2的数量关系正确的是()
A.∠1+∠2=90°B.2∠2﹣∠1=30°C.2∠1+∠2=180°D.∠1﹣∠2=90°
二、填空题(共6小题,每小题3分,满分18分)
11.点M(1,2)关于x轴对称的点的坐标为.
12.从一个多边形的一个顶点出发,可以作7条对角线,则它是边形,它的内角和为,外角和为.
13.如图,点D在AC的垂直平分线上,AB∥CD,若∠D=130°,则∠BAC的度数
是.
14.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则BC=,AD=.
15.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第3次碰到长方形边上的点的坐标为,第2015次碰到长方形边上的点的坐标为.
16.如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC 为面积最小的等腰直角三角形,则点C的坐标为,最小面积为.
三、解答题(共8小题,满分72分)
17.(8分)如图,AB∥CD,∠A=45°,且OC=OE,求∠C的度数.
18.(8分)一个等腰三角形的两条边长分别为5和10,求这个三角形的周长.
19.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:
(1)△ABC≌△DEF;
(2)AB∥DE.
20.(8分)如图,点E在AB上,∠CEB=∠B.∠ACD=∠ECB,∠D=∠A,求证:CD=CA.
21.(8分)已知△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△AB1C1;并写出B1的坐标;
(2)将△ABC向右平移8个单位,画出平移后的△A1B2C2,并写出B2的坐标;
(3)在(1)、(2)的基础上,写出△AB1C1与△A1B2C2有怎样的位置关系?
(4)在y轴上有一点P,使得PB+PC最小,请画出点P,(用虚线保留画图的痕迹)
22.(10分)如图,等腰Rt△ABC中,∠ACB=90°,CA=CB,点D在AB上,AD=AC,BE⊥直线CD于E
(1)求∠BCD的度数;
(2)求证:CD=2BE;
(3)若点O是AB的中点,请直接写出三条线段CB、BD、CO之间的数量关系.
23.(10分)已知点E在等边△ABC的边AB上,点P在射线CB上,AE=BP
(1)如图1,求证:AP=CE;
(2)如图2,求证:PE=EC;
(3)如图3,若AE=2BE,延长AP至点M使PM=AP,连接CM,求证:CM=CE;
24.(12分)CO是△ACE的高,点B在OE上,OB=OA,AC=BE (1)如图1,求证:∠A=2∠E;
(2)如图2,CF是△ACE的角平分线.
①求证:AC+AF=CE;
②判断三条线段CE、EF、OF之间的数量关系,并给出证明.
2015-2016学年湖北省武汉市硚口区八年级(上)期中数
学试卷
参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.A;2.A;3.D;4.A;5.C;6.A;7.B;8.D;9.B;10.D;
二、填空题(共6小题,每小题3分,满分18分)
11.(1,-2);12.十;1440°;360°;13.25°;14.2;3;15.(8,3);(1,4);16.(3,3);5;
三、解答题(共8小题,满分72分)
17.;18.;19.;20.;21.;22.;23.;24.;。

相关文档
最新文档