洋思九年级第三次月考数学试卷

合集下载

初三第三次月考数学试卷

初三第三次月考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 若实数a、b满足a+b=2,则ab的最大值为()A. 1B. 2C. 3D. 42. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=x^4D. y=x^53. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 60°B. 75°C. 120°D. 135°4. 已知一次函数y=kx+b的图象经过点(1,2)和(-1,-2),则k和b的值分别是()A. k=1,b=1B. k=-1,b=1C. k=1,b=-1D. k=-1,b=-15. 若等差数列{an}的前三项分别为1,a,a+1,则该数列的公差d是()A. 0B. 1C. 2D. -16. 已知方程x^2-2ax+a^2-1=0的两个根分别为1和-1,则a的值为()A. 0B. 1C. 2D. -27. 在平面直角坐标系中,点A(2,3)关于直线y=x的对称点B的坐标是()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)8. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则|a|>|b|C. 若a>b,则a-c>b-cD. 若a>b,则a+c>b+c9. 已知正方形的对角线长为10,则该正方形的面积为()A. 50B. 100C. 200D. 25010. 若等比数列{bn}的公比为q,且b1=2,b3=8,则q的值为()A. 1B. 2C. 4D. 8二、填空题(本大题共10小题,每小题3分,共30分)11. 若实数x满足不等式x^2-4x+3>0,则x的取值范围是______。

12. 若等差数列{an}的前n项和为S_n,且a_1=3,S_5=45,则该数列的公差d是______。

13. 在△ABC中,∠A=75°,∠B=45°,则∠C的余弦值cosC是______。

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a√2B. a/2C. a√3D. 2a2. 下列函数中,哪一个不是二次函数?()A. y = 2x^2 + 3x + 1B. y = x^2 4x + 4C. y = 3/xD. y = x^2 5x + 63. 若等差数列{an}中,a1 = 3,d = 2,则a5 = ()。

A. 11B. 13C. 15D. 174. 下列哪个图形不是中心对称图形?()A. 正方形B. 矩形C. 圆D. 正三角形5. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积是()。

A. 24B. 32C. 40D. 48二、判断题(每题1分,共5分)6. 两个等腰三角形的底边长相等,则这两个三角形全等。

()7. 两个角的和为180°,则这两个角互补。

()8. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式Δ = b^2 4ac,当Δ > 0时,方程有两个实数根。

()9. 函数y = kx(k为常数)是正比例函数。

()10. 任何有理数都可以表示为分数的形式。

()三、填空题(每题1分,共5分)11. 若等差数列{an}中,a1 = 1,d = 3,则a10 = ________。

12. 若一个圆的半径为r,则它的周长为 ________。

13. 若两个角互为补角,且一个角为60°,则另一个角为________°。

14. 若函数y = 2x + 3的图像是一条直线,则它的斜率为 ________。

15. 若一个正方体的体积为V,则它的表面积为 ________。

四、简答题(每题2分,共10分)16. 简述等差数列的定义及通项公式。

17. 解释二次函数图像的开口方向与系数a的关系。

18. 什么是勾股定理?请给出一个具体的例子。

初三第三次月考数学试题及答案

初三第三次月考数学试题及答案

、第一学期第三次教学质量监测九年级数学试题时间:120分钟 总分:150分一、选择题:(每小题只有一个正确答案;请把正确答案选项的字母填在题后的括号内;每小题3分;共30分)1、数据5;3;-1;0;9的极差是 ( )A .-7B .5C . 7D .10 2、已知⊙O 的半径为7cm ;O A =5cm ;那么点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定3、对于抛物线3)5x (31y 2+--=;下列说法正确的是 ( ) A .开口向下;顶点坐标(5;3) B .开口向上;顶点坐标(5;3) C .开口向下;顶点坐标(-5;3)D .开口向上;顶点坐标(-5;3)4、顺次连接平行四边形四边的中点所得的四边形是 ( )5、甲、乙、丙三名射击运动员在某场测试中各射击10次;3人的测试成绩如下表则甲、乙、丙3名运动员测试成绩最稳定的是 ( )A .甲B .乙C .丙D .3人成绩稳定情况相同6、已知⊙O 1的半径R 为7cm ;⊙O 2的半径r 为4cm ;两圆的圆心距O 1O 2为3cm ;则这两圆的位置关系是( )A .相交B .内含C .内切D .外切7、如图;在梯形ABCD 中;AD ∥BC ;AD =AB ;BC =BD ; ∠A =140°;则∠C 等于( ) A .75° B .60° C .70° D .80°8、若抛物线y=ax 2+c 经过点P ( l ;-2 );则它也经过 ( )A .P 1(-1;-2 )B .P 2(-l ; 2 )C .P 3( l ; 2)D .P 4(2; 1) 9、⊙O 的半径为5cm ;点A 、B 、C 是直线a 上的三点;OA 、OB 、OC 的长度分别是5cm 、4cm 、7cm ;则直线a 与⊙O 的位置关系是: ( )A .相离B .相切C .相交D .不能确定10、若△ABC 的一边a 为4;另两边b 、c 分别满足b 2-5b +6=0;c 2-5c +6=0;则△ABC的周长为 ( ) A .9 B .10 C .9或10 D .8或9或10丙的成绩 环数 7 8 9 10 频数 0 5 5 0 甲的成绩 环数 7 8 9 10 频数 2 3 3 2 乙的成绩 环数 7 8 9 10 频数 1 4 4 1 A BD第7题图二、填空题:(每小题3分;共24分)11、数据:102、99、101、100、98的方差是 。

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。

本试题共6页,满分为150分,考试时间为120分钟。

注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。

九年级上学期第三次(12月)月考数学试题

九年级上学期第三次(12月)月考数学试题

2019-2020年九年级上学期第三次(12月)月考数学试题一、选择题(每题3分,共24分)1.一组数据3,-4, 6,0,则这组数据的极差是 ( )A .10B .9C .3D .2.52.线段2 cm 、8 cm 的比例中项为( )cm .A .4B .8C .D . 3.如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的中位数分别是 ( )A . 7B .8C .9D .104.圆的半径为4,圆心到直线l 的距离为3,则直线l 与 ⊙O 位置关系是( ) A .相离 B .相切 C .相交 D .无法确定5.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为 ( )A .B .C .D .6. 如图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )7.抛物线向左平移1个单位,再向上平移2个单位,所得到的抛物线是 ( )BACBA 、B 、C 、D 、8.已知实数m ,n 满足m ﹣n 2=2,则代数式m 2+2n 2+4m ﹣1的最小值等于( ) A .-14 B .11 C .8 D .-6 二、填空题(每题3分,共30分)9.在-1,0,,1,,中任取一个数,取到无理数的概率是_______. 10.已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为__________厘米. 11.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于______. 12.若,则 .13.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m ,则树的高度为________ m .14.如图,D 、E 分别是的边、上的中点,则= .15.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_________. 16.已知圆锥的母线长为6cm ,底面半径为3cm ,则此圆锥的侧面积为_____________cm 2.17. 如图,在Rt △ABC 中,∠C=90°,点D 是AB 边上的一定点,点E 是AC 上的一个动点,若再增加一个条件就能使△ADE 与△ABC 相似,则这个条件可以是________________________..18.如图,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; ……如此进行下去,直至得C xx .若P (m ,2) 在第xx 段抛物线C xx 上,则m =_________.三、解答题(共10题,共96分)19.(8分)计算 23(4)(π3)2|5|-+---- 20.(8分)已知a :b :c =3:2:5, 求的值.21.(8分)xx 年国家实施“全面二孩政策”,人民医院迎来人口出生小高峰,某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?画出树状图或列表。

九年级下学期第三次月考数学试题(解析版)

九年级下学期第三次月考数学试题一、选择题1.有意义的x 的取值范围是( ) A.132x > B. 3x < C. 3x ≥ D. 3x ≠【答案】C 【解析】 【分析】根据二次根式有意义的条件解答即可.有意义, ∴x-3≥0, 解得:x≥3, 故选C.【点睛】本题考查了二次根式有意义的条件,要使二次根式有意义,二次根式的被开方数是非负数. 2. sin60o 的值等于( )A.12C.2D. 1【答案】C 【解析】试题解析:根据特殊角的三角函数值,可知:sin 60=o 故选C.3.在人体血液中,红细胞直径约为0.00077cm ,数据0.00077用科学记数法表示为( ) A. 47.710⨯ B. 47.710-⨯C. 37.710-⨯D. 57710-⨯【答案】B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.00077=7.7×10-4.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A. B. C. D.【答案】D【解析】【分析】根据实物的形状和主视图的概念判断即可.【详解】从正面看是一个等腰三角形,高线是虚线,观察只有D选项符合,故选D.【点睛】本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.5.若一个正六边形的周长为24,则该正六边形的面积为( )A. 43B. 123C. 24D. 3【答案】D【解析】【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为24,即可求得BC 的长,进而根据等边三角形的性质即可求得△OBC的面积,则可求得该六边形的面积.【详解】如图,连接OB,OC,过O作OM⊥BC于M,∵ABCDEF是正六边形,∴∠BOC=16×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=12BC=2,∴OM=22OB BM=23,∴S△OBC=12×BC×OM=12×4×23=43,∴该六边形的面积为:43×6=243.故选D.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.熟练掌握数形结合思想的应用是解题关键.6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A. 140°B. 70°C. 60°D. 40°【答案】B【解析】【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【详解】解:∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE=40°, ∴∠DOE=180°﹣40°=140°, ∴∠P=12∠DOE=70° 【点睛】本题考查圆内接四边形内角和,圆周角定理,掌握四边形内角和为360°及同弧所对的圆周角是圆心角的一半. 7.分式方程314xx =+的解为( ) A. 1x = B. 2x =C. 1x =-D. 2x =-【答案】B 【解析】 【分析】先去分母转化为整式方程,求出整式方程的解,得到x 的值,代入检验即可得到原分式方程的解. 【详解】3x1x 4=+ 去分母得:3x=x+4, 移项得:2x=4, 解得:x=2.经检验x=2是原分式方程的解. 故选B.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A. m≥1 B. m≤1 C. m >1 D. m <1【答案】D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->V , 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 9.已知实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A. a b >B. a b <C. 0ab >D. a b ->【答案】D 【解析】【分析】由数轴得出a <-1<0<b <1,根据a 、b 的范围,即可判断各选项的对错. 【详解】由数轴得出a <-1<0<b <1,则有A 、a <b ,故A 选项错误;B 、|a|>|b|,故B 选项错误;C 、ab <0,故C 选项错误;D 、-a >b ,故D 选项正确, 故选D.【点睛】本题考查了实数与数轴,解决本题的关键是结合数轴,灵活运用相关知识进行判断.10.如图,已知点E 、F 、G .H 分别是菱形ABCD 各边的中点,则四边形EFGH 是( )A. 正方形B. 矩形C. 菱形D. 平行四边形【答案】B 【解析】分析:根据有一个角是直角的平行四边形是矩形即可证明; 详解:连接AC 、BD .AC 交FG 于L .∵四边形ABCD 是菱形,∴AC ⊥BD ,∵DH =HA ,DG =GC , ∴GH ∥AC ,12HG AC =, 同法可得:12EF AC =,EF ∥AC , ∴GH =EF ,GH ∥EF ,∴四边形EFGH 是平行四边形, 同法可证:GF ∥BD , ∴∠OLF =∠AOB =90°, ∵AC ∥GH ,∴∠HGL =∠OLF =90°, ∴四边形EFGH 是矩形. 故选B .点睛:题考查菱形的性质、平行四边形的判定、矩形的判定等、三角形的中位线定理知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型. 11.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x=-的图象上,则下列关系式一定正确的是( )A. 120x x <<B. 120x x <<C. 210x x <<D. 210x x <<【答案】A 【解析】分析:根据反比例函数的性质,可得答案. 详解:由题意,得k=-3,图象位于第二象限,或第四象限, 在每一象限内,y 随x 的增大而增大, ∵3<6, ∴x 1<x 2<0, 故选A .点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.12.二次函数y=ax 2+bx+c 的图象如图所示,给出下列结论:①2a +b >0;②b>a >c ;③若-1<m <n <1,则m+n <-ba;④3|a|+|c|<2|b|.其中正确的结论个数是( )A. ①③④B. ①③C. ①④D. ②③④【答案】A 【解析】∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=-2ba>1,-b <2a ,∴2a+b>0,故①正确; ∵-b <2a ,∴b >-2a >0>a , 令抛物线解析式为y=-12x 2 +bx-12,此时a=c ,欲使抛物线与x 轴交点的横坐标分别为12和2,则122=-1222b +⎛⎫⨯- ⎪⎝⎭,解得:b=54 , ∴抛物线y=-12x 2 +54x-12,符合“开口向下,与x 轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c ,(其实a >c ,a <c ,a=c 都有可能),故②错误; ∵-1<m <n <1,-2<m+n <2, ∴抛物线对称轴为:x=-2b a >1, -b a >2,m+n < -ba,故③正确; 当x=1时,a+b+c >0,2a+b >0,3a+2b+c >0,∴3a+c >-2b ,∴-3a-c <2b ,∵a <0,b >0,c <0(图象与y 轴交于负半轴),∴3|a|+|c|=-3a-c <2b=2|b|,故④正确. 故选A.点睛:本题主要考查二次函数的图象与系数的关系,能利用特殊值法进行解答是关键所在.二、填空题13.因式分解:a 2﹣2ab +b 2=_________. 【答案】(a ﹣b )2 【解析】分析:根据完全平方公式即可求出答案. 详解:原式()2.a b =- 故答案为()2.a b -点睛:本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型. 14.用半径为10cm ,圆心角为120o 的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为__________cm . 【答案】103【解析】分析:圆锥的底面圆半径为r ,根据圆锥的底面圆周长=扇形的弧长,列方程求解. 详解:设圆锥的底面圆半径为r ,依题意,得2πr=12010180π⨯,解得r=103cm .故答案:103.点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________. 【答案】34【解析】 【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.16.若一次函数()21y k x =-+的函数值y 随x 的增大而增大,则k 的取值范围是_____. 【答案】k >2【解析】 【分析】试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b 中,当k >0时y 随x 的增大而增大,当k <0时y 随x 的增大而减小. 【详解】根据题意可得:k -2>0,解得:k >2. 【点睛】考点:一次函数的性质;一次函数的定义17.如图,点A 在线段BD 上,在BD 的同侧做等腰Rt ABC V 和等腰Rt ADE V ,CD 与BE AE 、分别交于点P M ,.对于下列结论:①BAE CAD V V ∽;②MP MD MA ME ⋅=⋅;③2CB 2=CP CM ⋅.其中正确的是______.【答案】①②③ 【解析】 【分析】由等腰直角三角形的性质可得AC ADAB AE=,BAC EAD 45∠∠==︒,即可得出BAE CAD ∠∠=,即可证明BAE CAD V V ∽,可得①正确;由①可得BEA CDA ∠∠=,根据PME AMD ∠∠=可证明PME AMD V V ∽,根据相似三角形的性质即可证明②正确;由②可得MP MEMA MD=,即可证明△MPA ∽△MED ,进而可得∠APM=∠AED=90°,根据平角的定义可求出∠CAE=90°,即可证明CAP CMA V V ∽,根据相似三角形的性质和等腰直角三角形的性质即可得结论③正确.【详解】∵△ABC 和△ADE 是等腰直角三角形, ∴AC 2AB =,AD 2AE =,∴AC ADAB AE=, ∵BAC EAD 45∠∠==︒, ∴∠BAC+∠CAE=∠EAD+∠CAE , ∴BAE CAD ∠∠= ∴BAE CAD V V ∽ ∴①正确∵BAE CAD V V ∽ ∴BEA CDA ∠∠= ∵PME AMD ∠∠= ∴PME AMD V V ∽ ∴MP MEMA MD= ∴MP MD MA ME ⋅=⋅, ∴②正确∵PME AMD V V ∽ ∴MP ME MA MD =,即MP MAME MD=, 又∵∠PMA=∠EMD , ∴△MPA ∽△MED , ∴APM AED 90∠∠==︒,∵CAE 180BAC EAD 90∠∠∠=︒--=︒,∠ACM=∠ACM , ∴CAP CMA V V ∽, ∴AC CPCM AC=, ∴2AC CP CM =⋅ ∵AC 2AB =,AB=BC ,∴22CB CP CM =⋅. 所以③正确.综上所述:正确的结论有①②③.故答案为①②③【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理及性质是解题关键.三、解答题18.如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB;(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.【答案】(1)画图见解析;(2)画图见解析.【解析】【答案】分析: (1)此题是开放性的命题,利用方格纸的特点及几何图形的面积计算方法割补法,把四边形PAQB 的面积转化为三角形APQ,与三角形PBQ两个三角形的面积之和,而每个三角形都选择PQ为底,根据底一定,要使面积最小,则满足高最小,且同时满足顶点在格点上上即可;(2)根据题意,画出的四边形是轴对称图形,不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.故可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.详解:(1)(2)点睛: 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.19.求不等式组475(1)2332x x x x -<-⎧⎪-⎨≤-⎪⎩的正整数解.【答案】正整数解是1,2,3,4. 【解析】 【分析】先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.【详解】解:()4751x x 2332x x ⎧--⎪⎨-≤-⎪⎩<①②, 解不等式①,得x >﹣2, 解不等式②,得x≤245, 不等式组的解集是﹣2<x≤245, 不等式组的正整数解是1,2,3,4.【点睛】本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.20.某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数; (2)下列关于本次数学测试说法正确的是( ) A.九年级学生成绩的众数不平均数相等 B.九年级学生成绩的中位数不平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数. 【答案】(1)81分;(2)D. 【解析】 【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案. 【详解】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分), 答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A 、根据统计图不能求出九年级学生成绩的众数,故本选项错误; B .根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C .随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D .随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确; 故选D .【点睛】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.已知AB 是O e 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为»AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O e 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小. 【答案】(1)52°,45°;(2)26° 【解析】分析:(Ⅰ)运用直径所对的圆周角是直角以及圆周角的度数等于它所对弧的度数求解即可; (Ⅱ)运用圆周角定理求解即可.详解:(Ⅰ)∵AB 是O e 的直径,∴90ACB ︒∠=. ∴90BAC ABC ︒∠+∠=.又∴38BAC ︒∠=,∴903852ABC ︒︒︒∠=-=.由D 为»AB 的中点,得»»AD BD=. ∴1452ACD BCD ACB ︒∠=∠=∠=. ∴45ABD ACD ︒∠=∠=.(Ⅱ)如图,连接OD . ∵DP 切O e 于点D , ∴OD DP ⊥,即90ODP ︒∠=. 由//DP AC ,又38BAC ︒∠=, ∴AOD ∠是ODP V 的外角, ∴128AOD ODP P ︒∠=∠+∠=. ∴1642ACD AOD ︒∠=∠=. 又OA OC =,得38ACO A ︒∠=∠=.∴643826OCD ACD ACO ︒︒︒∠=∠-∠=-=.点睛:本题考查了圆周角定理,切线的性质以及等腰三角形的性质,正确的作出辅助线是解题的关键. 22.随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域降重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A 处时,该舰在观测点P 的南偏东45°的方向上,且与观测点P 的距离P A 为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P 的北偏东30°方向上的B 处,问此时巡逻舰与观测点P 的距离PB 为多少海里?(参考数据:2≈1.414,3≈1.732,结果精确到1海里).【答案】PB 约为566每里 【解析】【详解】分析:通过勾股定理得到线段PC 的长度,然后解直角△BPC 求得线段PB 的长度即可. 详解:在APC V 中,9045ACP APC ∠=︒∠=︒,, 则AC PC =. ∵AP =400海里,∴由勾股定理知,22222AP AC PC PC =+=, 即4002=2PC 2, 故2002PC =海里.又∵在直角△BPC 中,∠PCB =90°,∠BPC =60°, ∴24002566cos60PCPB PC ===≈︒(海里).答:此时巡逻舰与观测点P 的距离PB 约为566海里.点睛:本题主要考查了勾股定理的应用和解直角三角形的应用.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23.某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数y kx b =+,且70x =时,50y =;80x =时,40y =.(1)写出销售单价x 的取值范围; (2)求出一次函数y kx b =+的解析式;(3)若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?【答案】(1)60≤x≤84;(2)y=﹣x+120;(3)当销售价定为84元/件时,最大利润是864元.【解析】【分析】(1)根据“规定试销期间单价不低于成本单价,又获利不得高于40%”写出x的取值范围便可;(2)可用待定系数法来确定一次函数的解析式;(3)根据利润=销售量×单件的利润,然后将(2)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【详解】解:(1)根据题意得,60≤x≤60×(1+40%),即60≤x≤84;(2)由题意得:50704080k bk b=+⎧⎨=+⎩,∴1120 kb=-⎧⎨=⎩.∴一次函数的解析式为:y=﹣x+120;(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.【点睛】考查的是一次函数的应用及二次函数的性质:(1)求变量的取值范围;(2)问中,主要考察用待定系数法求一次函数的综合应用;(3)问中,主要结合(2)问中一次函数的性质,求出二次函数的最值问题;24.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,则CDAD=____;(2)将该矩形纸片展开,如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:HPC90∠=︒;【答案】2;(2)证明见解析. 【解析】 【分析】(1)依据BCE V 是等腰直角三角形,即可得到CE 2BC =,由图②,可得CE CD =,而AD BC =,即可得到CD 2AD =,即CD2AD=;(2)由翻折可得,PH PC =,即22PH PC =,依据勾股定理可得2222AH AP BP BC +=+,进而得出AP BC =,再根据PH CP =,∠A=∠B=90°,即可得到()Rt APH Rt BCP HL V V ≌,进而得到CPH 90∠=︒;【详解】(1)由图①,可得1BCE BCD 452∠∠==︒, 又∵B 90∠=︒,∴BCE V 是等腰直角三角形, ∴BC 2cos45EC =︒=,即CE 2BC =, 由图②,可得CE CD =, ∵AD BC =, ∴CD 2AD =,∴CD2AD=. 2(2)设AD BC a ==,则AB CD 2a ==,BE a =,∴()AE 21a =,如图③,连接EH ,则CEH CDH 90∠∠==︒, ∵BEC 45∠=︒,A 90∠=︒,∴AEH 45AHE ∠∠=︒=, ∴()AH AE 21a ==-,设AP x =,则BP 2a x =﹣,由翻折可得,PH PC =,即22PH PC =,∴2222AH AP BP BC +=+, 即()()222221a x 2a x a ⎡⎤-+=-+⎣⎦解得x a =,即AP BC =,又∵PH CP =,A B 90∠∠==︒,∴()Rt APH Rt BCP HL VV ≌, ∴APH BCP ∠∠=,又∵Rt BCP V 中,BCP BPC 90∠∠+=︒, ∴APH BPC 90∠∠+=︒, ∴CPH 90∠=︒.【点睛】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:二次函数()2230y ax ax a =-->,当24x ≤≤时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数()2230y ax ax a =-->图象x 轴下方部分沿x 轴向上翻折,得到的新图象,若点()00P x y ,是翻折得到的抛物线弧部分上任意一点,若关于m 的一元二次方程20040m y m k y -+-+=恒有实数根时,求实数k 的最大值.【答案】(1)抛物线与y 轴交于(0,-3),与x 轴交于(-1,0),(3,0);(2)实数k 的最大值为3【解析】 【分析】(1)求出对称轴x 1=,结合a 0>,可知当x 1≥时,y 随x 增大而增大,所以x 4=时,y 5=,把x 4=,y 5=代入解析式求出a 的值,然后解方程2ax 2ax 30--=即可;(2)折叠部分对应的解析式:()()2y x 141x 3=--+-<<,根据0V ≥求出k 的取值范围,即()2y 212k 4-+≤,再结合00y 4<≤,即可求得实数k 的最大值.【详解】(1)抛物线()2y ax 2ax 3a 0=-->的对称轴为:2ax 12a-=-=. ∴a 0>,抛物线开口向上,大致图象如图所示. 当x 1≥时,y 随x 增大而增大; ∵当2x 4≤≤时,函数有最大值5, ∴当x 4=时,y 5=, ∴16a 8a 35--=, 解得:a 1=. ∴2y x 2x 3=-- 当x 0=时,y 3=-,y 0=当时,x 2-2x-3=0,解得:x 1=-或x 3=,∴抛物线与y 轴交于()03,-,抛物线与x 轴交于()10-,,()30,. (2)∵关于m 的一元二次方程200m y m k 4y 0-+-+=恒有实数根, ∴()()200Δy 4k 4y 0=---+≥,即2004k y 4y 16≤-+恒成立,∴()2y 212k 4-+≤恒成立.∵(1)中的抛物线解析式为y=x 2-2x-3,∴函数的最小值为241(3)(2)4⨯⨯---=-4, ∵点()00P x y ,是(1)中抛物线沿x 轴翻折得到的抛物线弧部分上任意一点,∴00y 4<≤,∴()2y 212344-+<≤(k 取()2y 2124-+值的下限),∴实数k 的最大值为3.【点睛】本题主要考查了二次函数的性质及抛物线与坐标轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点.熟练掌握二次函数的性质是解题关键.。

九年级下第三次月考数学试卷(有答案)

九年级(下)第三次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<42.式子有意义,x的取值范围()A.x<1 B.x>1 C.x≠1 D.全体实数3.下面运算正确的是()A.=﹣B.(2a)2=2a2C.x2+x2=x4D.|a|=|﹣a|4.下列词语所描述的事件是随机事件的是()A.守株待兔B.拔苗助长C.刻舟求剑D.竹篮打水5.如果等式x3•x m=x6成立,那么m=()A.2 B.3 C.4 D.56.如图,在平面直角坐标系中,A(2,4)、B(2,0),将△OAB以O为中心缩小一半,则A 对应的点的坐标()A.(1,2) B.(﹣1,﹣2)C.(1,2)或(﹣1,﹣2) D.(2,1)或(﹣2,﹣1)7.下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④8.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°9.已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016B.42015C.42014 D.4201310.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2﹣2×(﹣3)=.12.2015年武汉市机动车的保有量达到229万辆,用科学记数法表示:.13.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张汉字“自”的概率是.14.含30°的直角三角形板如图放置,直线l1∥l2,若∠1=55°,则∠2=.15.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.16.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=.三、解答题(共8题,共72分)17.(x+1)﹣2(x﹣1)=1﹣3x.18.如图,AB=BC,BD=EC,AB⊥BC,EC⊥BC,求证:AD⊥BE.19.某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=,B=,C=.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?20.如图1,在平面直角坐标系中,A点的坐标为(6,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)如图2,若函数y=3x与y=的图象的另一支交于丁点M,求三角形OMB与四边形OCDB 的面积的比.21.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.(1)求证:BA=BC;(2)若AG=2,cosB=,求DE的长.22.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?23.如图,等腰直角△ABC中,∠C=90°,CA=CB,AD平分∠BAC交BC于D,过D作DE⊥AD 交AB于E,垂足为D,过B作BF⊥AB交AD的延长线于F,垂足为B,连EF交BD于M.(1)求证:AE=2BD;(2)求证:MF2=DM•BF;=.(3)若CD=,则S△BEF24.如图,抛物线y=ax2﹣3ax﹣2与x轴交于A、B,与y轴交于C,连AC、BC,∠ABC=∠ACO.(1)求抛物线的解析式.(2)设P为线段OB上一点,过P作PN∥BC交OC于N,设线PN为y=kx+m,将△PON沿PN 折叠,得△PNM,点M恰好落在第四象限的抛物线上,求m的值.(3)CE平分∠ACB交抛物线的对称轴于E,连AE,在抛物线上是否存在点P,使∠APC>∠AEC,若存在,求出点P的横坐标x p的取值范围,若不存在,请说明理由.九年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【考点】估算无理数的大小.【分析】先估算出在2与3之间,再根据m=,即可得出m的取值范围.【解答】解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.2.式子有意义,x的取值范围()A.x<1 B.x>1 C.x≠1 D.全体实数【考点】分式有意义的条件.【分析】要使分式有意义,分式的分母不能为0,依此即可求解.【解答】解:∵式子有意义,∴1﹣x≠0,即x≠1.故选:C.3.下面运算正确的是()A.=﹣B.(2a)2=2a2C.x2+x2=x4D.|a|=|﹣a|【考点】幂的乘方与积的乘方;绝对值;合并同类项;负整数指数幂.【分析】分别利用负整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质分别化简求出答案.【解答】解:A、()﹣1=2,故此选项错误;B、(2a)2=4a2,故此选项错误;C、x2+x2=2x2,故此选项错误;D、|a|=|﹣a|,正确.故选:D.4.下列词语所描述的事件是随机事件的是()A.守株待兔B.拔苗助长C.刻舟求剑D.竹篮打水【考点】随机事件.【分析】随机事件是可能发生也可能不发生的事件.【解答】解:B,C,D都是不可能事件.所以是随机事件的是守株待兔.故选A.5.如果等式x3•x m=x6成立,那么m=()A.2 B.3 C.4 D.5【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则得出m的值即可.【解答】解:∵等式x3•x m=x6成立,∴3+m=6,解得:m=3.故选:B.6.如图,在平面直角坐标系中,A(2,4)、B(2,0),将△OAB以O为中心缩小一半,则A 对应的点的坐标()A.(1,2) B.(﹣1,﹣2)C.(1,2)或(﹣1,﹣2) D.(2,1)或(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行解答.【解答】解:∵以原点O为位似中心,相似比为2:1,将△OAB以O为中心缩小一半,A(2,4),则顶点A的对应点A′的坐标为(﹣1,﹣2)或(1,2),故选:C.7.下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④【考点】简单几何体的三视图.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、圆柱与圆锥组合体、圆台的俯视图,得出满足题意的几何体即可.【解答】解:①的三视图中俯视图是圆,但无圆心;②的俯视图是圆,有圆心;③的俯视图也都是圆,有圆心;④的俯视图都是圆环.故②③的俯视图是相同的;故选:C.8.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°【考点】条形统计图;扇形统计图.【分析】通过对比条形统计图和扇形统计图可知:喜欢的职业是公务员的有40人,占样本的20%,所以被调查的学生数即可求解;各个扇形的圆心角的度数=360°×该部分占总体的百分比,乘以360度即可得到“公务员”所在扇形的圆心角的度数,结合扇形图与条形图得出即可.【解答】解:A.被调查的学生数为=200(人),故此选项正确,不符合题意;B.根据扇形图可知喜欢医生职业的人数为:200×15%=30(人),则被调查的学生中喜欢教师职业的有:200﹣30﹣40﹣20﹣70=40(人),故此选项正确,不符合题意;C.被调查的学生中喜欢其他职业的占:×100%=35%,故此选项错误,符合题意.D.“公务员”所在扇形的圆心角的度数为:(1﹣15%﹣20%﹣10%﹣×100%)×360°=72°,故此选项正确,不符合题意;故选:C.9.已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016B.42015C.42014 D.42013【考点】一次函数图象上点的坐标特征;规律型:点的坐标.【分析】由A点坐标可求得B点坐标,从而可求得AB长,在Rt△ABA1中,可求得AA1,可求得A1的坐标,同理可求得A2的坐标,可找到规律,则可得出答案.【解答】解:∵A(0,1),AB⊥y轴,∴B点纵坐标为1,又B在直线l上,代入可得1=x,解得x=∴B点坐标为(,1),∴AB=,∵OA=1,∴∠AOB=60°,∵A1B⊥l,∴∠A1BO=90°,∴∠AA1B=30°,∴AA1===3,∴OA1=4,则可求得B1坐标为(4,4),∴A1B1=4,同理A1A2==12,∴OA2=16=42,∴OA2016=42016,∴A2016的纵坐标为42016,故选A.10.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.2 B.2 C.4 D.4【考点】旋转的性质;等腰直角三角形.【分析】连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.推出△ADK≌△ABE,根据全等三角形的性质得到∠ABE=∠K=45°,证得△BMG是等腰直角三角,求出BC=4,AB=4,MB=2,由ME≥MG,于是得到当ME=MG 时,ME的值最小.【解答】解:连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.在△ADK与△ABE中,∴△ADK≌△ABE,∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=4,∴AB=4,BM=2,∴MG=2,∠G=90°∴BM≥MG,∴当ME=MG时,ME的值最小,∴ME=BE=2故选:A二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2﹣2×(﹣3)=8.【考点】有理数的乘法;有理数的减法.【分析】先算乘法,再算加法即可,【解答】解:2﹣2×(﹣3)=2+6=8,故答案为:8.12.2015年武汉市机动车的保有量达到229万辆,用科学记数法表示: 2.29×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将229万用科学记数法表示为:2.29×106.故答案为:2.29×106.13.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张汉字“自”的概率是.【考点】概率公式.【分析】让“自”的个数除以字的总个数即可.【解答】解:由于所有机会均等的结果为6种,而出现“自”的机会有3种,所以出现“自”的概率为=.故答案为.14.含30°的直角三角形板如图放置,直线l1∥l2,若∠1=55°,则∠2=115°.【考点】平行线的性质.【分析】先根据对顶角相等求出∠3的度数,再由三角形外角的性质求出∠4的度数,根据平行线的性质即可得出结论.【解答】解:∵∠1=55°,∠1与∠3是对顶角,∴∠3=∠1=55°.∵∠A=60°,∴∠4=∠3+∠A=55°+60°=115°.∵直线l1∥l2,∴∠2=∠4=115°.故答案为:115°.15.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【考点】勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.【分析】利用分类讨论,当∠ABP=90°时,如图2,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得AP的长;当∠APB=90°时,分两种情况讨论,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得AP的长;易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半可得结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.16.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=.【考点】一次函数综合题.【分析】取点P关于y轴的对称点Q,由条件可证得Q为的中点,连接OQ,则可知OQ⊥CD,可求得直线OQ的解析式,由互相垂直的两条直线的关系可求得CD的解析式的k.【解答】解:如图,取点P关于y轴的对称点Q,∵P(4,3),∴Q(﹣4,3),连接PQ,∴PQ⊥y轴,∵PE=PF,∴∠CPE=∠DPE,∴点Q为的中点,连接OQ,则OQ⊥DC,设直线OQ解析式为y=mx,把Q点坐标代入可得3=﹣4m,解得m=﹣,∴直线OQ解析式为y=﹣x,∴直线CD解析式为y=x+b,∴k=,故答案为:.三、解答题(共8题,共72分)17.(x+1)﹣2(x﹣1)=1﹣3x.【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:x+1﹣2x+2=1﹣3x,移项合并得:2x=﹣2,解得:x=﹣1.18.如图,AB=BC,BD=EC,AB⊥BC,EC⊥BC,求证:AD⊥BE.【考点】全等三角形的判定与性质.【分析】根据垂直的定义得到∠ABD=∠BCE=90°,根据全等三角形的性质得到∠A=∠CBE,根据余角的性质即可得到结论.【解答】证明:∵AB⊥BC,EC⊥BC,∴∠ABD=∠BCE=90°,在△ABD与△BCE中,,∴△ABD≌△BCE,∴∠A=∠CBE,∵∠CBE+∠ABE=90°,∴∠A+∠ABE=90°,∴AD⊥BE.19.某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=80.5,B=16,C=0.2.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)利用组距为10cm可得到A的值,用第1组的频数除以它的频率得到样本容量,再用第4组的频率乘以样本容量可得B的值,然后用第3组的频数除以样本容量可得C的值;(2)频数分布表得到第2组的频数为8,第5组的频数为14,则可补全频数分布直方图;(3)用600乘以第5组的频率可估计该校成绩优秀人数.【解答】解:(1)A=80.5,2÷0.04=50,B=50×0.32=16,C=10÷50=0.2;故答案为80.5,16,0.2;(2)如图,(3)600×0.28=168,所以估计该校成绩优秀的有168人.20.如图1,在平面直角坐标系中,A点的坐标为(6,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)如图2,若函数y=3x与y=的图象的另一支交于丁点M,求三角形OMB与四边形OCDB 的面积的比.【考点】反比例函数与一次函数的交点问题.【分析】(1)在RT△AOB中,根据sin∠OAB=求出OA,再求出点C坐标即可解决问题.(2)利用方程组求出点M坐标,分别求出三角形OMB与四边形OCDB的面积即可解决问题.【解答】解:(1)在RT△AOB中,∵0B=6,∠AB0=90°,∴sin∠OAB==,∴OA=10,AB==8,∴点A 再把(6,8), ∵点C 是OA 中点, ∴点C 坐标(3,4),∵反比例函数y=的图象的一支经过点C , ∴k=12,∴反比例函数解析式为y=.(2)由解得或,∵点M 在第三象限, ∴点M 坐标(﹣2,﹣6), ∵点D 坐标(6,2),∴S △OBM =×6×6=18,S 四边形OBDC =S △AOB ﹣S △ACD =×6×8﹣×6×3=15, ∴三角形OMB 与四边形OCDB 的面积的比=18:15=6:5.21.如图,以AB 为直径的⊙O 交△ABC 的边AC 于D 、BC 于E ,过D 作⊙O 的切线交BC 于F ,交BA 延长线于G ,且DF ⊥BC . (1)求证:BA=BC ;(2)若AG=2,cosB=,求DE 的长.【考点】切线的性质.【分析】(1)连结OD ,如图,根据切线的性质得OD ⊥DF ,而DF ⊥BC ,根据平行线的判定得到OD ∥BC ,然后利用平行线的性质和等量代换可得∠OAD=∠C ,则根据等腰三角形的判定定理即可得到结论;(2)作DH ⊥AB 于H ,如图,设⊙O 的半径为r ,由平行线的性质得cos ∠DOG=cosB=,则在Rt △ODG 中利用余弦可计算出r=3,再在Rt △ODH 中利用余弦可求出OH=,则AH=,利用勾股定理可计算出AD,然后证明DE=AD即可.【解答】(1)证明:连结OD,如图,∵DF为切线,∴OD⊥DF,∵DF⊥BC,∴OD∥BC,∴∠ODA=∠C,而OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠C,∴BA=BC;(2)作DH⊥AB于H,如图,设⊙O的半径为r,∵OD∥BC,∴∠B=∠DOG,∴cos∠DOG=cosB=,在Rt△ODG中,∵cos∠DOG=,即=,∴r=3,在Rt△ODH中,∵cos∠DOH==,∴OH=,∴AH=3﹣=,在Rt△ADH中,AD==,∵∠DEC=∠C,∴DE=DC,而OA=OB,OD∥BC,∴AD=CD,∴DE=AD=.22.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?【考点】二次函数的应用.【分析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y与6作比较;(3)求出y=8.5时x的值即可得.【解答】解:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=a(x﹣6)2+10,将点B(0,4)代入,得:36a+10=4,解得:a=﹣,故该抛物线解析式为y=﹣(x﹣6)2+10;(2)根据题意,当x=6+4=10时,y=﹣×16+10=>6,∴这辆货车能安全通过.(3)当y=8.5时,有:﹣(x﹣6)2+10=8.5,解得:x1=3,x2=9,∴x2﹣x1=6,答:两排灯的水平距离最小是6米.23.如图,等腰直角△ABC中,∠C=90°,CA=CB,AD平分∠BAC交BC于D,过D作DE⊥AD 交AB于E,垂足为D,过B作BF⊥AB交AD的延长线于F,垂足为B,连EF交BD于M.(1)求证:AE=2BD;(2)求证:MF2=DM•BF;=2﹣2.(3)若CD=,则S△BEF【考点】相似三角形的判定与性质;四点共圆;等腰直角三角形.【分析】(1)如图1中,取AE的中点F,连接DF,只要证明DF=DB,AE=2DF即可.(2)先证明B、E、D、F四点共圆,再证明FD=FM,BD=BF,利用△DFM∽△DBF即可解决问题.(3)如图2中,作DG∥AB交AC于G,先求出AG、GD、BD、BF,利用△ACD∽△FBE求出EB即可解决问题.【解答】(1)证明:如图1中,取AE的中点F,连接DF,∵∠C=90°,CA=CB,∴∠CAB=∠B=45°,∵AD平分∠CAB,∴∠DAB=∠CAB=22.5°,∵DE⊥AD,∴AF=DF,∴∠FAD=∠FDA=22.5°,∴∠DFB=45°=∠B,∴BD=DF=AE,∴AE=2BD;(2)证明:如图2中,∵BF⊥AB,AD⊥DE,∴∠EBF=∠EDF=90°,∴∠EBF+∠EDF=180°,∴B、E、D、F四点共圆,∴∠AFE=∠DBE=45°,∵∠BDF=∠ADC=67.5°,∴∠DMF=180°﹣∠BDF﹣∠DFM=67.5°,∴∠FDM=∠FMD,∴FD=FM,∵∠DFM=∠FBD=45°,∠FDM=∠BDF,∴△DFM∽△DBF,∴,∠DMF=∠BFD=67.5°,∴DF2=DB•DM,∠BDF=∠BFD,∴BD=BF,∴FM2=DM•BF.(3)解:如图2中,作DG∥AB交AC于G.∵∠CGD=∠A=∠CDG=∠CBA=45°,CD=,∴DG=CD=2,AAC=BC=2+,BD=BF=2,∵∠FEB=∠BDF=∠ADC,∠C=∠EBF=90°,∴△ACD∽△FBE,∴=,∴EB=2﹣2,=•BE•BF=(2﹣2)•2=2﹣2,∴S△EBF故答案为2﹣2.24.如图,抛物线y=ax2﹣3ax﹣2与x轴交于A、B,与y轴交于C,连AC、BC,∠ABC=∠ACO.(1)求抛物线的解析式.(2)设P为线段OB上一点,过P作PN∥BC交OC于N,设线PN为y=kx+m,将△PON沿PN 折叠,得△PNM,点M恰好落在第四象限的抛物线上,求m的值.(3)CE平分∠ACB交抛物线的对称轴于E,连AE,在抛物线上是否存在点P,使∠APC>∠AEC,若存在,求出点P的横坐标x p的取值范围,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)如图1中,由△AOC∽△COB,得=,得OA•OB=OC2=4,结合根与系数关系即可解决问题.(2)如图2中,首先证明OM⊥BC,求出直线OM的解析式,利用方程组求出点M坐标,再求出PN的解析式即可解决问题.(3)如图3中,CE交AB于M,作MG⊥AC于G,MH⊥BC于H,连接EB.对称轴与x轴交于点K.首先证明E、A、C、B四点共圆,圆心为K,⊙K与抛物线在第四象限的交点为F.观察图象即可解决问题.【解答】解:(1)如图1中,设A(m,0),B(n,0),∵∠ACO=∠CBO,∠AOC=∠BOC=90°,∴△AOC∽△COB,∴=,∴OA•OB=OC2=4,∴=﹣4,∴a=,∴抛物线解析式为y=x2﹣x﹣2.(2)如图2中,PN与OM交于点G,由题意OM⊥PN,∵PN∥BC,∴OM⊥BC,∵直线BC的解析式为y=x﹣2,∴直线OM的解析式为y=﹣2x,由解得,或,∴点M坐标(,1﹣),∵OG=GM,∴点G坐标(,),∴直线PN的解析式为y=x+,∴m=.(3)如图3中,CE交AB于M,作MG⊥AC于G,MH⊥BC于H,连接EB.对称轴与x轴交于点K.∵CE平分∠ACB,∴MG=MH,∵A(﹣1,0),B(4,0),C(0,﹣2)∴AC=,BC=2,AB=5,∴====∴AM=,OM=,∴直线CE解析式为y=3x﹣2,∴点E坐标(,),∴EK=AK=KB,∴△EAB是等腰直角三角形,∴∠EBA=∠ACE=45°,∴E、A、C、B四点共圆,圆心为K,⊙K与抛物线在第四象限的交点为F.根据对称性,点F坐标(3,﹣2),由图象可知,当点P在抛物线A→C段或B→F段时,∠APC>∠AEC,此时点P的横坐标x p的取值范围﹣1<x P<0或3<x P<4.。

九年级第三次月考数学试卷

第三次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分) 1. 下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖2、下列等式一定成立的是( )=a b -=a b =+3、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A 、200 (1+a%)2=148B 、200 (1-a%)2=148C 、200 (1-2a%)=148D 、200 (1-a 2%)=1484、如图1,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置, A 落在A '位置,若B A AC ''⊥,则BAC ∠的度数是( ) A 、50° B 、60° C 、70° D 、80°5、已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是( )A .1.5cmB .3cmC .4cmD .6cm6、如图2,在⊙O 中,∠AOB 的度数为m ,C 是ACB 上一点,D 、E 是AB 上不同的两点(不与A 、B 两点重合),则∠D+∠E 的度数为( )A 、mB 、21800m -C 、2900m +D 、2m二、填空题(本大题共8小题,每小题3分,共24分)7、计算:29328+-= 8、关于x 的一元二次方程01)1(2=+--mx m x 有两个不相等的实数根,则m 的取值范围是9、如图3,⊙O 与AB 相切于A ,BO 与⊙O 交于点C ,∠BAC =25°,则∠B = 。

10、两道单项选择题都含有A 、B 、C 、D 四个选项,若某学生不知道正确图1 图2A BO C D EA·BCO图3答案就瞎猜,则这两道题恰好全部被猜对的概率是11. 已知:如图,AB 是圆O 的直径,CD 是圆O 的弦,AB ⊥CD ,P 是垂足,如果AB=10cm ,AP=1cm ,那么CD=__________cm 。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)

河南省信阳市浉河区吴家店中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一.选择题(满分30分)1.下列是部分星座的符号,其中是中心对称图形的是()A.B.C.D.2.一元二次方程2x2﹣6x﹣5=0的一次项系数是()A.2B.6C.﹣6D.﹣53.如图,AB是⊙O的直径,C为圆内一点,则下列说法正确的是()A.∠BOC是圆心角B.AC是⊙O的弦C.∠C是圆周角D.4.某种商品每天的销售利润y(元)与单价x(元)之间的函数关系式为y=﹣0.1(x﹣3)2+25.则这种商品每天的最大利润为()A.0.1元B.3元C.25元D.75元5.某厂1月份生产口罩60万箱,第一季度生产口罩共200万箱,一位同学根据题意列出了方程60+60(1+x)+60(1+x)2=200,则x表示的意义是()A.该厂二月份的增长率B.该厂三月份的增长率C.该厂一、二月份平均每月的增长率D.该厂二、三月份平均每月的增长率6.将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为()A.y=2(x﹣3)2+5B.y=2(x﹣3)2﹣1C.y=2(x+3)2+5D.y=2(x+3)2﹣17.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是()A.45°B.60°C.75°D.90°8.如图,O为线段BC的中点,点A,C,D到点O的距离相等.则∠A与∠C的数量关系为()A.∠A=∠C B.∠A=2∠C C.∠A﹣∠C=90°D.∠A+∠C=180°9.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣2,2)D.(﹣2,4)10.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为()A.172s B.175s C.180s D.186s二.填空题(满分15分)11.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.12.在平面直角坐标系内,若点P(﹣1,p)和点Q(q,3)关于原点O对称,则pq的值为.13.已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.14.如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD 于点E.则图中阴影部分的面积为.(结果保留π)15.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连接BE,则线段BE的最小值等于.三.解答题(满分75分)16.用恰当的方法解下列方程:(1)x2+2x﹣3=0;(2)3(x﹣1)2=2(x﹣1).17.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.18.在学完圆的相关知识后,某数学兴趣小组利用课余时间探究过圆外一点作已知圆的切线,下面记录了部分探究过,组员小杜用尺规作图过一点作已知圆的切线.如图,已知⊙O 及⊙O外一点P,求作:过点P的⊙O的切线.①连接OP,作OP的垂直平分线MN交OP于点A;②以A为圆心,OA为半径作⊙A,交⊙O于点B、C;③作射线PB、PC;则射线PB、PC即为所求.请完成以下问题:(1)根据上述步骤,利用尺规作图(保留作图痕迹、不写作法),将图形补充完整;(2)细心的小马同学通过认真观察,发现线段PB和PC满足一定的数量关系,请你将他的“已知”和“求证”补充完整,并证明.已知:如图,PB、PC与⊙O相切于点B、C,求证:19.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》20.已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数图象的对称轴;(2)若这个二次函数的最小值是7,求a的值;(3)直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,求a的取值范围.21.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?22.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质,其探究过程如下:(1)绘制函数图象,如图1.列表:下表是x与y的几组对应值;x…﹣3﹣2﹣1﹣123…y…124421…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质;①;②;(3)①观察发现:如图2.若直线y=2交函数y=的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=;③类比猜想:若直线y=a(a>0)交函数y=(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=.23.如图①,现有三张形状大小完全相同的三角形纸片叠合到一起,其中AB=AC,∠B=∠C=α.老师让同学们以“三角形的旋转”为主题,通过小组合作探究,提出问题一展示一集体谈论,解决问题.(1)“希望”小组提出问题:将图1中的△ABC以点C为旋转中心,顺时针旋转角度α,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转角度α,得到△AFG,连接DG,得到图②,请判断四边形AEDG的形状,并说明理由;(2)“善学”小组提出问题:将图①中的△ABC以点C为旋转中心,顺时针旋转90°,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转90°,得到△AFG,连接AE,DF,DG,得到图③请判断四边形ACDG的形状,并说明理由;老师根据上面小组的探究提出:(3)若α=75°,则图③中,∠EDF=.参考答案一.选择题(满分30分)1.解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.2.解:一元二次方程2x2﹣6x﹣5=0的一次项系数是﹣6.故选:C.3.解:A、顶点在圆心的角叫圆心角,故∠BOC是圆心角,故A选项符合题意;B、弦是连接圆上任意两点的线段,故AC不是⊙O的弦,故B选项不符合题意;C、顶点在圆上,两边与圆相交的角叫圆周角,故∠C不是圆周角,故C不符合题意;D、根据三角形的三边关系可得AC+OC>AO=AB,故D不符合题意.故选:A.4.解:∵﹣0.1<0,∴当x=3时,y有最大值,最大值为25,故选:C.5.解:依题意可知:该厂2月份生产口罩60(1+x)万箱,3月份生产口罩60(1+x)2万箱,∴x表示该厂二、三月份平均每月的增长率.故选:D.6.解:将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为:y=2(x﹣3)2+3+2.即y=2(x﹣3)2+5.故选:A.7.解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故选:D.8.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠A+∠C=180°,故选:D.9.解:作CH⊥x轴于H点,如图,当x=4时,y=x=4,则A(4,4),∴AB=4,∵△ABO绕点B逆时针旋转60°,得到△CBD,∴BC=BA=4,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=2,BH=CH=6,∴OH=BH﹣OB=6﹣4=2,∴C点坐标为(﹣2,2).故选:A.10.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣740,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.二.填空题(满分15分)11.解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.12.解:∵点P(﹣1,p)和点Q(q,3)关于原点O对称,∴q=1,p=﹣3,则pq的值为:﹣3.故答案为:﹣3.13.解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.14.解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.15.解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴BE2的最小值是2,∴BE的最小值是,故答案为:.三.解答题(满分75分)16.解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,则x+3=0或x﹣1=0,解得x1=﹣3,x2=1;(2)∵3(x﹣1)2=2(x﹣1),∴3(x﹣1)2﹣2(x﹣1)=0,则(x﹣1)(3x﹣5)=0,∴x﹣1=0或3x﹣5=0,解得x1=1,x2=.17.解:(1)画树形图为:共有8种等可能的结果数,其中甲、乙、丙三名学生在同一个餐厅用餐的结果数为2,所以甲、乙、丙三名学生在同一个餐厅用餐的概率==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数为7,所以甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率=.18.解:(1)作图如下:(2)已知:如图,PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,求证:PB=PC.证明:∵PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,∴OC=OB,∠OCP=∠OBP=90°,∵OP=OP,∴Rt△OCP≌Rt△OBP(HL),∴PC=PB.故答案为:OC、OB是⊙O的半径,PC=PB.19.解:(1)根据题意设y关于x的函数表达式为y=a(x﹣3)2+3,把(0,)代入解析式得:=a(0﹣3)2+3,解得:a=﹣,∴y关于x的函数表达式为y=﹣(x﹣3)2+3;(2)该女生在此项考试中是得满分,理由:令y=0,则﹣(x﹣3)2+3=0,解得:x1=7.5,x2=﹣1.5(舍去),∵7.5>6.70,∴该女生在此项考试中是得满分.20.解:(1)对称轴为直线x=﹣==2.(2)当x=2时,y最小值=22﹣4×2+3a+2=4﹣8+3a+2=3a﹣2,∵最小值是7,∴3a﹣2=7,解得:a=3.(3)∵该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,∴x2﹣4x+3a+2=2x﹣1在x≤4的范围内有两个不同的实数根,化简得:x2﹣6x+3a+3=0,Δ=36﹣4(3a+3)>0,解得:a<2,∵x2﹣6x+3a+3=0在x≤4的范围内有两个不同的实数根,∴x=4时,y=16﹣24+3a+3≥0,∴a≥,∴≤a<2.21.解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.22.解:(1)补全图象如图所示:(2)①函数的图象关于y轴对称;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小(答案不唯一);(3)①如图2,∵A、B的纵坐标相同,故AB∥OC,而BC∥OA,则四边形OABC为平行四边形,当y=2时,即2=,解得x=±1,故点A、B的坐标分别为(﹣1,2)、(1,2),则AB=1+1=2=OC,则S四边形OABC=CO•y A=2×2=4,②当y=a时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=4,③当函数表达式为y=时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=2k;故答案为:①4;②4;③2k.23.解:(1)四边形AEDG是平行四边形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=α,∠DEC=∠B=α,∴∠DEC=∠GAC,∴AG∥DE,∵AB=AC,∴AG=DE,∴四边形AEDG是平行四边形;(2)四边形ACDG是正方形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=90°=∠ACD,∴AG∥CD,∴四边形ACDG是平行四边形,∵∠GAC=90°,∴四边形ACDG是矩形,∵AC=CD=AG,∴四边形ACDG是正方形;(3)连接GE,∵∠B=∠ACB=α=75°,∴∠BAC=30°,∵旋转,∴∠CDE=∠GAF=30°,AB=DE=AC=CD,∵四边形ACDG是正方形,∴GD=CD=AC=AG,∠GDC=∠AGD=90°,∴∠GDE=60°,DG=DE,∴△GDE是等边三角形,∴GE=GD=AG,∠GDE=60°,∴∠AGE=30°,∴∠GAE=∠GEA=75°,∴∠F AE=45°,∵四边形AEDF是平行四边形,∴∠EAF=∠EDF=45°,故答案为:45°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洋思中学九年级数学月月清试卷2016.12
一、选择题(本大题有6个小题,每小题3分,共18分) 1.一元二次方程0)1(=-x x 的解是( ) (A )0=x (B )1=x (C )0=x 或1=x (D )0=x 或1-=x 2.已知在Rt △ABC 中,∠C =90°,BC =1,AC =2,则tanA 的值为( )
A . 2
B .
12
C .
55
D .
25
5
3. 正多边形的一个内角为120°,则该多边形对称轴的条数为( )
A. 9
B. 8
C. 7
D. 6 4.若两个相似三角形的面积之比为1∶4,则它们的周长之比为( ) A .1∶2 B .1∶4 C .1∶5 D .1∶16
5.已知二次函数的图像)30(≤≤x 如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )
A 、有最小值0,有最大值3
B 、有最小值-1,有最大值0
C 、有最小值-1,有最大值3
D 、有最小值-1,无最大值
6.如图,已知A 、B 是反比例函数k
y x
=
(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C 。

动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C 。

过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N 。

设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为( )
二、填空题(本大题有10小题,每小题3分,共30分)
7.数据9.30,9.05,9.10,9.40,9.20,9.10的众数是___________;
A .
B .
O
t
S
O
t S
O
t S
O
t
S
C .
D .
8.抛物线y =x 2
的图象向上平移1个单位、再向左平移1个单位,则平移后的抛物线的解析式为______________.
9.Rt △ABC 中,∠ACB =90º,AC =BC =22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为______________.
10.如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过
点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是_____________. 11.如图,已知抛物线2y x bx c =++经过点(0,-3),请你确定一个b 的值,使该抛物线与x 轴
的一个交点在(1,0)和(3,0)之间。

你确定的b 的值是 。

12. 如图,点A ,B ,C ,D 都在⊙O 上,
的度数等于84°,CA 是∠OCD 的平分线,则∠ABD+∠
CAO=________°
13.若点C 、D 是线段AB 的两个黄金分割点,AB=1,则CD 的长为______.。

14.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x 与方差S 2
如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是 。

15.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大
时,x 的取值范围是 .
16.如图,是二次函数 y =ax 2
+bx +c (a ≠0)的图象的一部分, 给出下列命题 :
①a+b+c=0;②b >2a ;③ax 2
+bx +c =0的两根分别为-3和1; ④a -2b +c >0. 其中正确的命题是 .(只要求填写正确命题的序号)
三、解答题:(本大题共10小题,共102分) 17.计算:(本小题8分)
tan60°-2sin 30°+4cos45°+0(2)π-
18.(本小题8分)
小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时,期中,期末的权重分别为10%,30%,60%计算,那么小林该学期数学书面测验的总评成绩应为多少分?(平时成绩按三个单元成绩的平均分计算)
19. (本小题10分)△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是___.
(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2
与△ABC 位似,且位似比为2:1,点C 2的坐标是_____.
(3)求△A 2B 2C 2的面积.
20.(本小题10分)
如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E , ∠AOC =60°,OC =2。

⑴求OE 和CD 的长;
⑵求弧BD 的长及图中阴影部分的面积。

21(本小题10分)
王大伯几年前承包了甲、乙两片荒山, 各栽100棵杨梅树,成活98%.现已挂果, 经济效益初步显现,为了分析收成情况, 他分别从两山上随意各采摘了4棵树上的 杨梅,每棵的产量如折线统计图所示. (1)分别计算甲、乙两山样本的平均数, 并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨 梅产量较稳定?
22.(本小题10分)
如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .
(1)求证:CA 是圆的切线;
(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =3
2

tan ∠AEC =3
5
,求圆的直径.
23.(本小题10分)
某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件;经测算,售价每上涨1元,就少卖5件。

而售价每下降1元,就多卖7件。

(1)当售价定为30元时,一个月可获利多少元?
(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?
24.(本小题10分)
如图,在矩形ABCD 中,E 是AD 的中点,F 是CD 的上一点,FE ⊥BE 。

(1)求证:△ABE 与△BEF 相似。

(2)若DE=3,AB=9。

求sin ∠CBF
25.(本题12分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标
是(-2,4), 过点A 作AB ⊥y 轴,垂足为B ,连结OA 。

(1)求△OAB 的面积;
(2)若抛物线c x x y +--=22
经过点A 。

○1求c 的值;
○2将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在
△OAB 的内部(不包括△OAB 的边界),求m 的取值范围。

26.(本题14分)
已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上
有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.
(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,
当点P 到达点A 时两点同时停止运动(如图1). ① 直接写出t =1秒时C 、Q 两点的坐标;
② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.
(2)当4
3
-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2),
① 求CD 的长;
② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?
B A
O P C x y 11
D (第26题图2)
(第26题图1)
B A O P
C Q x y 11。

相关文档
最新文档