激光原理陈钰清浙江大学第二版第二章习题答案

合集下载

激光原理 (陈钰清 王静环 着)课后答案

激光原理 (陈钰清 王静环 着)课后答案

kz =
上式可通过积分得到
I (z ) = I 0 exp g 0 z ⇒ exp g 0 z =
ln =
I (z ) I (z ) ⇒ g 0 z = ln ⇒ g0 = I0 I0
解答完毕。
I (z ) I0 ln 2 = = 6.93 × 10 − 4 mm −1 z 1000
《激光原理》习题解答第二章习题解答 1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭 合. 证明如下: (共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共 焦腔。公共焦点在腔内的共 焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共 焦腔,可以证明,对称共焦腔是实双凹腔。 ) 根据以上一系列定义,我们取具对称共焦腔为例来证明。 设两个凹镜的曲率半径分别是 R1 和 R 2 ,腔长为 L ,根据对称共焦腔特点可知:
+3
4 在红宝石调 Q 激光器中,有可能将几乎全部 C r 宝石棒直径为 1cm,长度为 7.5cm, C r
+3
离子激发到激光上能级并产生激光巨脉冲。设红
19
离子浓度为 2 × 10
cm −3 ,巨脉冲宽度为 10ns,求激光的最大
能量输出和脉冲功率。 解答: 红宝石调 Q 激光器在反转能级间可产生两个频率的受激跃迁, 这两个跃迁几率分别是 47%和 53%, 其中几率占 53%的跃迁在竞争中可以形成 694.3nm 的激光,因此,我们可以把激发到高能级上的粒子数看 成是整个激发到高能级的 C r
I0
,经 过
z
距离 后 的 光强 为
I (z )
,根 据 损 耗系 数

激光原理第二章习题答案

激光原理第二章习题答案

2.1 证明:如图2.1所示,当光线从折射率1η的介质,向折射率为2η的介质折射时,在曲率半径R 的球面分界面上,折射光线所经受的变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 其中,当球面相对于入射光线凹(凸)面时,R 取正(负)值。

证明:由图可知 11201θ⋅+⋅=x x 又)()(222111θηθη-=-RxR x 21121122x R ηηηθθηη-∴=+ ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡∴11212122201θηηηηηθx Rx ∴变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 2.2 试求半径R=4cm,折射率η=1.5的玻璃球的焦距和主面的位置1h 和2h 。

解:变换矩阵⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=2112121221210110101n n R n n n l n n R n n n M 把11=n ,5.12=n ,cm R R 421=-=,cm l 8=代入,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⨯-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=3531316355.1145.115.10110815.145.1101M )(12f h A -=, f C 1-=, )(11f h D -= 求得 mm f 30-= mm h 201= mm h 202=2.3 焦距1f =5cm 和2f =-10c=m 的两个透镜相距5cm 。

第一个透镜前表面和第二个透镜后表面为参考平面的系统,其等效焦距为多少?焦点和主平面位置在何处?距1f 前表面20cm 处放置高为10cm 的物体,能在2f 后多远地方成像?像高为多少? 解:(1)2110101010********1131101011110552A B L M CD f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦)(12f h A -=, f C 1-=, )(11f h D -=,求得cm f 5-= cm h 5.21= cm h 52-=第一个透镜前表面与前主面的距离为2.5cm ,第二个透镜后表面与后主面的距离为-5cm,前主面离焦点的距离为-5cm ,) (2)21201011===l x θ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡45252110235150235150111122θθθx x D C B A xcm l cm x 2,5.222-==(距2f 后表面-2cm )2.4 一块折射率为η,厚度为d 的介质放在空气中,其两界面分别为曲率半径等于R 的凹球面和平面,光线入射到凹球面上。

激光原理课后习题答案

激光原理课后习题答案

《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系cL c ==∆τν1又因为γνλλ∆=∆,0λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=c L 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。

2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则 功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。

由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λν z H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b为波尔兹曼常数,T 为热力学温度。

激光原理陈钰清浙江大学第二版第二章习题答案

激光原理陈钰清浙江大学第二版第二章习题答案

第二章开放式光腔与高斯光束习题1试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且 两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

3.激光器的谐振腔由一面曲率半径为 1m 的凸面镜和曲率半径为 2m 的凹面镜组成,工作 物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。

解:设两腔镜 M j 和M 2的曲率半径分别为 R 和R 2, R i=T m,R 2=2m其往返矩阵为:"A f 1 0、 A "1 0、<1B 3 11 =1 22C D ” 1 ■ --1 0 1 ―1 0 1 ,V R 1 丿R 2 丿J f2LL12L(1-_ )R2R 22 2 2L2L 2L 2L4 + - (1)] -[ (1- )(1-)]R 1 1 R 2一R 1 飞 ) 由于是共焦腔,往返矩阵变为r-1一1丿若光线在腔内往返两次,有T 2丿10)10(1)2 2工作物质长I = 0.5m ,折射率n =1.52 根据稳定条件判据:其中解:2I 2 2f 2 IB、y 1 0" z A 1 0)A1 I )1 1 2I )1=(1 1[1P D>.0 1丿「7 1 7 .0 1屮—— 1\ f 丿223I - 21甘2 由(1)解出 2m 〉L 、1m由(2)得 所以得到:L =L'+0.5x(1 -丄)=『 + 0.171.522.17m>L A1.17m4.图2.1所示三镜环形腔,已知I ,试画出其等效透镜序列图,并求球面镜的曲率半径在什么范围内该腔是稳定腔。

图示环形腔为非共轴球面镜腔。

在这种情况下,对于在由光轴组成 的平面内传输的子午光线,式(2.2.7)中的f =(Rcos8)/2,对于在与此垂直的平面内传输的弧矢光线,f=R/(2cos0), 0为光轴与球面镜法线的夹角。

激光与原理习题解答第二章

激光与原理习题解答第二章

激光原理第二章习题答案1.估算2C O 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。

并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

解:2C O 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310H zD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2C O 气体的碰撞线宽系数α为实验测得,其值为49K H z/Pa α≈2C O 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6P a 的时候以多普勒加宽为主,当气压高于1081.6P a 的时候,变为以均匀加宽为主。

2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。

假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。

解:(1) 在现在的情况下有可以解得:11()22()(0)stn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()sdn t n n dtττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:7151332312121310.510,310,0.310,S s A sA s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3n m λ=的光是透明的。

激光原理第二章习题解答

激光原理第二章习题解答

《激光原理》习题解答 第二章习题解答1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。

共焦腔分为实共焦腔和虚共焦腔。

公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。

两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。

) 根据以上一系列定义,我们取具对称共焦腔为例来证明。

设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知:L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T 共轴球面腔的稳定判别式子()1211<+<-D A 如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。

本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。

经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T 坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。

2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。

解答如下:共轴球面腔的()21221222121R R L R L R L D A +--≡+,如果满足()1211<+<-D A ,则腔是稳定腔,反之为非稳腔,两者之间存在临界腔,临界腔是否是稳定腔,要具体分析。

激光原理(陈玉清)答案

第一章 作业
习题一> ※<习题一 习题一 为使氦氖激光器的相干长度达到1km,它的单色性Δλ/λ 为使氦氖激光器的相干长度达到 ,它的单色性Δ 应是多少? 应是多少? 习题二> ※<习题二 习题二 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01mm-1,光通过 10cm长的该材料后,出射光强为入射光强的百分之几?( ) 长的该材料后, ?(2) 长的该材料后 出射光强为入射光强的百分之几?( 一光束通过长度为1m的均匀激活的工作物质 的均匀激活的工作物质, 一光束通过长度为 的均匀激活的工作物质,如果出射光强是 入射光强的两倍,试求该物质的增益系数. 入射光强的两倍,试求该物质的增益系数. ※<习题三 习题三> 习题三 如果激光器和微波激射器分别在= 如果激光器和微波激射器分别在=10um,λ=5×10-1um和ν , = × 和 输出1W连续功率 连续功率, =3000MHz输出 连续功率,试问每秒钟从激光上能级向下 输出 能级跃迁的粒子数是多少? 能级跃迁的粒子数是多少? 习题四> ※<习题四 习题四 设一光子的波长= × 设一光子的波长=5×10-1um,单色性 =10-7,试求光子位 , 若光子的波长变为5× 射线) 置的不确定量 Δx.若光子的波长变为 ×10-4um(x射线)和 ( 射线 5×10-18um(射线),则相应的 Δx又是多少? ),则相应的 又是多少? × (射线),
习题二> ※<习题二 习题二
(1)一质地均匀的材料对光的吸收为0.01mm-1,光通 )一质地均匀的材料对光的吸收为 长的该材料后, 过10cm长的该材料后,出射光强为入射光强的百分之几? 长的该材料后 出射光强为入射光强的百分之几? 的均匀激活的工作物质, (2)一光束通过长度为 的均匀激活的工作物质,如果 )一光束通过长度为1m的均匀激活的工作物质 出射光强是入射光强的两倍, 出射光强是入射光强的两倍,试求该物质的增益系

激光原理——课后习题解答

其中(II)式可以改写为
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。

激光 原理课后习题答案

激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。

在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。

2)第二个方程则为Maxwell的位移电流假设。

这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。

第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。

第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。

在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。

2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。

(赫兹将一感应线圈的两端接于产生器二铜棒上。

当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。

瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。

有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。

他将一小段导线弯成圆形,线的两端点间留有小电火花隙。

因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。

所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。

赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。

赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。

激光原理(陈钰清)第二章习题答案2


2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
知识点一:一些光学元件的传播矩阵 P48 图2.2
2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
1 (A+D) 1时,序列是稳定的 2
P49 (2-4-17)
2.14 腔内有其它元件的两镜腔中,除两个反射镜外的其余部分的变 换矩阵为 ,腔镜曲率半径为 R1 , R2 ,证明:稳定性条件为
0 g1 g 2 1
其中 = D B R1 ; g 2 A B R2
2A 2B 2 A B C( ) AB B D ( ) x R2 R2 x2 1 2 A C - 2 A )(D - 2 B ) C - 2 A )B C - 2 A )(D - 2 B ) D - 2 B )1 ( ( ( ( R1 R1 R2 R1 R1 R2
R R (1) 1 2 L1 ,2 2 L2 时,
1 1 1 L L L2 L1 L2 ( A D) 1 L( ) (1 ) 1 2 2 L1 2 L2 L1 2 L2 2 L1 L 1 L ( 2 1 ) 1 2 L1 L2
所以该腔是非稳定腔
g1 g 2 1 R2 >0 g1 g 2 <1 (1)当L< (2)当L= (3)当L>
2 R2 n0 时,0<g1 g 2 <1,该腔稳定 n0 1 2 R2 n0 时,g1 g 2 =0,该腔为临界腔 n0 1 2 R2 n0 时,g1 g 2 0,该腔不稳定 n0 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章开放式光腔与高斯光束习题1试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且 两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

3.激光器的谐振腔由一面曲率半径为 1m 的凸面镜和曲率半径为 2m 的凹面镜组成,工作 物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。

解:设两腔镜 M j 和M 2的曲率半径分别为 R 和R 2, R i=T m,R 2=2m其往返矩阵为:"A f 1 0、 A "1 0、<1B 3 11 =1 22C D ” 1 ■ --1 0 1 ―1 0 1 ,V R 1 丿R 2 丿J f2LL12L(1-_ )R2R 22 2 2L2L 2L 2L4 + - (1)] -[ (1- )(1-)]R 1 1 R 2一R 1 飞 ) 由于是共焦腔,往返矩阵变为r-1一1丿若光线在腔内往返两次,有T 2丿10)10(1)2 2工作物质长I = 0.5m ,折射率n =1.52 根据稳定条件判据:其中解:2I 2 2f 2 IB、y 1 0" z A 1 0)A1 I )1 1 2I )1=(1 1[1P D>.0 1丿「7 1 7 .0 1屮—— 1\ f 丿223I - 21甘2 由(1)解出 2m 〉L 、1m由(2)得 所以得到:L =L'+0.5x(1 -丄)=『 + 0.171.522.17m>L A1.17m4.图2.1所示三镜环形腔,已知I ,试画出其等效透镜序列图,并求球面镜的曲率半径在什么范围内该腔是稳定腔。

图示环形腔为非共轴球面镜腔。

在这种情况下,对于在由光轴组成 的平面内传输的子午光线,式(2.2.7)中的f =(Rcos8)/2,对于在与此垂直的平面内传输的弧矢光线,f=R/(2cos0), 0为光轴与球面镜法线的夹角。

图2.1I II4 2 4—^l cR vT 或R 》〒l 3 品 J 3 V 3同时还要满足子午线与弧失线症l <R <也或R >^l 9 235.有一方形孔径的共焦腔氦氖激光器, L=30cm , d =2a =0.12cm ,入=632.8nm 镜的 反射率为r ,=1』2=0.96 ,其他的损耗以每程 0.003估计。

此激光器能否作单模运转?如果想在共TEM 00模,小孔的边长应为多大?试根据图2.5.5作一个大 略的估计。

氦氖增益由公式计算。

八心10*并且假定TEM 00和TEM 0i 模的小信号增益系数相同,用g 0表示。

要实现单模运转,必须同时满足下面两个关系式-0.003)A 1e g °l7r1?(1-61 -0.003) v 1稳定条件-1 < -l 2f 2 左边有d1 —― I f所以有—>2或f对子午线: f子午对弧失线:f弧失有:;卫+1<1 f 2 f3L+2〉O f Y i )2 I ——1 >0 人f 丿丄<1=R cos 日 2R2cos日< 2L <3 或 2L <1 Rcos 日 或 Rcos 日所以焦镜面附近加一个方形小孔阑来选择 解:设TEM 01模为第一高阶模,根据已知条件求出腔的菲涅耳数20.062aN = — = ------------ =1.9由图2.5.5可查得TEM 00和TEM。

勺模的单程衍射损耗为600 -10」.3761 "O"6氦氖增益由公式egU =1 +3X10^丄d0| 0.计算。

代入已知条件有e gl =1.075。

将e g l、600、601、r1和r2的值代入I、II式,两式的左端均近似等于1.05,由此可见式II的条件不能满足,因此该激光器不能作单模运转。

为了获得基模振荡,在共焦镜面附近加一个方形小孔阑来增加衍射损耗。

若满足II式的条件,则要求g A 0.047根据图2.5.5可以查出对应于601的腔菲涅耳数N'c0.90由菲涅耳数的定义可以算出相应的小孔阑的边长2a £ J L扎N ' = 2 J300X632.8X10出X0.9 = 0.83mm 因此,只要选择小孔阑的边长略小于0.83mm即可实现TEM 00模单模振荡。

6.试求出方形镜共焦腔面上TEM 30模的节线位置,这些节线是等距分布的吗?解:在厄米高斯近似下,共焦腔面上的TEM 30模的场分布可以写成V30(x, y)虫30出令X = J2兀/(LQx,则I式可以写成x+V30(x,y)=C30H3(X )e (L^式中H3(X )为厄米多项式,其值为H3(X )=8X3-12X由于厄米多项式的零点就是场的节点位置,于是令H3(X )= 0,得X^0;X^ 73/2; X^-73/2考虑到©OS = J□而,于是可以得到镜面上的节点位置C 73 73X"*2二-矶sX —于矶s所以,TEM 30模在腔面上有三条节线,其x坐标位置分别在0和±屆os/2处,节线之间位置是等间距分布的,其间距为J3G)OS/2;而沿y方向没有节线分布。

&今有一球面腔,R, =1.5m,R2 = -1m,L=80cm。

试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。

解:该球面腔的g参数为gj =1-丄=0.47Ri两反射镜距离等效共焦腔中心0点的距离和等价共焦腔的焦距分别为Z1= LR—L)一 1.31m(L-R1)+(L-R2)Z2 二一L(R—L)十.51m(L-R1)+(L-R2)f =严-恥-皿戶.0.50m v [(L-R)+(L-R2)]根据计算得到的数据,在下图中画出了等价共焦腔的具体位置。

等价共焦腔瓦"8由此,9^2 =0.85,满足谐振腔的稳定性条件0 c g i g^1,因此,该腔为稳定腔。

14.某高斯光束腰斑大小为 ©0=1.14mm , A = 10.6 口m 。

求与束腰相距 30cm 、10m 、1000m远处的光斑半径 3及波前曲率半径 R 。

2w 0=—=0.385m Z根据C0(z)= ©0 + I —V f f 2R(z) =z + ——z15.若已知某高斯光束之 %=0.3mm , A =632.8nm 。

求束腰处的q 参数值,与束腰相距30cm解:入射高斯光束的共焦参数2w 0=—=44.7cm Z根据 q(z) =z +q 0 =z + if ,可得 束腰处的q 参数为:q(0)=44.7icm与束腰相距30cm 处的q 参数为:q(30) =(30+44.7i)cm 与束腰相距无穷远处的 q 参数为:R e (q)T K,l m (q) =44.7cm16.某高斯光束O50=1.2mm ,几=10.6 口m 。

今用F=2cm 的锗透镜来聚焦,当束腰与透镜的距离为10m 、1m 、10cm 、0时,求焦斑的大小和位置,并分析所得的结果。

解:入射高斯光束的共焦参数f 二喧 “.427m解:入射高斯光束的共焦参数求得:处的q 参数值,以及在与束腰相距无限远处的q 值。

又已知F =2.0^104口,根据2(I -F)2 + f 2J(I-F)2+ f2I 10m 1m 10cm 0 I,2.00cm2.08cm2.01cm2.00cm2.40 ym 22.5 ym 55.3 ym 56.2 ym论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。

eo 0=3mm ,用一 F=2cm 的凸透镜距角,求欲得到c 0=20 ym 及2.5 ym 时透镜应放在什么位置。

2=—=2.67mZ已知F =2.0咒10°m ,根据&-F)2+f 2% =20 时,I =1.39m ,即将透镜放在距束腰1.39m 处;图2.217. CO 2激光器输出光 >.= 10.6 口m .解:入射高斯光束的共焦参数I=F+严—f2*2国0 = 2.5时,I =23.87m , 即将透镜放在距束腰 23.87m 处。

18.如图2.2光学系统,如射光/w=10.6 ym ,求®0 及 13。

解:入射高斯光束的共焦参数为f =— = 0.427m解:先求经过一个透镜的作用之后的束腰半径及位置 由于l^F 1,所以CO 0 =h ,= F , =2cmA——F =22.49 口m所以对第二个透镜,有I =12 —I ' = 13cm・2兀®04——=1.499x10 m 已知F 2 = 0.05m ,根据(I -F 2)F ;13 = F2 + --- 2 ----- 23 2(I-F 2)2 + f 2ft«00 F2J (I -F 2)2 + f 2叫=14.06^m, I 3 =8.12cm19.某高斯光束c 0 =1.2mm , Z = 10.6 口 m 。

今用一望远镜将其准直。

主镜用镀金反射镜 R=1m ,口径为20cm ;副镜为一锗透镜,F 1=2.5cm ,口径为1.5cm ;高斯束腰与透镜相距l =1m ,如图2.3所示。

求该望远系统对高斯光束的准直倍率。

由于F i 远远的小于I ,所以高斯光束经过锗透镜后将聚焦于前焦面上,F 1 ---- = 0.028mm这样可以得到在主镜上面的光斑半径为R Ao/(R)俺 ——-=6cm < 10cm即光斑尺寸并没有超过主镜的尺寸,不需要考虑主镜孔径的衍射效应。

这个时候该望远系统对高斯光束的准直倍率为小1 + 占=101.9F I Y呼0丿20.激光器的谐振腔有两个相同的凹面镜组成,它出射波长为几的基模高斯光束,今给定功在(II)式的两端同时乘以 兀/A ,则有f 工fP 0-P i)率计,卷尺以及半径为 a 的小孔光阑,试叙述测量该高斯光束公焦参数 f 的实验原理及步骤。

解:一、实验原理通过放在离光腰的距离为Z 的小孔(半径为a)的基模光功率为_2a 2P(z) =R(1-e *^2(z))(I)式中,P o 为总的光功率, P(z)为通过小孔的光功率。

记 P = P(z),则有2 a 2 P 0(I I)注意到对基模高斯光束有兀⑷2(z)Zf+£f±得到光斑的束腰半径(III)共焦参数f 。

2. 用激光功率计测出通过小孔光阑的光功率3. 移走光阑,量出高斯光束的总功率 P 0 ;4•将所得到的数据代入(III)及(IV)式即可求出f(根据实际情况决定(IV)式根号前正负号的取 舍)。

相关文档
最新文档