数学:三-1《相似三角形的判定》课件4(新人教A版选修4-1)
合集下载
高中数学 第一讲三 1 相似三角形的判定课件 新人教A版选修41

(2)要说明线段的乘积式 ab=cd,或平方式 a2=bc,一般都是
证明比例式a=d或b=a,再根据比例的基本性质推出乘积式 cbac
或平方式.
第十七页,共19页。
跟踪训练 3.如图,已知在△ABC 中,AB=AC,∠A=36°,BD 是∠B 的角平分线,试利用三角形相似的关系证明 AD2=DC·AC.
第七页,共19页。
【名师点评】 判定两个三角形相似除定义外一般有四种方 法:预备定理和三个判定定理.预备定理需要有平行的条件, 三个判定定理的选择一般是先找两对内角相等,若只有一对 内角对应相等,再找夹这个角的两边看是否成比例.若无角 相等,再利用三边对应成比例,即方法选择为:判定定理 1→ 定理 2→定理 3.
证明:因为∠A=36°,AB=AC, 所以∠ABC=∠C=72°. 又因为 BD 平分∠ABC, 所以∠ABD=∠CBD=36°, 所以 AD=BD=BC,且△ABC∽△BCD, 所以 BC∶AB=CD∶BC, 所以 BC2=AB·CD, 所以 AD2=AC·CD.
第十八页,共19页。
方法感悟 1.在相似三角形的判定方法中,应用最多的是判定定理 1, 因为它的条件最容易寻求,实际证明当中,要特别注意两个 三角形的公共角,判定定理 2 则常见于连续两次证明相似时, 在第二次使用此定理的情况较多. 2.在证明直角三角形相似时,要特别注意直角这一隐含条件 的利用.
第三页,共19页。
2.相似三角形的判定定理 (1)判定定理 1:对于任意两个三角形,如果一个三角形的两 个角与另一个三角形的两个角对应相等,那么这两个三角形 相似,简述为:_两__角__对应相等,两三角形相似. (2)判定定理 2:对于任意两个三角形,如果一个三角形的两 边和另一个三角形的两边对应成比例,并且夹角相等,那么 这两个三角形相似,简述为两边:(_l_iǎ_n_g_b对iān应) 成比例夹且角_(_j_iā_j_iǎ相o)等, 两三角形相似. 引理:如果一条直线截三角形的两边(或两边的延长线)所得的 对应线段成比例,那么这条直线平行于三角形第的三__(d_ì_s_ā_n_)边_.
《相似三角形的判定》课件1(人教A版选修4-1)

例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
《相似三角形的判定》课件1(人教A版选修4-1)

证明:在△ABC的边AB(或延长线)上截取AD=A
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC ∵AD=A`B`∴AD:AB=A`B`:AB 又A`B`:AB=B`C`:BC=C`A`:CA ∴DE:BC=B`C`:BC,EA:CA=C`A`:CA.
D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽△ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
AB BC AC 如图已知 , 试说明∠BAD=∠CAE. AD DE AE
AB BC AC 解 AD DE AE
∴Δ ABC∽Δ ADE B ∴∠BAC=∠DAE ∴∠BAC━∠DAC=∠DAE━∠DAC 即∠BAD=∠CAE
A E D
C
如图在正方形网格上有A1 B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
(或延长线)相交,所构成的三角形与原三角 形相似;
高中数学 1.3.1 第一讲 相似三角形的判定及有关性质课件 新人教A版选修41

第一讲 相似三角形的判定及有关性质
第一页,共46页。
三 相似三角形的判定及性质
第二页,共46页。
1 相似三角形的判定
课前预习目标
课堂互动探究
第三页,共46页。
课前预习目标
梳理知识 夯实基础
第四页,共46页。
学习目标 1.理解相似三角形的定义. 2.探索预备定理的证明,理解预备定理的本质. 3.掌握相似三角形的判定定理,能应用相似三角形的判 定定理证明相关几何问题. 4.掌握直角三角形相似的判定定理,理解定理内容,能 应用定理证明相关几何问题.
第二十三页,共46页。
(3)旋转型
第二十四页,共46页。
课堂互动探究
剖析归纳 触类旁通
第二十五页,共46页。
典例剖析
【例1】 已知:如图,AB∥A′B′,BC∥B′C′. 求证:△ABC∽△A′B′C′
第二十六页,共46页。
【分析】 利用一组平行线分线段成比例,证得两三角形 对应边成比例即可.
第二十页,共46页。
(4)在Rt△ABC中,∠A=90°,AD⊥BC,如上图,则有△ ABC∽△DBA,△ABC∽△DAC,△ABD∽△CAD.
在写出相似三角形时,注意相应角的顺序应该一致.
第二十一页,共46页。
3.判定三角形相似的三种基本类型 (1)平行线型
第二十二页,共46页。
(2)相交线型
第二十七页,共46页。
【证明】 ∵AB∥A′B′, ∴OOBB′=OOAA′=A′ABB′. ∵B′C′∥BC, ∴OOBB′=OOCC′=B′BCC′. ∴OOAA′=OOCC′.
第二十八页,共46页。
∴A′C′∥AC,∴OOAA′=A′ACC′. ∴A′ACC′=A′ABB′=B′BCC′. ∴△A′B′C′∽△ABC.
第一页,共46页。
三 相似三角形的判定及性质
第二页,共46页。
1 相似三角形的判定
课前预习目标
课堂互动探究
第三页,共46页。
课前预习目标
梳理知识 夯实基础
第四页,共46页。
学习目标 1.理解相似三角形的定义. 2.探索预备定理的证明,理解预备定理的本质. 3.掌握相似三角形的判定定理,能应用相似三角形的判 定定理证明相关几何问题. 4.掌握直角三角形相似的判定定理,理解定理内容,能 应用定理证明相关几何问题.
第二十三页,共46页。
(3)旋转型
第二十四页,共46页。
课堂互动探究
剖析归纳 触类旁通
第二十五页,共46页。
典例剖析
【例1】 已知:如图,AB∥A′B′,BC∥B′C′. 求证:△ABC∽△A′B′C′
第二十六页,共46页。
【分析】 利用一组平行线分线段成比例,证得两三角形 对应边成比例即可.
第二十页,共46页。
(4)在Rt△ABC中,∠A=90°,AD⊥BC,如上图,则有△ ABC∽△DBA,△ABC∽△DAC,△ABD∽△CAD.
在写出相似三角形时,注意相应角的顺序应该一致.
第二十一页,共46页。
3.判定三角形相似的三种基本类型 (1)平行线型
第二十二页,共46页。
(2)相交线型
第二十七页,共46页。
【证明】 ∵AB∥A′B′, ∴OOBB′=OOAA′=A′ABB′. ∵B′C′∥BC, ∴OOBB′=OOCC′=B′BCC′. ∴OOAA′=OOCC′.
第二十八页,共46页。
∴A′C′∥AC,∴OOAA′=A′ACC′. ∴A′ACC′=A′ABB′=B′BCC′. ∴△A′B′C′∽△ABC.
《相似三角形的判定》课件1(人教A版选修4-1)

D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽△ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
(或延长线)相交,所构成的三角形与原三角 形相似;
三边对应成比例的,两三角形相似.
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽△ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
(或延长线)相交,所构成的三角形与原三角 形相似;
三边对应成比例的,两三角形相似.
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
高中数学第一讲三1相似三角形的判定课件新人教A版选修4-1

相似三角形的应用 [例 2] 如图,D 为△ABC 的边 AB 上一点,过 D 点作 DE∥ BC,DF∥AC,AF 交 DE 于 G,BE 交 DF 于 H,连接 GH.
求证:GH∥AB. [思路点拨] 根据此图形的特点可先证比例式GDEE=EEHB成 立,再证△EGH∽△EDB,由相似三角形的定义得∠EHG= ∠EBD 即可.
成比例且夹角相等.故选项 A、B、D 都能推出两三角形相
似.在 C 项的条件下推不出两三角形相似.
答案:C
2.如图,在四边形 ABCD 中,AEEB=FADF, BGGC=DHHC,EH,FG 相交于点 O. 求证:△OEF∽△OHG. 证明:如图,连接 BD. ∵AEEB=FADF, ∴EF∥BD. 又∵BGGC=DHHC,
1.如图,D,E 分别是 AB,AC 上的两点,CD 与 BE 相交于点
O,下列条件中不能使△ABE 和△ACD 相似的是 ( )
A.∠B=∠C
பைடு நூலகம்
B.∠ADC=∠AEB
C.BE=CD,AB=AC D.AD∶AC=AE∶AB 解析:在选项 A、B 的条件下,两三角形有两组对应角相等,
所以两三角形相似,在 D 项的条件下,两三角形有两边对应
相似三角形的判定
[例 1] 如图,已知在△ABC 中,AB=AC,∠ A=36°,BD 是角平分线,证明:△ABC∽△BCD.
[思路点拨] 已知 AB=AC,∠A=36°,所以 ∠ABC=∠C=72°,而 BD 是角平分线,因此,可 以考虑使用判定定理 1.
判定两三角形相似,可按下面顺序进行: (1)有平行截线,用预备定理; (2)有一对等角时,①找另一对等角,②找夹这个角 的两边对应成比例; (3)有两对应边成比例时,①找夹角相等,②找第三 边对应成比例,③找一对直角.
《相似三角形的判定》课件1(人教A版选修4-1)
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
答案是2:1
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?这个 问题有其他答案吗?
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6
2
相似三角形的判定方法
平行于三角形一边的直线与其他两边
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽△ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
答案是2:1
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?这个 问题有其他答案吗?
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6
2
相似三角形的判定方法
平行于三角形一边的直线与其他两边
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽△ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
《相似三角形的判定》课件1(人教A版选修4-1)
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A' B' B' C' A' C' AABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`,
过点D作DE∥BC交AC于点E.
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC ∵AD=A`B`∴AD:AB=A`B`:AB 又A`B`:AB=B`C`:BC=C`A`:CA ∴DE:BC=B`C`:BC,EA:CA=C`A`:CA.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
AB BC AC 如图已知 , 试说明∠BAD=∠CAE. AD DE AE
AB BC AC 解 AD DE AE
∴Δ ABC∽Δ ADE B ∴∠BAC=∠DAE ∴∠BAC━∠DAC=∠DAE━∠DAC 即∠BAD=∠CAE
A E D
C
如图在正方形网格上有A1 B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A' B' B' C' A' C' AABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`,
过点D作DE∥BC交AC于点E.
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC ∵AD=A`B`∴AD:AB=A`B`:AB 又A`B`:AB=B`C`:BC=C`A`:CA ∴DE:BC=B`C`:BC,EA:CA=C`A`:CA.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
AB BC AC 如图已知 , 试说明∠BAD=∠CAE. AD DE AE
AB BC AC 解 AD DE AE
∴Δ ABC∽Δ ADE B ∴∠BAC=∠DAE ∴∠BAC━∠DAC=∠DAE━∠DAC 即∠BAD=∠CAE
A E D
C
如图在正方形网格上有A1 B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
《相似三角形的判定》课件1(人教A版选修4-1)
(或延长线)相交,所构成的三角形与原三角 形相似;
三边对应成比例的,两三角形相似.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似。
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
答案是2:1
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?这个 问题有其他答案吗?
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6
2
相似三角形的判定方法
ห้องสมุดไป่ตู้行于三角形一边的直线与其他两边
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
《相似三角形的判定》课件3(人教A版选修4-1)
相 似 三 角 形 的 判 定
判断两个三角形相似,你有哪些方法 方法1:通过定义(不常用)
三个角对应相等 三边对应成比例
方法2:通过平行线。 方法3:三边对应成比例。
如果有一点E在边AC上,那么点E应该在什么
位置才能使△ADE∽△ABC相似呢? 此时, AE 1 C AD 1 ? =? AB 3 AC 3
相似.
B D A
E
A = A
如果一个三角形的两条 边与另一个三角形的两 条边对应成比例,并且 夹角相等,那么这两个 三角形一定相似吗?
• 已知:如图△ABC和△A`B`C`中,∠A=∠A` , •
∠A` ,A`B`:AB=A`C`:AC. 求证:△ABC∽△A`B`C`
A`
证明:在△ABC的边AB、AC(或它们的延长线) 上分别截取AD=A`B`,AE=A`C`,连结DE. ∠A=∠A`, 这样,△ADE≌△A`B`C`.
∴△ABC∽△ A ' B ' C '
B′
(两边对应成比例且夹角 C′ 相等,两三角形相似)
想一想:如果对应相等的角不是两条对应 边的夹角,那么两个三角形是否相似呢?
C
A
D
F
B E
1、已知△ABC和 △A’B’C’,根据下列条件 判断它们是否相似.
(1)∠A=120°,AB=7cm,AC=14cm, ∠A`=120°,A`B`=3cm,A`C`=6cm; (2) ∠A=45°,AB=12cm, AC=15cm ∠A’=45°,A’B’=16cm,A’C’=20cm
2、判断图中△AEB和△FEC是否相似? AE 54 解: ∵ = =1.5 FE 36
B
45
1
判断两个三角形相似,你有哪些方法 方法1:通过定义(不常用)
三个角对应相等 三边对应成比例
方法2:通过平行线。 方法3:三边对应成比例。
如果有一点E在边AC上,那么点E应该在什么
位置才能使△ADE∽△ABC相似呢? 此时, AE 1 C AD 1 ? =? AB 3 AC 3
相似.
B D A
E
A = A
如果一个三角形的两条 边与另一个三角形的两 条边对应成比例,并且 夹角相等,那么这两个 三角形一定相似吗?
• 已知:如图△ABC和△A`B`C`中,∠A=∠A` , •
∠A` ,A`B`:AB=A`C`:AC. 求证:△ABC∽△A`B`C`
A`
证明:在△ABC的边AB、AC(或它们的延长线) 上分别截取AD=A`B`,AE=A`C`,连结DE. ∠A=∠A`, 这样,△ADE≌△A`B`C`.
∴△ABC∽△ A ' B ' C '
B′
(两边对应成比例且夹角 C′ 相等,两三角形相似)
想一想:如果对应相等的角不是两条对应 边的夹角,那么两个三角形是否相似呢?
C
A
D
F
B E
1、已知△ABC和 △A’B’C’,根据下列条件 判断它们是否相似.
(1)∠A=120°,AB=7cm,AC=14cm, ∠A`=120°,A`B`=3cm,A`C`=6cm; (2) ∠A=45°,AB=12cm, AC=15cm ∠A’=45°,A’B’=16cm,A’C’=20cm
2、判断图中△AEB和△FEC是否相似? AE 54 解: ∵ = =1.5 FE 36
B
45
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴DE=BF
AD AE AB AC
A E
C
D B
AE DE AC BC
AD AE DE AB AC BC
F ∴△ADE∽△ABC
定理:平行于三角形一边的直线和其他两边相交, 所构成的三角形与原三角形相似
平行于三角形一边的直线与其它两边(或延长线)相交, 相似 所得的三角形与原三角形________.
结论:三角形的中位线截得的三角形与原三角形相似
2. 如图,DE//BC, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A ∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C 过E作EF//AB交BC于F
∵DBFE是平行四边形
AE BF 则 AC BC
D
B
AE DE ,即
50 DE . AC BC 50 30 70 50 70 所以, DE 43.75( cm ). 50 30
如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形; △ADG∽△AEH∽△AFI∽△ABC
1: 4 。 (2)如果AD=1,DB=3,那么DG:BC=_____
A E F D
G H I C
B
相似三角形的定义 相似比的性质 相似三角形判定的预备定理
如果△ ABC∽ △ADE,那么你能找出哪些角 的关系?边呢?
∠A = ∠A,∠B = ∠ADE,∠C = ∠AED.
AB AD
=
AC AE
=
BC DEBA E C来自DDE ∥ BC
如图,DE//BC,且D是边AB的中点,DE交AC于E, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A
成比例 的两个 相等 对应边—————— 1. 对应角_______, 三角形, 叫做相似三角形 对应角相等 成比例 。 2. 相似三角形的——————— , 各对应边—————— 如果△ ABC∽ △DEF, 那么 ∠A=∠D, ∠B=∠E, ∠C=∠F
B A
AB AC BC DE DF EF
“A”型
A
D B
(图1)
“X”型
D O E
E C
B (图2) C
请写出它们的对应边的比例式
已知:如图,AB∥EF ∥CD, 3 对相似三角形。 图中共有____ AB∥EF AB∥CD EF∥CD △AOB∽ △FOE
A O E F
B
△AOB ∽△DOC
△EOF∽△COD
C
D
如图,△ABC 中,DE∥BC,GF∥AB, DE、GF交于点O,则图中与△ABC相 似的三角形共有多少个?请你写出来. 解: 与△ABC相似的三角形有3个:
D
E F
C
1、两个全等三角形一定相似吗?为什么?
相似比是多少? 2、两个直角三角形一定相似吗?为什么? 两个等腰直角三角形呢?
3、两个等腰三角形一定相似吗?为什么? 两个等边三角形呢?
300
450
它们是相似三角形吗?为什么?
A
5
B 47°
A′
3
C 10 82° 6
82° 66
51° B′
12 C′
∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C AD AE 1 过E作EF//AB交BC于F AB AC 2 可证DBFE是平行四边形 △ADE≌△EFC B DE 1 ∴DE=BF,DE=FC BC 2
A
D
F
E
C
AD AE DE 1 AB AC BC 2
∴△ADE∽△ABC
A G D O B E C
△ADE
△GFC △GOE
F
如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=450,∠ACB=400. (1)求∠AED和∠ADE的大小;(2)求DE的长. E
C
解: (1) DE ∥ BC
△ADE∽△ABC ∠AED=∠C=400. A 在△ADE中, ∠ADE=1800-400-450=950. △ADE∽△ABC (2)
AD AE AB AC
A E
C
D B
AE DE AC BC
AD AE DE AB AC BC
F ∴△ADE∽△ABC
定理:平行于三角形一边的直线和其他两边相交, 所构成的三角形与原三角形相似
平行于三角形一边的直线与其它两边(或延长线)相交, 相似 所得的三角形与原三角形________.
结论:三角形的中位线截得的三角形与原三角形相似
2. 如图,DE//BC, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A ∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C 过E作EF//AB交BC于F
∵DBFE是平行四边形
AE BF 则 AC BC
D
B
AE DE ,即
50 DE . AC BC 50 30 70 50 70 所以, DE 43.75( cm ). 50 30
如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形; △ADG∽△AEH∽△AFI∽△ABC
1: 4 。 (2)如果AD=1,DB=3,那么DG:BC=_____
A E F D
G H I C
B
相似三角形的定义 相似比的性质 相似三角形判定的预备定理
如果△ ABC∽ △ADE,那么你能找出哪些角 的关系?边呢?
∠A = ∠A,∠B = ∠ADE,∠C = ∠AED.
AB AD
=
AC AE
=
BC DEBA E C来自DDE ∥ BC
如图,DE//BC,且D是边AB的中点,DE交AC于E, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A
成比例 的两个 相等 对应边—————— 1. 对应角_______, 三角形, 叫做相似三角形 对应角相等 成比例 。 2. 相似三角形的——————— , 各对应边—————— 如果△ ABC∽ △DEF, 那么 ∠A=∠D, ∠B=∠E, ∠C=∠F
B A
AB AC BC DE DF EF
“A”型
A
D B
(图1)
“X”型
D O E
E C
B (图2) C
请写出它们的对应边的比例式
已知:如图,AB∥EF ∥CD, 3 对相似三角形。 图中共有____ AB∥EF AB∥CD EF∥CD △AOB∽ △FOE
A O E F
B
△AOB ∽△DOC
△EOF∽△COD
C
D
如图,△ABC 中,DE∥BC,GF∥AB, DE、GF交于点O,则图中与△ABC相 似的三角形共有多少个?请你写出来. 解: 与△ABC相似的三角形有3个:
D
E F
C
1、两个全等三角形一定相似吗?为什么?
相似比是多少? 2、两个直角三角形一定相似吗?为什么? 两个等腰直角三角形呢?
3、两个等腰三角形一定相似吗?为什么? 两个等边三角形呢?
300
450
它们是相似三角形吗?为什么?
A
5
B 47°
A′
3
C 10 82° 6
82° 66
51° B′
12 C′
∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C AD AE 1 过E作EF//AB交BC于F AB AC 2 可证DBFE是平行四边形 △ADE≌△EFC B DE 1 ∴DE=BF,DE=FC BC 2
A
D
F
E
C
AD AE DE 1 AB AC BC 2
∴△ADE∽△ABC
A G D O B E C
△ADE
△GFC △GOE
F
如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=450,∠ACB=400. (1)求∠AED和∠ADE的大小;(2)求DE的长. E
C
解: (1) DE ∥ BC
△ADE∽△ABC ∠AED=∠C=400. A 在△ADE中, ∠ADE=1800-400-450=950. △ADE∽△ABC (2)