高中数学选修2-1_全部课件
合集下载
人教版高中数学选修2-1曲线与方程(共17张PPT)教育课件

即以这个解为坐标的点到点(a,b)的距离为r,它一定在以(a,b)
为圆心、r为半径的圆上.
思考?你能得到什么结论? (1)曲线C上点的坐标都是方程(x-a)2+(y-b)2=r2的解.
(2)以方程(x-a)2+(y-b)2=r2的解为坐标的点都在曲线C上.
概念形成
在直角坐标系中,如果如果某曲线C(看作点的集合或适合某
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解
人教A版高中数学选修2—1《抛物线及其标准方程》课件

教材 分析
教学 方法
过程 设计
教学 反思
教 学 反 思
1.对于这一节内容,有两种不同的处理方 式:一种是直接介绍而不讲具体的探寻过程, 这样的处理不利于我校学生数学思维能力的 培养;二是本课方式,通过强调对公式的探 索过程,提高学生利用代数方法处理几何问 题的能力;
教 学 反 思
2.在标准方程的推导过程中,本课重点介绍了寻 找轨迹方程的基本思想:建立直角坐标系——设 点——寻找等量关系.让学生在明了基本步骤的 前提下,再进行有效的推导;
目标 分析
教材 分析
教学 方法
过程 设计
教学 反思
教 材 分 析
1.教学内容及地位
《抛物线及其标准方程》是普通高中课程标准教科 书(选修2-1)人民教育出版社第二章的第四节“抛物 线”的第一节课,抛物线是继椭圆、双曲线之后的第三 种圆锥曲线,与前两者不同的是学生在初中已学过“二 次函数的图象是抛物线”,在物理上也研究过“抛物线 是抛体的轨迹”,这些足以说明抛物线在实际生活中应 用的广泛性,在这节内容里,我们将更深入的研究抛物 线的定义及其标准方程。为进一步理解圆锥曲线的性质 做好铺垫,在教学中有承上启下的作用。
2、抛物线的标准方程
(1)教师指出:定点F到定直线L的距离是常数,
可设为P(P﹥0),要求学生自己建立适当的坐标
系,求出抛物线的方程。 (2)课件投影三种建系法:
建 系 方 式
以L所在直线为 y轴,过F作L的 垂线为X轴建立 直角坐标系。
以F为原点, 过F与L垂直的 直线为X轴, 建立直角坐标 系。
目标 分析
教材 分析
Hale Waihona Puke 教学 方法过程 设计
教学 反思
目 标 分 析
(人教版)高中数学选修2-1课件:本章归纳整合1

数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
2.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是
“a>5”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析: A学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
判断下列命题的真假: (1)“π是无理数”,及其逆命题; (2)“若一个整数的末位是0,则它可以被5整除”及其逆命 题和否命题; (3)“若实数a,b不都为0,则a2+b2≠0”; (4)命题“任意x∈(0,+∞),有x<4且x2+5x-24=0”的 否定.
数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
解析: (1)“若 x∈A∪B,则 x∈B”,是假命题,故其 逆否命题为假,逆命题“若 x∈B,则 x∈A∪B”,为真命题.
(2)∵0<x<5,∴-2<x-2<3, ∴0≤|x-2|<3. 原命题为真,故其逆否命题为真. 否命题:若 x≤0 或 x≥5,则|x-2|≥3.否命题为假. 例如当 x=-12时,|-12-2|=52<3. (3)逆命题:a·b=0⇒a⊥b,为真命题. 故它的否命题:a,b 不垂直⇒a·b≠0 也为真.
数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
热点考点例析
数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
四种命题及其关系
人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习
最新人教版高中数学选修2-1第一章《命题与四种命题》课件

探究1: 命题
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.
人教版高中数学选修2-1全套课件

2021/5/13
• 解析: (1)是假命题.因为一个数的算术 平方根为非负数. • (2)是假命题,直线l与平面α可以相交. • (3)是假命题,原因是当G=a=0时,a,G, b不是等比数列. • (4)是假命题.当a=0时,方程ax2+2x-1 =0有一个实根.
2021/5/13
•
命题真假的判定方法
2021/5/13
• (7)指数函数是增函数吗? • 上述语句有什么特点?能判断它们的真假吗? • [提示] 语句(1)(2)(3)(4)是陈述句,能判断真 假.语句(5)(6)(7)不是陈述句,不能判断真假.
2021/5/13
命题的概念
2021/5/13
命题的结构
• 一般地,每一个命题都可以写成“若p,则q” 的形式,其中命题中的p叫做命题的_______,q叫 做命题的_____,也就条是件说,命题由___结__论_和 ______两部条分件组成结.论
假,两者同时成立才是命题.注意不要把假命题
误认为不是命题.
2021/5/13
• 1.判断下列语句是不是命题,并说明理由. • (1)求证π是无理数; • (2)若x∈R,则x2+4x+5≥0; • (3)一个数的算术平方根一定是负数. • 解析: (1)不是命题.因为它是祈使句.(2) 是命题.因为它是陈述句,并且可以判断真假.(3) 是命题.因为一个数的算术平方根为非负数.
2021/5/13
• 1.对命题概念的理解 • 对命题概念的理解抓住两点:可以判断真假和 陈述句.对于“x>0”,由于x是未知数,无法判 断该不等关系是否成立,所以它不是命题;对于 “三角函数是周期函数吗?”等疑问句或其他的 祈使句、感叹句等都不是命题.
2021/5/13
高中数学选修2-1精品课件1:3.1.4 空间向量的正交分解及其坐标表示

典例讲练
[例 1] 若{a,b,c}是空间的一个基底.试判断{a+b,b +c,c+a}能否作为该空间的一个基底.
[分析] 由题目可获取以下主要信息: ①{a,b,c}是空间的一个基底; ②判断{a+b,b+c,c+a}是否也可作为该空间的一个基 底.解答本题可先用反证法,判断 a+b,b+c,c+a 是否共 面,若不共面,则可作为一个基底,否则,不能作为一个基 底.
[解析] 由 G 为△BCD 的重心易知 E 为 BC 的中点, ∴B→E=12(B→A+B→C)= 12[(O→A-O→B)+(O→C-O→B)] =21[(a-b)+(c-b)]=12(a+c-2b), O→G=O→B+B→G=b+23B→E=b+13(a+c-2b)=13(a+b+c).
[例 3] 棱长为 1 的正方体 ABCD-A′B′C′D′中,E、F、G 分别为棱 DD′、D′C′、BC 的中点,以{A→B,A→D,A→A′}为基底, 求下列向量的坐标.
起点 与原点 O 重合,得到向量O→P=p,由空间向量基本定理 可知,存在有序实数组{x,y,z},使得 p= xe1+ye2+ze3 . 我们把 x、y、z 称作向量 p 在单位正交基底 e1,e2,e3 下的 坐标,记作 p= (x,y,z).
要点点拨
1.用空间三个不共面的已知向量 a,b,c 可以线性表示出空间任 意一个向量,而且表示的结果是唯一的. 2.空间任意三个不共面的向量都可以作为表示空间向量的一个基 底. 3.由于 0 可看作是与任意一个非零向量共线,与任意两个非零向 量共面,所以三个向量不共面,就隐含它们都不是 0. 要明确:一个基底是一个向量组,一个基向量是指基底中的某一个 向量,二者是相关联的不同概念.
第三章 空间向量与立体几何 §3.1.4 空间向量的正交分解及其坐标表示
高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件

2 . ———————————— y M
.
OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10
.
OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
命题及其关系
1.1.1 命题
思考
(2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
命题及其关系
1.1.2 四种命题
回顾
交换原命题的条件和结论,所得的命题是 逆命题。 ________
同时否定原命题的条件和结论,所得的命 否命题。 题是________ 交换原命题的条件和结论,并且同时否定, 逆否命题。 所得的命题是__________
这表明原命题的逆否命题为真命题,从而原命 题也为真命题.
变式练习
p3 q3 2 。求证:p q 2. 1、已知
解:假设p+q>2,那么q>2-p, 根据幂函数
y x 的单调性,得 q (2 p) ,
3
3 3
q3 8 12 p 6 p2 p3 , 即 1 2 3 3 2 p q 8 12 p 6 p 6 ( p 1) , 3 p3 q3 2. 因此 p3 q3 2. 所以
这说明,原命题的逆否命题为真命题,从而原 命题为真命题。
可能出现矛盾四种情况:
与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。
例
用反证法证明: 如果a>b>0,那么 a b .
证明: 假设
a 不大于 b 则 a< b 或 a= b 因为 a > 0,b > 0 所以
原命题,逆命题,否命题,逆否命题
四种命题形式: 原命题: 若 p, 逆命题: 若 q, 否命题: 若┐p, 逆否命题: 若┐q, 则 q 则 p 则┐q 则┐p
观察与思考
?
1)若f ( x)是正弦函数,则f ( x)是周期函数。
2)若f ( x)是周期函数,则f ( x)是正弦函数。
3)若f ( x)不是正弦函数,则f ( x)不是周期函数。 4)若f ( x)不是周期函数,则f ( x)不是正弦函数。
你能说出其中任意 两个命题之间的关 系吗?
课 堂 小 结
原命题 若p则q 互 否 命 题 真 假 无 关 否命题 若﹁ p则﹁ q 逆命题 若q则p 互 否 命 题 真 假 无 关 逆否命题 若﹁ q则﹁p
例2 指出下列命题中的条件p和结论q:
1) 2)
若整数a能被2整除,则a是偶数; 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。 2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
(4)若平面上两条直线不相交,
则这两条直线平行. (是,真)
( 2) 2 2 (5)
(是,假)
(6)x>15. (不是命题)
练习
(2) x
2
判断下列语句是否是命题 .
2 x 1 0.
(1)求证 3 是无理数。
(3)你是高二学生吗?
(4)并非所有的人都喜欢苹果。
(5)一个正整数不是质数就是合数。 (6)若
(假) (假) (假) (假)
练习:分别写出下列命题的逆命题、否命 题、逆否命题,并判断它们的真假。
(1)若q<1,则方程
(3)若 m 0 或n
x 2x q 0 有实根。
2
(2)若ab=0,则a=0或b=0.
0,则 m n 0 。 2 2 (4)若 x y 0,则x,y全为零。
看看下列语句是不是命题?
1) 今天天气如何? 不是(疑问句)
2) 你是不是作业没交? 不是(疑问句) 3) 这里景色多美啊! 4) -2不是整数。 5) 4>3。 6) x>4。 不是(感叹句) 是(否定陈述句) 是(肯定陈述句) 不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。 (1) 空集是任何集合的子集. (是,真) (是,假) (2)若整数a是素数,则a是奇数. (3)指数函数是增函数吗?(不是命题)
(2) 3是12的约数; (4)对顶角相等; (6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。 判断为真的语句叫做真命题。 判断为假的语句叫做假命题。 理解: 1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。 2)含有变量且在未给定变量的值之前无法确定语句的 真假。
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
(1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。
x R ,则 x 2 4 x 7 0.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具 q 有“若p则q”的形式。 p 通常,我们把这种形式的命题中的p叫做命题的条 件,q叫做命题的结论。 “若p则q”形式的命题是命题的一种形式而不是 唯一的形式,也可写成“如果p,那么q” “只要p,就有 q”等形式。 其中p和q可以是命题也可以不是命题. “若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
练习
1、将命题“a>0时,函数y=ax+b的值随x值的增 加而增加”改写成“p则q”的形式,并判断命题的 真假。 解答:a>0时,若x增加,则函数y=ax+b的值也随之 增加,它是真命题.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。如何判断一个语句是不是命题?
7是23的约数吗? 2) X>5. 3) -2<a<3. 4) 画线段AB=CD.
1)
疑问句 开语句
祈使句
判断一个语句是不是命题,关键看这语句是否符 合“是陈述句”和“可以判断真假” 这两个条件。
有些语句中含有变量,在不给定变量的值之前,我们无法 确定这语句的真假,这样的语句叫开语句,以后会专门研 究。
例 证明:若p2+q2=2,则p+q≤2.
证明: 假设 p q 2 ,
则 ( p q) 2 4 , ∴ p2 q 2 2 pq 4 ,
2 2
假设原命题结 论的反面成立 看能否推出原命题 条件的反面成立
∵ p q ≥ 2 pq , 2 2 2 2 ∴ 2( p q ) 4 , ∴ p q 2 , 尝试成功 2 2 ∴ p q 2. 得证
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。 对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。 如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为: 若两个平面垂直于同一条直线,则这两个平 面平行。
(真) (真) (真) (真)
Help
逆否命题: x UA∪ UB ,xA∪B 。
假
四种命题的真假,有且只有下面四种情况:
原命题
真 真 假 假
逆命题
真 假 真 假
否命题
真 假 真 假
逆否命题
真பைடு நூலகம்真 假 假
几条结论:
(1) 原命题为真,则其逆否命题一定为真。但
其逆命题、否命题不一定为真。
(2) 若其逆命题为真,则其否命题一定为真。但
总结
在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题,来 间接证明原命题为真命题.
──这是一种很好的尝试,它往往具有 正难则反,出奇制胜的效果.
──它其实是反证法的一种特殊表现:从命 题结论的反面出发, 引出矛盾(如证明结论的条 件不成立),从而证明命题成立的推理方法.
反证法:
看下面的例子:
2.四种命题的真假
1)原命题:若x=2或x=3, 则x2-5x+6=0。 逆命题:若x2-5x+6=0, 则x=2或x=3。 否命题:若x≠2且x≠3, 则x2-5x+6≠0 。 逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 2)原命题:若a=0, 则ab=0。 (真) (假) 逆命题:若ab=0, 则a=0。 否命题:若a≠ 0, 则ab≠0。 (假) 逆否命题:若ab≠0,则a≠0。 (真) 3)原命题:若x∈A∪B,则x∈ U A∪ UB。 假 逆命题: x∈ UA∪ UB ,x∈A∪B 。 假 假 否命题: xA∪B,x UA∪ UB。
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 能被2整除; (6)若x2=1,则x=1.