新课标高中数学基础知识.-求数列通项公式常用方法

合集下载

数列通项公式

数列通项公式

数列通向公式的求解1、公式法:2、累加法:3、累乘法:4、a n与S n的关系:5、构造法:(1)、待定系数法:(2)、同除+待定系数:(3)、取倒数+待定系数:(4)、取对数+待定系数:(5)、连续三项:6、无穷递推关系式:(减去前n-1项剩下最后一项)7、连续两项:8、不动点法:→不动点:方程f(x)=x的根称为函数f(x)的不动点。

数列通项公式典例分析:1、已知数列{a n}满足_________________2、已知数列{a n}满足_________________3、已知数列{a n}满足___________;___________4、已知数列{a n}满足__________________5、已知数列{a n}满足_________________6、已知数列{a n}满足_____________7、已知数列{a n}满足________________8、已知数列{a n}满足______________9、已知数列{a n}满足_________________10、已知数列{a n}满足__________11、已知数列{a n}满足__________________12、已知数列{a n}满足_________________13、已知数列{a n}满足__________________14、已知数列{a n}满足__________________15、已知数列{a n}满足_____________________16、已知数列满足,,则=________17、设是首项为1的正项数列,且(=1,2,3,…),则=________18、在数列中,,,.则=______________19、数列中,,(n≥2),则=______________20、已知数列的首项,,则=__________________21、设数列{an}满足,则=_______________22、已知数列满足且,则=___________23、设数列满足,则=______________。

求数列通项公式、前n项和sn常用方法F

求数列通项公式、前n项和sn常用方法F

求数列通项公式常用方法1.归纳法:由给出已知项寻找规律 ,求同存异,猜想通项公式2.公式法:等差数列与等比数列.3.作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n , 求n a特别的:已知前n 项积,求n a 使用(作商法).4、累加法:数列}{n a 的递推公式为)(1n f a a n n =-+型时,且{)(n f }中n 项和可求。

5、累乘法:数列}{n a 的递推公式为)(1n f a a n n =+型时,且{)(n f } 中n 项积可求。

6、构造法:形如q a p a n n+∙=-1(q p 、为常数)的形式,往往变为)(1λλ-=--n n a p a ,构成等比数列,求}{λ-na 的通项公式,再求n a .7、倒数法:形如)()()(n h a n g a n f n n++,可取倒数后换元,变为q a p a n n +∙=-18.周期法:计算出前n 项,寻找周期精题自测(1)已知数列}{n a 满足)1(23-=n n a S ,则n a =_____________(2)已知数列}{n a 满足11=a ,n n n a a 21+=+,则n a =_____________(3)已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,则n a =_____________(4)已知数列}{n a 满足11=a ,n nn a a 21=+,则n a =_____________(5)已知数列}{n a 满足11=a ,0>n a ,0)1(1221=∙+-+++n n n n a a na a n ,则n a =____________(6)已知数列}{n a 满足11=a ,121+=+n nn a a a ,则n a =_____________(7)已知数列}{n a 满足31=a ,62=a ,n n n a a a -=++12,则2013a =_____________(8)已知数列}{n a 满足333313221na a a a n n =∙++∙+∙+- ,则n a =_____________(9)已知数列的前n 项积为2n ,则当≥n 2时,则n a =_____________求前n 项和nS 常用方法1、公式法:等差数列的前n 项和公式: 等比数列的前n 项和公式:①d n n na a a n S n n 2)1(2)(11-+=+= ②⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na S n n nn )1(211+=∑=n n k nk∑=nk k 12=)12)(1(613212222++=++++n n n n 213)]1(21[+=∑=n n k nk 例1:已知3log 1log 23-=x ,求 +++++n x x x x 32的前n 项和.2、分组求和法:把一个数列分成几个可直接求和的数列.例2:求数列211,413,815,…,⎥⎦⎤⎢⎣⎡+-n n 2112)(的前n 项和。

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=〔d 为常数〕,()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和:()()11122n n a a n n n S nad +-==+性质:〔1〕假如m n p q +=+,如此m n p q a a a a +=+;〔2〕{}n a 为等差数列2n S an bn ⇔=+〔a b ,为常数,是关于n 的常数项为0的二次函数〕2. 等比数列的定义与性质定义:1n na q a +=〔q 为常数,0q ≠〕,11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩〔要注意公比q 〕性质:{}n a 是等比数列〔1〕假如m n p q +=+,如此mn p q a a a a =·· 3.求数列通项公式的常用方法一、公式法例1 数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,如此113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-.二、累加法 )(1n f a a n n =--例2 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+如此所以数列{}n a 的通项公式为2n a n =.例3数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 如此111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=- 例4 数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,如此12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5 〔2004年全国I 第15题,原题是填空题〕数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=如此1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 四、待定系数法〔重点〕例6 数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-例7 数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,如此52x y =⎧⎨=⎩,代入⑥式得115223(522)n nn n a a +++⨯+=+⨯+⑦例8 数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,如此等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z+=⎧⎪++=⎨⎪+++=⎩,如此31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨五、对数变换法例9 数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误! 六、迭代法例10 数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 七、数学归纳法 例11 11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.〔其他方法呢?〕 解:由1228(1)(21)(23)n n n a a n n ++=+++与189a =,得 由此可猜想22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论. 〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,如此当1n k =+时, 由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立. 八、换元法例12 数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =如此21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 如此123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-, 九、不动点法例13 数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,如此1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为十、倒数法11212nn n a a a a +==+,,求n a 4. 求数列前n 项和的常用方法一、公式法利用如下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法〔等差乘等比〕[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假如将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n<n+1><2n+1>}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+ 〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n<6> nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假如103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构与特征进展分析,找出数列的通项与其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项与特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.数列练习一、选择题}{n a 的公比为正数,且3a ·9a =225a ,2a =1,如此1a =A.21B. 22C.2 D.22.为等差数列,,如此等于{}n a 的前n 项和为n S .假如4a 是37a a 与的等比中项, 832S =,如此10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,23a =,611a =,如此7S 等于A .13B .35C .49D . 63 5.{}n a 为等差数列,且7a -24a =-1,3a =0,如此公差d = 〔A 〕-2 〔B 〕-12 〔C 〕12〔D 〕2 {n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和 A. 90 B. 100 C. 145 D. 1907.等差数列{}n a 的前n 项和为n S ,2110m m ma a a -++-=,2138m S -=,如此m = 〔A 〕38 〔B 〕20 〔C 〕10 〔D 〕9 .{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,如此{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n+D .2n n +{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,如此44S a =.2.设等差数列{}n a 的前n 项和为n S ,如此4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,如此4T , , ,1612T T 成等比数列.}{n a 中,6,7253+==a a a ,如此____________6=a .4.等比数列{n a }的公比0q >, 2a =1,216n n n a a a +++=,如此{n a }的前4项和4S = .数列练习参考答案一、选择题1.[答案]B[解析]设公比为q ,由得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以2q =故2122a a q ===,选B 2.[解析]∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B.[答案]B3.答案:C[解析]由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=如此12,3d a ==-,所以1019010602S a d =+=,.应当选C 4.解:172677()7()7(311)49.222a a a a S +++====应当选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===应当选C. 5.[解析]a 7-2a 4=a 3+4d -2<a 3+d>=2d =-1 ⇒ d =-12[答案]B 6.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.[答案]C[解析]因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即〔2m -1〕×2=38,解得m =10,应当选.C.8.[答案]A 解析设数列{}n a 的公差为d ,如此根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =〔舍去〕,所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 9.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100二、填空题1.[命题意图]此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分表现了通项公式和前n 项和的知识联系.[解析]对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--2.答案:81248,T T T T [命题意图]此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过条件进展类比推理的方法和能力3.[解析]:设等差数列}{n a 的公差为d ,如此由得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.[命题立意]:此题考查等差数列的通项公式以与根本计算.4.[答案]152[解析]由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得:q =2,又2a =1,所以,112a =,21)21(2144--=S =152三、大题{}n a 的各项均为正数,且212326231,9.a a a a a +==1〕.求数列{}n a 的通项公式.2〕.设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.{an}满足a2=0,a6+a8=-10〔I 〕求数列{an}的通项公式;〔II 〕求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.2*.正项等差数列{}n a 的前n 项和为n S ,假如312S =,且1232,,1a a a +成等比数列. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕记3nn n a b =的前n 项和为n T ,求n T . 3. 数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n 〔n ∈N +〕〔1〕证明:数列{a n+1-a n }是等比数列;〔2〕求数列{a n }的通项公式{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.<1> 判断数列}74{nn a -是否成等比数列;〔2〕求数列{}n a 的通项公式{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a ,3b =4a〔1〕求数列{}n a 、{}n b 的通项公式〔2〕假如n n n b a c •=,求数列{}n c 的前n 项和n T。

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法数列是高考的必考内容,也是同学们比较怕的一个知识点。

其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。

而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。

下面我将对数列通项公式的几种常用求法进行总结。

一. 观察法1 适用类型:已知数列前若干项,求该数列的通项时。

2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项.3 例题示范例1:根据数列的前4项,写出它的一个通项公式:(1)4,44,444,4444,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。

(2)正负相间的先把负号去了观察规律,再用1)1()1(+--n n 或来调节符号.二. 公式法1 适用类型:当已知数列为等差或等比数列时。

2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比.等差数列:d n a a n )1(1-+=等比数列:)0(11≠=-q q a a n n三. 已知n s 求n a1适用类型:已知数列的前n 项和求通项时。

2具体发方法:通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 。

3例题示范例1、已知数列{}n a 的前n 项和为:① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。

四. 由递推式求数列通项1 适用类型:已知数列的递推公式求通项公式时.2 具体方法:(1)形如d a a n n +=-1或q a a n n 1-=——-—利用等差等比来求例1 n n n a a a a 求已知2,111=-=+的通项公式(2)形如q pa a n n +=+1--——---构造等比数列例2 已知数列}{n a 满足11=a ,321+=+n n a a ,求n a【解析】123n n a a +=+,∴1326n n a a ++=+,即)3(231+=++n n a a ,1323n n a a ++∴=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⨯=,即321-=+n n a .(3)形如--——--——累加法例3 已知数列}{n a 满足12a = ,121,(2)n n a a n n -=+-≥,求n a【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +[(21)(23)3]2n n =-+-+++2[(21)3](1)212n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+(4)形如——-—--——-累乘法例4 已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .【解析】∵12n n n a a +=⋅,∴12n n na a +=, ∴3241231n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)2122n n n n a a -++⋅⋅⋅+-==, 又11a =,∴(1)22n n n a -=.(5)形如1n n n a pa q +=+方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a【解析】在123n n n a a +=+两边除以13n +,得11213333n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3n n b b +-=-, ∴11221(1)()()33n n n b b --=-⋅=-, ∴21()3n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结.做到从题目中来到题目中去.。

求几种数列通项公式的常用方法

求几种数列通项公式的常用方法

求几种数列通项公式的常用方法作者:兰党军刘志英来源:《理科考试研究·高中》2015年第04期数列知识是高中学生将来上大学后学习高等数学最重要的基础知识之一,因此,数列知识始终是高考考试的重点,同时也是学生学习的难点之一.纵观近几年有关高考数列考查的题型,一般都是求数列的通项公式.而在高中数学中求数列的通项公式的方法较多,下面只介绍几种常用方法.一、观察法就是观察各项的特点,找出各项与项数n的规律性关系.例1根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…;(2)112,245,3910,41617,…(3)1,23,12,25,…;(4)12,-23,34,-45,….解(1)变形为:101-1,102-1,103-1,104-1,…∴通项公式为:an=10n-1.(2)an=n+n2n2+1.(3)an=2n+1.(4)an=(-1)n+1·nn+1.二、公式法如果已知数列为等差(或等比)数列,可直接根据所给条件求得a1,d(或q),从而依据等差(或等比)数列的通项公式写出所求通项.例2等差数列{an}是递减数列,且a2·a3·a4=48,a2+a3+a4=12,则数列的通项公式是().A.an=2n-12B.an=2n+4C.an=-2n+12D.an=-2n+10解析设等差数列的公差为d,由已知(a3+d)·a3·(a3+d)=48,3a3=12,解得a3=4,d=±2.又{an}是递减数列,∴d=-2,a1=8.∴an=8+(n-1)(-2)=-2n+10,故选(D) .例3已知等比数列{an}的首项a1=1,公比0解析由题意,bn+1=an+2+an+3,又{an}是等比数列,公比为q.∴bn+1bn=an+2+an+3an+1+an+2=q,故数列{bn}是等比数列,b1=a2+a3=a1q+a1q2=q(q+1),∴bn=q(q+1)·qn+1=qn(n+1).三、叠加法通常对于型如an+1=an+f(n)类的通项公式,只要f(1)+f(2)+…+f(n)能进行求和,则宜采用此方法求解.例4在数列{an}中,a1=1,an+1=(1+1n)an+n+12n.设bn=ann,求数列{bn}的通项公式.解析(1)由已知可得an+1n+1=ann+12n,∴bn+1-bn=12n,故b2-b1=12,b3-b2=122,b4-b3=123,…,bn-bn-1=12n-1,将以上n-1式子相加便得bn-b1=12+122+123+…+12n-1=12[1-(12)n-1]1-12=1-(12)n-1,又可得b1=1,故bn=2-12n-1.四、叠乘法通常对于型如an+1=f(n)·an类的通项公式,当f(1)·f(2)·…·f(n)的值可以求得时,宜采用此方法.例5在数列{an}中,a1=1,(n+1)·an+1=n·an,求an的表达式.解析由(n+1)·an+1=n·an得an+1an=nn+1,ana1=a2a1·a3a2·a4a3·…·anan-1=12·23·34·…·n-1n=1n,所以an=1n.五、待定系数法用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列{an}为等差数列,则an=bn+c,Sn=bn2+cn(b、c为常数);若数列{an}为等比数列,则an=Aqn-1,Sn=Aqn-A(Aq≠0,q≠1).例6已知数列{cn}中,c1=b1+b,cn=b·cn-1+b1+b,其中b是与n无关的常数,且b≠±1.求出用n和b表示的an的关系式.解析递推公式一定可表示为:cn-λ=b(cn-1-λ)的形式.由待定系数法知:λ=bλ+b1+b.∵b≠1,∴λ=b1-b2,∴cn-b1-b2=b(cn-1-b1-b2).故数列{cn-b1-b2}是首项为c1-b1-b2=b2b2-1,公比为b的等比数列,故cn-b1-b2=b2b2-1bn-1=bn+1b2-1.∴cn=bn+1-bb2-1.六、辅助数列法有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的等差或等比数列,从而利用这个新数列求其通项公式.例7设数列{an}的首项a1∈(0,1),an=3-an-12,n=2,3,4,….求{an}的通项公式.解析由an=3-an-12得an=-12an-1+32,设an-t=-12(an-1-t),即an=-12an-1+32t,对比an=-12an-1+3得t=1.又a1-2≠0,所以{an-1}是首项为a1-1,公比为-12的等比数列,得an-1=(a1-1)·(-12)n-1,∴an=1+(a1-1)(-12)n-1.例8在数列{an}中,a1=1,a2=2,an+2=23an+1+13an,求an.解析在an+2=23an+1+13an两边减去an+1,得an+2-an+1=-13(an+1-an)∴{an+1-an}是以a2-a1=1为首项,以-13为公比的等比数列,∴an+1-an=(-13)n-1,由累加法得:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(-13)n-2+(-13)n-3+…(-13)+1+1=1-(-13)n-11+13=34[1-(-13)n-1]+1=74-34(-13)n-1.七、数学归纳法思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例9数列{an}满足a1=4且an=4-4an-1 (n≥2),求an.解通过递推关系求出数列前几项如下a1=4=2+21 a2=4-4a1=3=2+22 a3=4-4a2 =83 =2+23a4=4-4a3=52=2+24a5=4-4a4=125=2+25a6=4-4a5=73=2+26猜想:通项公式为an=2+2n.下面用归纳法给出证明:显然,当n=1时,a1=4=2+21 ,等式成立假设当n=k时,等式成立,即ak=2+2k则当n=k+1时,ak+1=4-4ak=4-42+2k=4-2kk+1=2+2-2kk+1=2+2k+1.由归纳法原理知,对一切n∈N+都有an=2+2n.总之,有关高考数学考查求数列通项公式的知识时很“灵活”、方法较多,因此需要学生具备灵活运用数学知识的能力,尤其要具备将其他数列能转化成比较熟悉的等差或等比数列的能力.这样才能“以不变应万变”,取得较好的成绩.。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

高三复习课数列求通项公式的基本方法与技巧

高三复习课《数列求通项公式的基本方法与技巧》说课稿大家好!我本节课说课的内容是高三复习课《数列求通项公式的基本方法与技巧》,所用的教材是普通高中课程标准实验教科书(B版)。

高三第一阶段复习,也称“知识篇”。

在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。

在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。

对于高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

一、教材与学情分析(一)教材的地位和作用1、数列是高中数学的重要内容之一,也是与大学数学相衔接的内容,在测试学生逻辑推理能力和理性思维水平,以及考查学生创新意识和创新能力等方面有不可替代的作用。

数列是反映自然规律的基本数学模型之一。

通过对日常生活和现实世界中大量实际问题的分析,建立等差数列和等比数列两种数学模型,有利于培养数学抽象能力,发展数学建模能力。

2、在历年高考试题中,数列占有重要地位,近几年更是有所加强。

特别是2011年辽宁高考解答题第一题就是考查了数列求通项。

(二)学情分析学生通过对高中数学中数列的学习,已经对解决一些数列问题有一定的能力。

但是授课班级是理科普通班,学生的基础一般,反应速度不怎么快,缺乏独立思考的能力和深度思维,普遍感到数学难学。

但大部分学生主观上有学好数学的愿望,能认识到学习数学的重要性。

如果能让学生由被动接受转变为主动参与,亲身实践,那么听课的积极性和思维能力会有很大提高,自主学习和解决问题的能力也会得到很大的发展。

所以我采用的是分组展示、评价的教学方式。

二、教学目标分析(一)知识与技能目标:理解数列的通项公式的含义,熟练掌握求数列通项公式的基本方法与技巧。

新课标高中数学知识点总结

新课标高中数学知识点总结新课标高中数学知识点总结一、函数与方程1. 函数的概念与性质:定义域、值域、奇偶性、周期性等。

2. 渐近线的性质和求法。

3. 函数的运算与复合函数。

4. 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等的性质和图像。

5. 一元二次方程与二元一次方程的解法。

6. 不等式的性质和解法。

7. 等差数列、等比数列和等差数列的性质与求法。

二、数列与数学归纳法1. 数列的概念与性质:首项、公差、通项、前n项和等。

2. 递推数列和直线递推数列的求法与特点。

3. 手动计算数列的前n项和及其极限。

4. 数学归纳法的概念与应用。

三、平面向量1. 平面向量的概念与性质:平行、共线、反向、单位向量等。

2. 平面向量的加法、减法和数量乘法。

3. 平面向量的线性运算:向量的模、角、投影等。

4. 平面向量的数量积和向量积的概念及其计算方法。

四、立体几何与空间向量1. 空间直线与平面的性质与方程的求法。

2. 空间向量与几何应用:垂直、共面、距离等。

3. 空间图形的投影与旋转。

4. 空间向量的数量积和向量积的应用。

五、三角函数与解三角形1. 弧度制与角度制的换算。

2. 三角函数的概念与基本性质。

3. 三角函数的图像与性质:周期、对称等。

4. 三角函数的运算与公式。

5. 解三角形的基本概念与方法。

六、数学证明与二次函数1. 数学证明的方法与实例。

2. 不等式证明与恒等式证明的基本方法。

3. 二次函数的性质与图像:顶点、对称轴、增减性、最值等。

4. 二次函数的变形与应用:平移、伸缩等。

七、导数与微分1. 导数的概念、性质与计算方法。

2. 导数与函数的关系:切线、极值、凹凸等。

3. 函数的微分及其应用。

八、积分与不定积分1. 积分的概念与性质。

2. 定积分和不定积分的概念与计算方法。

3. 积分的应用:面积、体积、质量等。

九、数理统计与概率论1. 随机事件与概率的定义与性质。

2. 条件概率与贝叶斯公式。

高中数学-数列求和及数列通项公式的基本方法和技巧

数列求和通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a an S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。

求通项公式也是学习数列时的一个难点。

由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。

通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。

②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。

③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。

非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高中数学基础知识求数列通项公式常用方法云南昭通 昭翼培训学校 陈培泽掌握求数列通项公式的常用方法,是学习好数列这章知识的关键,高中新课标要求必须掌握的方法有哪些呢?1. 观察-猜想-验证法:例.观察数列,写出它们的一个通项公式,(1)1357,,,, (24816)(2)13151,,,,, (21310121)-- (3)6,66,666,6666,...解:(1)观察分子:1,3,5,7...可以用2n 1-表示;再观察分母:2,4,8,16,...可以用2n表示,这样数列通项就可以表示为:212n nn a -=,最后逐项验证,都成立,就完成了。

(2)一下观察不出规律,先把系数和分式分开,系数为1(1)n +-;再观察分式:13151,,,,, (21310121)也难观察出规律,估计是约掉了公因数,把每一项表示成分数,再把分子分母同乘以2或3,…等,并且容易看出要使分子,分母,逐项增大,再进行观察:246810,,,,,...282680242,这时容易得出结论了,12a (1)31n n n n +=--. (3)变形为:61,611,6111,61111,...⨯⨯⨯⨯,再变形为:99999999996,6,66,...9999⨯⨯⨯⨯ 再变形为:2342222(101),(101),(101),(101),...3333----,所以2a (101)3nn =-.小结:(1)并不是每一个数列都可以写出它的通项公式,例如:列。

(2)数列即使有通项公式,通项公式也并不唯一,例如:1,0,1,0, (1)1(1)a 2n n ++-=;|sin|2n n a π=,1(0a {n n n =为奇数)(为偶数)都是这个数列的通项公式。

2.已知{a }n 是等差或等比数列,求a n例(1)已知数列{a }n 是等差数列,公差d 0≠,n S 为数列前n 项和,满足221n n a s -=,求通项公式a n .解: 数列{a }n 是等差数列,满足221n n a s -=,令2111,a ,n a ==有∴1101a a ==或.令223n 2,a s ==有,211()33a d a d ∴+=+, d 0≠∴103{a d ==或111{a d ==-或112{a d ==.∴33n a n =-或2n a n =-或21n a n =-.(2)已知等比数列{a }n 满足23123||10,125,a a a a a -==求数列{a }n 的通项公式。

解:设数列首项为1a ,公比为q, 123125,a a a =∴331a 125q =,25a =,代入23||10,a a -= 解得35a =-或3a 15=,∴15,1a q =-=-或15,33a q ==,∴(1)5n n a =-或253n n a -=⋅. 小结:在已知数列是等差或等比数列的情况下,一般用前三项建立方程,就可求得通项,要防止小题大做。

求递推数列通项公式,常见题型和方法有: 3. 形如:1()n n a a f n +-=,用累加法:例:数列{a }n ,21a 22,a a =-+1a 2()1n n a n a +=+-+,求通项公式n a . 解:1221n n a a n a +-=-+,∴用用累加法:11223211()()()()n n n n n n n a a a a a a a a a a -----=-+-+-+⋅⋅⋅+-+22[(1)21][2(2)21](2121)(22)n a n a n a a a a =--++--++⋅⋅⋅+⨯-++-+= 2(n a)1-+.小结:注意在变形题中,使用累加法,例如:1n n n a a p q +=⋅ 题型,两边取对数,得:1lg lg lg lg n n a a p n q +-=+,就可以使用累加法了。

练习:(1)已知数列满足:11a =,13n n n a a n +=+,求n a .(2)已知数列{}n a 中,11a =,123n n n a a +=,求数列的通项公式n a . 4.形如:1()n na f n a +=用累乘法: 例:已知数列满足:11a =,12311a 23 (2)n n n a a na a ++++++=,求n a . 解:设12311a 23...2n n n n s a a n a a ++=++++=,则1123122a23 (1)2n nn nn s aan a n a a++++=++++++=,两式相减,得:213(1)2n n a n a n +++=+,即:13(1)n n a n a n--=, 12211231n n n n n n n a a a a a a a a a a -----∴=⋅⋅⋅⋅⋅⋅⋅⋅=13(1)3(2)3(3)313122n n n n n n n n ----⨯⋅⋅⋅⋅⋅⋅⋅=--. 小结:累乘法和累加法都是新课标中要求掌握的重要方法,要熟悉其变形题,1()n n a a f n +=,1()()n n a a f n λλ+=+-,等。

练习:(1)已知数列满足:11a =,1,+1nn na a n +=求通项公式n a . (2)已知数列满足:14a =,n 13232,n n n a a +=-⋅+求通项公式n a . 5.形如:q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )用待定系数法; 设1()n n a x p a x ++=+,即:1(1)n n a pa p x +=+-,比较q pa a n n +=+1,得:1qx p =-. 例:(1)已知数列满足:11a =,121n n a a +=+,求通项公式n a . 解: 2,111qp q x p ==∴==-,∴112(1)n n a a ++=+,∴{1}n a +是首项为1a 12+=, 公比2q =的等比数列,21n n a =-. 练习:在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________6.形如:n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数)设11()n n n n a xq p a xq +++=+∴1(p q)n n n a pa x q +=+-,比较:n n n q pa a +=+1,∴1x p q=-. 例:(1)已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a . 解:设111()232n n n n x x a a +++=+,∴1111a ()332n n n x a ++=-⋅, 11)21(31+++=n n n a a ,比较得:3x =-,∴3{}2n n a -是首项为13223a -=-,公比为13的等比数列。

所以数列通项公式为:3223n n n a =-.(2)已知数列{}n a 中,651=a ,111()32n n n a a +=+,求n a .解:因11,32p q ==,由公式16x p q==--,所以数列6{}2n n a -是首项为113a 36-=-, 公比为13的等比数列,所以通项为613223n n n a =-⨯. 小结:(1)符合题型时直接代公式,是变形题时用待定系数法。

(2)用构造法:例:已知数列{}n a 中,1115,32n n n a a a ++==+,求n a . 解:两边同除以12n +,整理得:111331,,1,22222n n n n n n n n na a ab b b +++=⋅+=∴=⋅+ x 2,{2}1n qb p ==∴+- 是首项为92,公比为32的等比数列,11193b ()2293222n n n n n n n a b --+=⋅-∴=⋅=⋅-,.练习:(1)已知数列{}n a 中,115,32n n n a a a +==+,求n a .(建议用不同方法解同一题,学习效果会更佳。

)(2)若已知数列{}n a 中,115,352n n n a a a +==+⨯,求n a 7. 递推公式为n S 与n a 的关系式。

(或()n n S f a =) 解法:这种类型用11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩与消去n S )2(≥n 或用1n n n a S S -=-代入()n n S f a =,求出n S ,再求n a .例:(1)已知数列{}n a 前n 项和1123n n n S a -=--,112a =,求n a . 解: 1123n n n S a -=--,11123n n n s a ++∴=--,后式减前式,得:11123n n n a a +=+,111,,623p q x p q∴====-,6{}3n n a ∴+是首项为1522a +=,公比为12的等比数列。

5623n n na ∴=-. (2)已知n S 是数列{}n a 的前n 项和,2221nn n s a s =-,求n a解:2n ≥ 时有:21221n n n n n s a s s s -=-=-,2211222n n n n n ns s s s s s --∴-⋅-+=. 1112n n s s -∴-=,又2113,{}n s s =∴ 是公差为2,第二项为3的等差数列,13(2)221n n n s ∴=+-⋅=-,121n s n ∴=-,代入2221nn n s a s =-,化简,得:2(21)(32)n a n n =--,1,(1)2(2)(21)(32)n n a n n n =⎧⎪=⎨≥⎪--⎩. 小结:只有2n ≥时1n n n a s s -=-才成立,若从第二项起是等差数列,用2(2)n a a n d =+- 是等比数列用22n n a a q -=求n a (2n ≥)再验证1a 是否成立,若成立,写出通项;若不成立就用分段式1a ,(1)(n ),(2)n n n a N a n *=⎧=∈⎨≥⎩表示。

练习:已知n S 是数列{}n a 的前n 项和,12a 2,a 3,== 1122,(2)n n n s s s n +-+=+≥,求n a . 8.形如:11n n n n a a a a λ++=+⋅式,两边同乘以11n na a +⋅—转换方法解:对:11n n n n a a a a λ++=+⋅两边同乘以11n n a a +⋅,移项,得:111n na a λ+-=-,∴数列1{}n a 是公差为λ-,首项为11a 的等差数列。

相关文档
最新文档