人教版高中数学必修4课件全册精品课件
合集下载
人教版高中数学必修4课件全册精品课件

例7 求函数 y coxs taxn的定义域.
x 22kx2k, k Z
4.三角函数的符号
sin
cos
tan
1y
0+ +
_o _
不存在
0
x
_0
-1
_o
y
+
1x
_
0
+o
y
+
0x
_
+
-1
sin ,csc
0
不存在
cos,sec tan , cot
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ
或
2k-
2
<<2k,
人教版高中数学必修4全套精品PPT课件

2100
6600
-1500
特别地,当一条射线没有作任何旋转时, 我们也认为这时形成了一个角,并把这个角 叫做零度角(0º).
角的记法:角α或可以简记成∠α.
⑶角的概念扩展的意义:
用“旋转”定义角之后,角的范围大大地扩大 了
① 角有正负之分; 如:=210, = 150, =660.
4.终边相同的角
⑴ 观察:390,330角,它们的终边都与 30角的终边相同.
⑵探究:终边相同的角都可以表示成一个0到 360的角与k(k∈Z)个周角的和: 390=30+360(k=1), 330=30360 (k=-1)
30=30+0×360 (k=0), 1470=30+4×360(k=4) 1770=305×360 (k=-5)
课堂练习
1.锐角是第几象限的角?第一象限的角是 否都是锐角?小于90º的角是锐角吗?区间 (0º,90º)内的角是锐角吗?
答:锐角是第一象限角;第一象限角不一定 是锐角;小于90º的角可能是零角或负角,故 它不一定是锐角;区间(0º,90º)内的角是锐 角.
2.已知角的顶点与坐标系原点重合,始边 落在x轴的正半轴上,作出下列各角,并指 出它们是哪个象限的角? (1)420º,(2) -75º,(3)855º,(4) -510º.
2.角的概念的推广
⑴“旋转”形成角
一条射线由原来的位置OA,
绕着它的端点O按逆时针方向
旋转到另一位置OB,就形成角B
α.
旋转开始时的射线OA叫做
角α的始边,旋转终止的射线
O
Aห้องสมุดไป่ตู้
OB叫做角α的终边,射线的端
点O叫做角α的顶点.
⑵.“正角”与“负角”、“0º角” 我们把按逆时针方向旋转所形成的角叫做
高中数学必修4全册课件ppt人教版

跟踪训练 3.(1)已知某扇形的圆心角为75°,半径为15 cm, 求扇形的面积; (2)已知扇形的周长为20 cm,面积为9 cm2,求扇形的 圆心角的弧度数.
解:(1)扇形的圆心角为 75×1π80=51π2,扇形半径为 15 cm. ∴扇形的面积 S=12|α|·r2=12×51π2×152=3785π(cm2).
长及扇形面积. (1)43π;(2)165°. 【解】 (1)l=|α|·r=43π×10=430π(cm), S=12|α|·r2=12×43π×102=2030π(cm2).
(2)165°=1π80×165 rad=1112π rad. ∴l=|α|·r= 1112π×10=565π(cm), S=12l·r=12×565π×10=2675π(cm2).
③yx叫做 α 的 正切 ,记作 tan α ,即tan α=yx (x≠0).
对于确定的角α,上述三个值都是唯一确定的.故正弦、余
【名师点评】 (1)弧长公式 l=|α|·r 与扇形面积公式 S=12 |α|·r2=12l·r 在应用公式时,圆心角 α 的单位必须是弧度. (2)扇形的弧长公式和面积公式涉及四个量:面积 S,弧长 l,圆心角 α,半径 r,已知其中的三个量一定能求得第四 个量(通过方程求得),已知其中的两个量能求得剩余的两 个量(通过方程组求得).
若弧是一个半圆,则其圆心角的弧度数是多少? 若弧是一个整圆呢?
弧度制
一般地,正角的弧度数是一个正数,负角 的弧度数是一个负数,零角的弧度数是0,如果 半径为r的圆的圆心角a所对弧的长为l,那么,
角a的弧度数的绝对值是 | a | = l / r
l
注:“弧度”不是弧长,它是一
a
个比值。值有正负。
[课件精品]高中数学人教A版必修四全册
![[课件精品]高中数学人教A版必修四全册](https://img.taocdn.com/s3/m/497ae6a70029bd64783e2ca8.png)
一、知识要点:
3. 向量运算及平行与垂直的判定:
设a ( x1 , y1 ), b ( x2 , y2 ), (b 0).
则 a b ( x1 x2 , y1 y2 )
a b ( x1 x2 , y1 y2 ) a b x1 x2 y1 y2
复习引入
1. 三角函数的定义 2. 诱导公式
sin( 2k ) sin ( k Z ) cos(2k ) cos ( k Z ) tan( 2k ) tan ( k Z )
讲授新课
三角函数线 1.单位圆:圆心在原点,半径等于单位 长度的圆叫单位圆.
2. 《习案》作业四.
第二章复习
一、知识要点:
1. 实数与向量的积的运算律: (1) ( a ) ( )a (2) ( )a a a (3) (a b ) a b 2. 平面向量数量积的运算律:
(1) a b b a ( 2) ( a ) b ( a b ) a ( b ) ( 3) ( a b ) c a c b c
N
F B
课堂小结
掌握向量的相关知识.
课后作业
《习案》作业二十七.
步骤: ⑴ 找出角的终边与单位圆的交点P. ⑵ 从P点向x轴作垂线,垂足为M. ⑶ 过A(1, 0)作x轴垂线与终边(或反向延长 线)交于T.
课堂小结
1. 三角函数线的定义;
2. 会画任意角的三角函数线;
3. 利用单位圆比较三角函数值的大小,
求角的范围.
课后作业
1. 阅读教材P.15-P.17;
(整套)(共52套934张)最新人教版高中数学必修四(全套)精品课件汇总

弧度制的性质
湖南省长沙市一中卫星远程学校
弧度制的性质
①半圆所对的圆心角为 r .
r
湖南省长沙市一中卫星远程学校
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
r
湖南省长沙市一中卫星远程学校
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
湖南省长沙市一中卫星远程学校
讲授新课
角的有关概念 ① 角的定义:
角可以看成平面内一条射线绕着 端点从一个位置旋转到另一个位置所 形成的图形.
湖南省长沙市一中卫星远程学校
②角的名称
B
O
A
湖南省长沙市一中卫星远程学校
②角的名称
B
O
A
顶点
湖南省长沙市一中卫星远程学校
②角的名称
B
始边
O
A
顶点
湖南省长沙市一中卫星远程学校
限角?
y
y
45°
o
x
⑴
x 60°o 30°
⑵
湖南省长沙市一中卫星远程学校
例1.如图⑴⑵中的角分别属于第几象
限角?
y
y
45°
o
x
⑴
x 60°o 30°
⑵
湖南省长沙市一中卫星远程学校
例2.在直角坐标系中,作出下列各 角,并指出它们是第几象限的角. ⑴60°; ⑵120°;⑶240°; ⑷300°;⑸420°;⑹480°.
注意 ⑴ k∈Z;
湖南省长沙市一中卫星远程学校
注意 ⑴ k∈Z;
⑵ 是任一角;
湖南省长沙市一中卫星远程学校
高一数学(人教A版)必修4精品课件:2-2-1 向量加法运算及其几何意义 公开课一等奖课件

温故知新 1.向量的有关概念:
既有大小又有方向 (1)所谓向量是______________________ 的量,其三要素
始点,大小,方向 . 是____________________ 大小相等,方向相同 ,所谓共线 (2)相等向量应满足______________________ 方向相同或相反 向量是指___________________ 的向量.
向量和 的方法叫做向量加法的三角形 和,记作a+b.这种求________
法则.
第二章
2.2 2.2.1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
(3)平行四边形法则:已知两个不共线向量 a、b(如图乙所 → → → → 示),作AB=a,AD=b,则 A、B、D 三点不共线,以AB,AD为 → 邻边作平行四边形 ABCD, 则向量 AC =a+b, 这种作两个向 量和的方法叫做向量加法的平行四边形法则.
第二章
2.2 2.2.1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
自主预习 1.向量的加法
和 的运算,叫做向量的加法.两 (1)定义:求两个向量____ 向量 . 个向量的和仍然是一个______
(2)三角形法则:如图甲所示,已知非零向量a,b,在平 → → → 面内任取一点,作AB=a,BC=b,则向量AC叫做向量a与b的
第二章
2.2 2.2.1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[拓展]①向量加法的多边形法则:n个向量经过平移,顺 次使前一个向量的终点与后一个向量的起点重合,组成一组 向量折线,这n个向量的和等于折线起点到终点的向量.这个 法则叫做向量加法的多边形法则.多边形法则实质就是三角 形法则的连续应用. ②三角形法则和平行四边形法则就是向量加法的几何意 义. (4)规定:a+0=0+a=a. (5)结论:|a+b|≤|a|+|b|.
人教版高中数学必修4全套PPT精品课件
45°+k·180°<α/2<90°+k·180°
理论迁移 例1 在0°~360°范围内,找出
与-950°12′角终边相同的角,并判 定它是第几象限角.
129°48′,第二象限角.
例2 求与3900°终边相同的最小 正角和最大负角.
300°,-60°.
例3 写出终边在直线y=x上的角的集
合S,并把S中适合不等式-360°≤ <
B2αO来自Aβ思考6:如果你的手表慢了20分钟,或快 了1.25小时,你应该将分钟分别旋转多 少度才能将时间校准?
-120°,450°.
思考7:任意两个角的数量大小可以相加、 相减,如 50°+80°=130°, 50° -80°=-30°,你能解释一下这两个式 子的几何意义吗?
终边在x轴上: S={α|α=k·180°,k∈Z}.
终边在y轴上: S={α|α=90°+k·180°,k∈Z}.
思考3:第一、二、三、四象限的角的集 合分别如何表示?
第一象限: S={α|k·3600<α<900+k·3600,k∈Z};
第二象限: S={α|900+k·3600<α<1800+k·3600,k∈Z};
范围就扩展到了任意大小. 对于α =210°,
=-150°,=-660°,你能用图形表示这
些角吗?你能总结一下作图的要点吗?
画图表示一个大小一定的角, 先画一条射线作为角的始边, 再由角的正负确定角的旋转 γ 方向,再由角的绝对值大小 确定角的旋转量,画出角的 终边,并用带箭头的螺旋线 B1 加以标注.
3.象限角
在直角坐标系中,角的顶点与原点 重合,角的始边与x轴的非负半轴重合. 如果角的终边在第几象限,我们就说这 个角是第几象限的角;如果角的终边在 坐标轴上,就认为这个角不属于如何象 限,或称这个角为轴线角. y
理论迁移 例1 在0°~360°范围内,找出
与-950°12′角终边相同的角,并判 定它是第几象限角.
129°48′,第二象限角.
例2 求与3900°终边相同的最小 正角和最大负角.
300°,-60°.
例3 写出终边在直线y=x上的角的集
合S,并把S中适合不等式-360°≤ <
B2αO来自Aβ思考6:如果你的手表慢了20分钟,或快 了1.25小时,你应该将分钟分别旋转多 少度才能将时间校准?
-120°,450°.
思考7:任意两个角的数量大小可以相加、 相减,如 50°+80°=130°, 50° -80°=-30°,你能解释一下这两个式 子的几何意义吗?
终边在x轴上: S={α|α=k·180°,k∈Z}.
终边在y轴上: S={α|α=90°+k·180°,k∈Z}.
思考3:第一、二、三、四象限的角的集 合分别如何表示?
第一象限: S={α|k·3600<α<900+k·3600,k∈Z};
第二象限: S={α|900+k·3600<α<1800+k·3600,k∈Z};
范围就扩展到了任意大小. 对于α =210°,
=-150°,=-660°,你能用图形表示这
些角吗?你能总结一下作图的要点吗?
画图表示一个大小一定的角, 先画一条射线作为角的始边, 再由角的正负确定角的旋转 γ 方向,再由角的绝对值大小 确定角的旋转量,画出角的 终边,并用带箭头的螺旋线 B1 加以标注.
3.象限角
在直角坐标系中,角的顶点与原点 重合,角的始边与x轴的非负半轴重合. 如果角的终边在第几象限,我们就说这 个角是第几象限的角;如果角的终边在 坐标轴上,就认为这个角不属于如何象 限,或称这个角为轴线角. y
高中人教版数学必修4课件:1.3公式五和公式六
=sin sin
θ+cos θ-cos
θ=左边, θ
所以原等式成立.
(2)左边=cocsoθssπ2i+n-θsθintaπ2n+-θθ =co-s sθisninθcθotasnθθ=-tan θ=右边, 所以原等式成立.
三角恒等式的证明策略 1遵循的原则:在证明时一般从左边到右边,或从右边到左边, 或左右归一,总之,应遵循化繁为简的原则. 2常用的方法:定义法,化弦法,拆项拆角法,公式变形法, “1”的代换法.
[解] 原式
=sinc-osα2π+-2πα··-cossinπ2+π2-αα·co·tsa2nπ2-2πα- α
=cos sin
αα··--scionsαα··ctoasn22αα=tsainn22αα=co1s2α.
D.cosπ2+θ
C [sin(π+θ)=-sin θ;sinπ2-θ=cos θ;
cosπ2-θ=sin θ;cosπ2+θ=-sin θ.]
2.sin 95°+cos 175°的值为( )
A.sin 5°
B.cos 5°
C.0
D.2sin 5°
C [sin 95°=cos 5°,cos 175°=-cos 5°, 故 sin 95°+cos 175°=0.]
2.若 α∈π,32π,则 1-sin232π-α=(
)
A.sin α
B.-sin α
C.cos α
D.-cos α
B [∵sin32π-α=-cos α,
又∵α∈π,32π,∴ 1-sin232π-α= 1-cos2α=|sin α|=-sin
α.]
3.计算:sin211°+sin279°=
.
[解]
由
最新人教版高二数学必修4电子课本课件【全册】
最新人教版高二数学必修4电子课 本课件【全册】
小结
最新人教版高二数学必修4电子课 本课件【全册】
复习参考题
最新人教版高二数学必修4电子课 本课件【全册】
第二章 平面向量
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 振幅、周期、频 率、相位
最新人教版高二数学必修4电子课 本课件【全册】
1.6 三角函数模型的简单应用
最新人教版高二数学必修4电子 课本课件【全册】目录
0002页 0042页 0088页 0125页 0179页 0771页 0846页 0977页 1009页 1029页 1094页 1136页 1179页 1234页 1305页 1330页
第一章 三角函数 1.2 任意角的三角函数 1.3 三角函数的诱导公式 探究与发现 函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ 信息技术应用 阅读与思考 振幅、周期、频率、相位 小结 第二章 平面向量 阅读与思考 向量及向量符号的由来 2.3 平面向量的基本定理及坐标表示 2.5 平面向量应用举例 小结 第三章 三角恒等变换 信息技术应用 利用信息技术制作三角函数表 小结 后记
第一章 三角函数
最新人教版高二数学必修4电子课 本课件【全册】
1 .1 任意角和弧度制
最新人教版高二数学必修4电子课 本课件【全册】
1.2 任意角的三角函数
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 三角学与天文学
最新人教版高二数学必修4电子课 本课件【全册】
探究与发现 利用单位圆中的 三角函数线研究正弦函数、余
弦函数的性质
最新人教版高二数学必修4电子课 本课件【全册】
信息技术应用
小结
最新人教版高二数学必修4电子课 本课件【全册】
复习参考题
最新人教版高二数学必修4电子课 本课件【全册】
第二章 平面向量
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 振幅、周期、频 率、相位
最新人教版高二数学必修4电子课 本课件【全册】
1.6 三角函数模型的简单应用
最新人教版高二数学必修4电子 课本课件【全册】目录
0002页 0042页 0088页 0125页 0179页 0771页 0846页 0977页 1009页 1029页 1094页 1136页 1179页 1234页 1305页 1330页
第一章 三角函数 1.2 任意角的三角函数 1.3 三角函数的诱导公式 探究与发现 函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ 信息技术应用 阅读与思考 振幅、周期、频率、相位 小结 第二章 平面向量 阅读与思考 向量及向量符号的由来 2.3 平面向量的基本定理及坐标表示 2.5 平面向量应用举例 小结 第三章 三角恒等变换 信息技术应用 利用信息技术制作三角函数表 小结 后记
第一章 三角函数
最新人教版高二数学必修4电子课 本课件【全册】
1 .1 任意角和弧度制
最新人教版高二数学必修4电子课 本课件【全册】
1.2 任意角的三角函数
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 三角学与天文学
最新人教版高二数学必修4电子课 本课件【全册】
探究与发现 利用单位圆中的 三角函数线研究正弦函数、余
弦函数的性质
最新人教版高二数学必修4电子课 本课件【全册】
信息技术应用
高中数学必修4课件全册(人教A版)资料
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
注意:三角 函数线是有
向线段!
为第二象限角时
P
MO
为第一象限角时
P
OM
MP为角的正弦线,OM为角的余弦线
答:圆心角为π-2,面积是1 ( 2)r2
2
5、用单位圆证明sian α < α <tanα.(00< α<900 T
提示:利用三角函数线和三角形面积与 扇形面积大小关系证明。
y P
O MA x
y
sin x cos x
O
sin
x
x
cos
x
y
sin x cos x 0
sin x cos x 0 O
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、任意角的三角函数
1、角的概念的推广
的终边
y 的终边
正角
o
x 零角
负角
三角函数值的符号:“第一象限全为正,二正三切四余弦”
二、同角三角函数的基本关系式
倒数关系:
tan cot 1 sin csc 1 cos sec 1
商关系:
tan sin cos
cot cos sin
平方关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2
l
n 360
2
r
n
180
r
S
n 360
r2
n
360
r2
2、角度与弧度的互化
2 360
1弧度 (180) 57.30 5718,
180角的角度数与弧度数的对应表
度 0 30 45 60 90120 135 150 180270360
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
=k360º-90º(2k-2 )(kZ);
x 轴: =k180º(k)(kZ);
y
轴:
=k180º+90º(k+
2
)(kZ);
坐标轴:
=k90º(
k
2
)(kZ).
例2、(1)、终边落在x轴上的角度集合:
60
例2 已知a是第二象限角,判断下列各角是第几象限角
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
2
一、角的基本概念
1.几类特殊角的表示方法
(1)与 角终边相同的角的集合: { | =2k+, k∈Z}.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
(2k+<<2k+
高中数学必修四课件全册 (人教A版)
2020年1月28日
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
弧长公式与 扇形面积公式
正弦型函数的图象
y Asin x
同角公式
任意角的 三角函数
诱导公式
两角和与差的 三角函数
三角函数的 图形和性质
二倍角的 三角函数
三角函数式的恒等变形 (化简、求值、证明)
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、任意角的三角函数
1、角的概念的推广
的终边
y 的终边
正角
o
x 零角
负角
{ | k , k Z}
(2)、终边落在y轴上的角度集合:
{ | k , k Z}
2
(3)、终边落在象限平分线上的角度集合:
{ | k , k Z}
42
典型例题
例1.若α是第三象限的角,问α/2是哪个象限的 角?2α是哪个象限的角?
各个象限的半角范围可以用下图记 忆,图中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第 一、二、三、四象限角的半角范围;
例1
设α 角是第二象限且满足|cosα| cosα ,
2
2
则α 角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
混用角度制和弧度制
180 180 1 rad
1
rad
180
57.30
1 rad
180
(4)弧长公式和扇形面积公式.
lr
S r2 1 r2 1l r
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ
或
2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
弧度 0
2 3 5
6 4 3 2346
3 2
2
例3.已知角和满足
求角–的范围.
3
4
解:
, 0 . , .
3
3
, 7
4
4 3 12
例4、 已知扇形的周长为定值100,问扇形的半 径和圆心角分别为多少时扇形面积最大?最大值 是多少?
终边相同的角不一定相等,相等的角终边一定相同。
2、象限角、象间角与区间角的区别 y
2k ,2k k Z
O
x
3、角的终边落在“射线上”、“直线上”及“互相
垂直的两条直线上”的一般表示式
y
y
y
O
x
O
x
O
x
2k k Z k k Z
k k Z
S { | k 360 , k Z} (角度制)
{ | 2k , k Z} (弧度制)
例1、求在 0 到 360( 0到2)范围内,与下列各角终边相同的角
(1)、 950 12
(2)、139
129 48
1
3
三、终边相同的角
1、终边相同的角与相等角的区别
(,)
一、在直角坐标系内讨论角,角的顶点与 原点重合,角的始边 与 x轴的非负半轴重合。逆时针旋转为正,顺时针旋转为负。
二、象限角:角的终边(除端点外)在第几象限,我们就说这 个角是第几象限角。
注:如果角的终边在坐标轴上,则该角不是象限角。
三、所有与角 终边相同的角,连同角 在内,构成集合: