人教版高中数学必修4全套教学课件

合集下载

高中数学必修4全册课件ppt人教版

高中数学必修4全册课件ppt人教版

跟踪训练 3.(1)已知某扇形的圆心角为75°,半径为15 cm, 求扇形的面积; (2)已知扇形的周长为20 cm,面积为9 cm2,求扇形的 圆心角的弧度数.
解:(1)扇形的圆心角为 75×1π80=51π2,扇形半径为 15 cm. ∴扇形的面积 S=12|α|·r2=12×51π2×152=3785π(cm2).
长及扇形面积. (1)43π;(2)165°. 【解】 (1)l=|α|·r=43π×10=430π(cm), S=12|α|·r2=12×43π×102=2030π(cm2).
(2)165°=1π80×165 rad=1112π rad. ∴l=|α|·r= 1112π×10=565π(cm), S=12l·r=12×565π×10=2675π(cm2).
③yx叫做 α 的 正切 ,记作 tan α ,即tan α=yx (x≠0).
对于确定的角α,上述三个值都是唯一确定的.故正弦、余
【名师点评】 (1)弧长公式 l=|α|·r 与扇形面积公式 S=12 |α|·r2=12l·r 在应用公式时,圆心角 α 的单位必须是弧度. (2)扇形的弧长公式和面积公式涉及四个量:面积 S,弧长 l,圆心角 α,半径 r,已知其中的三个量一定能求得第四 个量(通过方程求得),已知其中的两个量能求得剩余的两 个量(通过方程组求得).
若弧是一个半圆,则其圆心角的弧度数是多少? 若弧是一个整圆呢?
弧度制
一般地,正角的弧度数是一个正数,负角 的弧度数是一个负数,零角的弧度数是0,如果 半径为r的圆的圆心角a所对弧的长为l,那么,
角a的弧度数的绝对值是 | a | = l / r
l
注:“弧度”不是弧长,它是一
a
个比值。值有正负。

高一数学必修4(全套任意角等46个) 人教课标版25精品课件

高一数学必修4(全套任意角等46个) 人教课标版25精品课件
人,活着其实很累,在公司,上有可能需要讨好领导,下还需要和同事打好关系,回家需要处理好家庭的关系,交际需要维护好朋友自己的友谊,一不小心就有可能会各种质疑的话语,让我们心里、身体上背负着更重的压力。
也许经常有这样的场景,喧嚣的闹市,聚会上,热闹非凡,尽情的喝着酒,各种嘈杂,殊不知在心里巴不得这聚会早点结束就好,想着明天还要早起上班,想着家里的妻儿还在幽幽的盼着,而你自己也根本就不喜欢这样的场合,偶尔还可以,时间长了,你已经不知该怎样去选择。年纪越大,时间越来越少,身体越来越没以前那么能抗,而自己明白的事情却越来越迷茫,入夜时分,站在这个城市的中央,越来越觉得生活的选择已经不由的我们自己来做主,只剩下了莫名的伤感。
时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。
思考1:已知非零向量a,如何求作向
量a+a+a和(-a)+(-a)+
(-a)?
a
aa a OA B C
uuur OC
=
a+a+a
-a -a -a
P NMO
uuur OP =(-a)+(-a)+(-a)
-2
思考2:向量a+a+a和(-a)+ (-a)+(-a)分别如何简化其表示 形式? a+a+a记为3a, (-a)+(-a)+(-a)记为-3a.
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。

人教版高中数学必修4(A版) 函数y=Asin(ωx+φ)的图象 PPT课件

人教版高中数学必修4(A版) 函数y=Asin(ωx+φ)的图象  PPT课件
知识框架:
y sin x的图像 y sin( xA sin( x )的图像
y sin( x )的图像
在物理中,简谐运动中单摆对平衡位置的位 移y与时间x的关系、交流电的电流y与时间x 的关系等都是形 y A sin( x )的函数(其中A, ω , 都是常数).
3
2
π π1 - 3 6 0 π 2 -1
y sin( x

3
)
O
π 2

3π 2

x
-2 -3
y sin(2 x

3
)
1 y sin( x )如何得到y sin( x )? 3 2 3

函数y sin(x ) 如何变换得到y sin(x ) 的图像?
函数y sin(2x ) 如何变换得到y 3 sin(2x ) 的图像? 3 3
y
3
2
π1 6
π 2
5π 6
π 2
-1
-2 -3
0 O
x 2π 函数y sin(2x )如何变换得到 3 1 y sin(2x ) 的图像? 3 3
函数y sin(x ) 如何变换得到y A sin(x ) 的图象?
结论 : 函数y sin( x ) 的图象,可以看作是把
y sin(x ) 的函数图象上所有点的横坐标缩短 (当 1时)或伸长(当0 1时)到原来的 1 倍 (纵坐标不变)而得到的. 1

(三)探索( A A 0)对y A sin( x ) 的图象的影响.
2
x
(沿x轴平行移动)
y

高中数学必修4课件全册(人教A版)

高中数学必修4课件全册(人教A版)

, 当[00,900]
=
1800-, 当[900,1800] 1800+,当[1800,2700]
3600-,当[2700,3600]
如何求非锐角的三角函数值呢?
角1800-, 1800+, 3600-的三角函数值与 的三角函数值有何关系呢?
6.诱导公式:
公式1 sin( 2k ) sin 公式3: sin( ) sin
为第二象限角时
P
MO
为第一象限角时
P
OM
MP为角的正弦线,OM为角的余弦线
为第三象限角时
为第四象限角时
M
O
P
M
O
P
10)函数y=lg sinx+
cos
x
1 2
的定义域是
(A) (A){x|2kπ<x≤2kπ+ (B){x|2kπ≤x≤2kπ+
(33(k2k∈∈ZZ))}}
(C){x|2kπ<x≤2kπ+π (k∈Z)}
(D){x|2kπ<x≤2kπ+
3
(k∈Z)}
三角函数线的应用
一、三角式的证明 1、已知:角 为锐角,
试证:(1) sin tan
(2) 1 sin cos 2
2、已知:角
为锐角,
试证:sin 2 cos
2
4、在半径为r的圆中,扇形的周长等于半圆的弧长,那么扇形 圆心角是多少?扇形的的面积是多少?
例4.设α为第四象限角,其终边上的一个点是
P(x, ),且cosα=
,求sinα和tanα.
指导:容易出错的地方是得到x2=3后,不考虑P点所
在的象限,分x取值的正负两种情况去讨论,一般地, 在解此类问题时,可以优先注意角α所在的象限, 对最终结果作一个合理性的预测

最新高中数学人教版必修四精品课件全册课件

最新高中数学人教版必修四精品课件全册课件
配套精品教学课件/人教版
高中数学(必修四)
授课老师:XX XX XX 授课日期:201X.XX.XX
高中数学必修四(人教版) 配套精品教学课件
第一章 三角函数 第二章 平面向量 第三章 三角恒等变换
高中数学必修四(人教版) 配套精品任意角和弧度制
1.1.1 任意角
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
集合表示 {α|α=k· 360° ,k∈ Z} {α|α=k· 360° + 180° ,k∈ Z} {α|α=k· 360° + 90° ,k∈ Z} {α|α=k· 360° + 270° ,k∈ Z} {α|α=k· 180° + 90° ,k∈ Z} {α|α=k· 180° ,k∈ Z} {α|α=k· 90° ,k∈ Z}
M 目标导航
1 2 3
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
【做一做3-1】 下列与95°角终边相同的角是( ) A.-5° B.85° C.395° D.-265° 答案:D 【做一做3-2】 与210°角的终边相同的角连同210°角在内组 成的角的集合是 . 答案:{β|β=210°+k· 360°,k∈Z}
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.象限角与终边在坐标轴上的角的集合表示 剖析:(1)象限角:
象限角 第一象限角 第二象限角 第三象限角 第四象限角 集合表示 {α|k· 360° <α<k· 360° +90° ,k∈ Z} {α|k· 360° + 90° <α<k· 360° +180° ,k∈ Z} {α|k· 360° + 180° <α<k· 360° +270° ,k∈Z} {α|k· 360° + 270° <α<k· 360° +360° ,k∈Z}

高中数学必修4全套课件

高中数学必修4全套课件

诱导公式分类
根据三角函数的类型,诱 导公式可分为正弦、余弦 、正切等类型的诱导公式 。
诱导公式的应用
通过诱导公式,可以简化 复杂的三角函数计算,解 决与三角函数相关的数学 问题。
三角函数图像与性质
图像绘制
实际应用
通过绘制三角函数的图像,了解函数 的形状、周期性、对称性等特点。
了解三角函数在物理、工程等领域的 应用,体会数学与实际问题的联系。
高中数学必修4全套课件
汇报人: 202X-12-30
目录
• 三角函数 • 三角函数的诱导公式 • 三角函数的图像与性质 • 平面向量 • 向量的数量积 • 向量的向量积与向量的混合积
01
三角函数
角的概念的推广
总结词
角的概念从0度推广到360度,引入正角和负角的概念。
详细描述
角的概念从0度开始,顺时针旋转形成的角称为正角,逆时针旋转形成的角称为 负角。角的范围从-360度到360度,任意一个角都可以表示为整数倍的360度加 上一个正角的组合。
向量的数量积的应用
总结词
了解向量的数量积在实际问题中的应用,包括力的合 成与分解、速度和加速度的研究等。
详细描述
向量的数量积在物理中有广泛的应用。例如,在力的 合成与分解中,力的大小可以通过向量的数量积来计 算,力的方向则可以通过向量的单位向量来表示。在 速度和加速度的研究中,速度和加速度可以视为位置 向量的时间导数,而它们之间的夹角余弦值可以通过 向量的数量积来计算。此外,向量的数量积还可以用 于解决一些实际问题,如卫星轨道计算、碰撞检测等 。
向量的加法与减法
总结词
掌握向量加法和减法的几何意义和运 算规则
详细描述
向量的加法和减法可以通过平行四边 形法则或三角形法则进行计算。向量 加法的几何意义是表示向量的位移或 合成效果,而减法可以看作加法的反 向操作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档