人教版高中数学课件
课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};
•
(2)借助数轴(如图)
•
•
∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.
•
(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.
•
11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},
•
∴A∩B={-2}.
•
(2)结合数轴:
•
•
由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};
高中必修一数学第一章集合间的基本关系ppt课件-人教版

[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2
课件_人教版高中数学必修一函数PPT课件_优秀版

判断下列对应能否表示y是x的函数
(1) y=|x| (3) y=x 2 (5) y2+x2=1
(2)|y|=x (4)y2 =x (6)y2-x2=1
(1)能 (2)不能 (4)不能 (5)不能
(3)能 (6)不能
问题:
如何判断给定的两个变量之间是否具有函
数关系?
(5) y2+x2=1 (6)y2-x2=1 如何判断给定的两个变量之间是否具有函数关系? (3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (2)、满足不等式a<x<b的实数x的集合叫做开区间,表示为 (a,b)
(3)f(x) x1 1 2x
练 习 : 求 下 列 函 数 的 定 义 域 (1)f(x)= x+1 x-3
(2)f(x)= 5-x x 3
(3)f(x)= (x-1)0 x2 x
两个函数相同:
( 1 ) 对 应 关 系 f , 定 义 域 , 值 域 都 相 同
定义域,定义域到值域的对应关系 相同
②根据所给对应法则,自变量x在其定义域中的每 请阅读课本P48关于区间的内容
(4) {x|x < -9}∪{x| -9 < x<20}
如(4)何不判能断一给定个的两个值变量,之间是是否具否有函都数关有系? 惟一确定的一个函数值y和它对 应。 (5)不能
(2) {x|x ≥9} 判断下列图象能表示函数图象的是( ) 定义域、对应法则、值域 (1){x|5 ≤ x<6} 实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”。 ②根据所给对应法则,自变量x在其定义域中的每一个值,是否都有惟一确定的一个函数值y和它对应。
人教版高中数学必修1《函数的单调性》PPT课件

解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
高中数学必修一全册课件人教版(共99张PPT)

四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
人教版数学高中2-1课件《充分条件与必要条件》

在数学中的应用
函数关系
在数学中,函数关系是一种重要的概 念。充分条件与必要条件的概念可以 帮助我们更好地理解函数的各种性质 ,例如单调性、奇偶性等。
证明方法
在数学证明中,充分条件与必要条件 的运用是非常常见的。它们可以帮助 我们更加严谨地证明各种数学命题, 确保我们的证明过程严密、准确。
03 充分条件与必要条件的证 明方法
02 充分条件与必要条件的应 用
在逻辑推理中的应用
推理依据
充分条件与必要条件是逻辑推理中的重要概念,它们帮助我 们理解命题之间的逻辑关系,从而进行有效的推理。
逻辑结构
充分条件和必要条件在逻辑结构上有着明确的区别。充分条 件是一个命题的真,能够确保另一个命题的真;而必要条件 则是另一个命题的真,必须要求这个命题的真。
逻辑推理实例
总结词
逻辑推理是充分条件与必要条件的重要应用领域,通过实例解析可以帮助学生更好地理 解概念。
详细描述
在逻辑推理中,充分条件与必要条件的概念经常被使用。例如,在推理“如果天下雨, 那么地面会湿”中,“天下雨”是“地面湿”的充分条件,因为只要下雨就一定会导致 地面湿。而“地面湿”是“天下雨”的必要条件,因为如果地面湿了,那一定是因为之
填空题及解析
填空题1
若``若$p$则$q$''是真命题,则``若非$q$则 非$p$''也是真命题,这两个命题在逻辑上 称为____命题。
解析
根据逆否命题的定义,若``若$p$则$q$''是 真命题,则其逆否命题``若非$q$则非$p$'' 也是真命题,这两个命题在逻辑上称为逆否
命题。
解答题及解析
前下过雨。
生活实例
人教版高中数学--充分条件与必要条件PPT课件

充分非必要条件 必要非充分条件 既不充分也不必要条件 充分且必要条件
从集合与集合的关系看充分条件、必要条件
1)若A⊆B且B⊈A,则甲是乙的 2)若A⊈B且B⊆A,则甲是乙的 3)若A⊈B且B⊈A,则甲是乙的 4)若A=B ,则甲是乙的
充分非必要条件 必要非充分条件 既不充分也不必要条件 充分且必要条件
pq
(3)若x 为无理数,则x2 为无理数
解:命题(1)(2)是真命题,命题(3)是假命题, 所以命题(1)(2)中的p是q的充分条件
归纳
定义1
如果已知p⇒q,则说p是q的必要条件。
定义3 如果既有p⇒q,又有q⇒p,就记作p⇔q,则说p是q的充要条件。
判别步骤 ① 认清条件和结论。
② 考察p⇒q和q⇒p的真假。
判别技巧
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
从逻辑推理关系看充分条件、必要条件
充分条件、必要条件的四种形式
1)A⇒B且B⇏A,则A是B的 2)若A⇏B且B⇒A,则A是B的 3)若A⇏B且B⇏A,则A是B的 4)A⇒B且B⇒A,则A是B的
BA
AB
A
B
A =B
1)
2)
3)
4)
小结
充分必要条件的判断方法:定义法、集合法、等价法(逆否命题)
小结
• 定义1 如果已知q⇒p,则说p是q的必要条件。 • 定义2 如果已知p⇒q,则说p是q的充分条件。 • 定义3 如果既有p⇒q,又有q⇒p,就记作p⇔q,则说p是q的充要条件。
• 充分条件、必要条件的四种形式: 1)A⇒B且B⇏A,则A是B的 2)若A⇏B且B⇒A,则A是B的 3)若A⇏B且B⇏A,则A是B的 4)A⇒B且B⇒A,则A是B的
高中数学必修五全册课件PPT(全册)人教版

变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学课件
人教版高中数学课件
高中数学不像初中数学那么简单,以下是专门为你收集整理的人教版高中数学课件,供参考阅读!
人教版高中数学课件
一、教材分析
1、教材的地位和作用:
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。
本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。
因此本节课内容十分重要,它对知识起着承上启下的作用。
2、教学的重点和难点:
根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下教学目标:
1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。
2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。
3、培养学生对知识的严谨科学态度和辩证唯物主义观点。
三、教法学法分析
1、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。
因此思考问题片面不严谨。
2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。
一方面培养学生的观察、分析、归纳等思维能力。
另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。
3、学法分析
让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。
再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己
的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。
四、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成
4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数
与之间,构成一个函数关系,能写出与之间的函数关系式吗?
学生回答: 与之间的关系式,可以表示为。
问题2:折纸问题:让学生动手折纸
学生回答:①对折的次数与所得的层数之间的关系,得出结论
②对折的次数与折后面积之间的关系(记折前纸张面积为1),得出结论
问题3:《庄子。
天下篇》中写到“一尺之棰,日取其半,万世不竭”。
学生回答:写出取次后,木棰的剩留量与与的函数关
系式。
设计意图:
(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单
到复杂,从特殊到一般的认知规律。
从而引入两种常见的指数函数① ②
(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接
受指数函数的形式。
(二)导入新课
引导学生观察,三个函数中,底数是常数,指数是自变量。
设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。
函数分别以的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授
1.指数函数的.定义
一般地,函数叫做指数函数,其中是自变量,函数的定义域是R。
的含义:
设计意图:为按两种情况得出指数函数性质作铺垫。
若学生回答不合适,引导学生用区间表示:
问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?
设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若会有什么问题?(如,则在实数范围内相应的函数值不存在)
(2)若会有什么问题?(对于,都无意义)
(3)若又会怎么样?( 无论取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定。
在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
2:若函数是指数函数,则
3:已知是指数函数,且 ,求函数的解析式。
设计意图:加深学生对指数函数定义和呈现形式的理解。
2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线
思考如何列表取值?
教师与学生共同作出图像。
设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。
关键在于弄清底数a对于函数值变化的影响。
对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。
为此,必须利用图像,数形结合。
教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数的图象,观察分析图像的共同特征。
由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
师生共同总结指数函数的性质,教师边总结边板书。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
(四)巩固与练习
例1:比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
(5)题底不同,指数相同,可以利用函数的图像比较大小。
(6)题底不同,指数也不同,可以借助中介值比较大小。
例2:已知下列不等式 , 比较的大小 :
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
通过本节课的学习,你学到了哪些知识?
你又掌握了哪些数学思想方法?
你能将指数函数的学习与实际生活联系起来吗?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。
(六)布置作业
1、练习B组第2题;习题3-1A组第3题
2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
3、观察指数函数的图象,比较的大小。