人教版高中数学课件汇编

合集下载

高中数学必修全册人教版PPT

高中数学必修全册人教版PPT

Rt⊿ SOH
Rt⊿ SOB Rt⊿ SHB Rt⊿ BHO
棱台由棱锥截得而成,所以在棱台中也有类似 的直角梯形。
第十三页,共101页。
棱台
结构特征
用一个平行于棱锥 底面的平面去截棱锥,底
面与截面之间的部分是棱 台.
D’
D A’
C’
B’
C
A
B
第十四页,共101页。
圆柱
结构特征
以矩形的一边所在直线为
锥的体积是( A)
(A)9
(B) 9 (C)7 (D)
7
2
2
A1 练5:一个正三棱台的上、下底
面边长分别为3cm和6cm,
高是1.5cm,求三棱台的侧
面积。
27 3 cm2
A
2
C1 B1
C B
第二十三页,共101页。
6.如图,等边圆柱(轴截面为正方
形ABCD)一只蚂蚁在A处,想吃C1
处的蜜糖,怎么走才最快,并求最短路
O’ O
第十七页,共101页。

结构特征
以半圆的直径所 在直线为旋转轴,半圆 面旋转一周形成的旋 转体.
半径
O 球心
第十八页,共101页。
空间几何体的表面积和体积
圆柱的侧面积: S 2 rl
面积
圆锥的侧面积: S rl
圆台的侧面积: S (r r)l
球的表面积: S 4 R2
柱体的体积: V Sh
A.1 B.1 C. 1 D.1 2 36
正视图 侧视图 俯视图
V
1 3 S底h
1 111 3
1 3
1 1
1
第四十页,共101页。
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是___8_0__0_0_c.m 3

(共34套)人教版高中数学必修一(全册)配套教学课件汇总

(共34套)人教版高中数学必修一(全册)配套教学课件汇总

二、数学为什么难学? 1.高度的抽象性 2.严密的逻辑性 3.应用的广泛性
三、高中学哪些数学?
1.必修课程:5个模块
2.选修课程:4个系列 系列1:2个模块(文科选修) 系列2:3个模块(理科选修) 系列3:6个专题(自主选修) 系列4:10个专题(自主选修)
四、高中数学要获多少学分?
文科学生:必修课程(10个学分); 选修系列1(4个学分); 选修系列3(2个学分); 共16个学分.
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的表示
问题提出
1.集合中的元素有哪些特征?确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的,如 “在平面直角坐标系中以原点为圆心,2 为半径的圆周 上的点”组成的集合,那么,我们可以用什么方式表示 集合呢?
例4 已知集合A={1,2,3},B={1,2},设集合
C=x | x a b, a A,b B ,试用列举法表示集合C.
C={-1,0,1,2}
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的含义
问题提出
“集合”是日常生活中的一个常用词,现代汉语解释为: 许多的人或物聚在一起.

高中数学ppt课件全套

高中数学ppt课件全套

多面体
多面体由多个平面多 边形围成,具有顶点 对称的特点,常见的 多面体有四面体、六 面体等。
空间几何体的表面积和体积
总结词
掌握各类空间几何体的表 面积和体积计算公式,能 够进行相关计算。
球体的表面积公式
$4pi r^{2}$,其中$r$为 球半径。
球体的体积公式
$frac{4}{3}pi r^{3}$,其 中$r$为球半径。
掌握集合的基本运算规则
详细描述
介绍集合的运算,包括并集、交集、差集等,以及这些运算的性质和规则。
逻辑关系与推理
总结词
理解逻辑关系和推理的基本概念
详细描述
介绍逻辑关系和推理的概念,包括命题、条件语句、推理规则等,以及如何运用逻辑关系和推理解决实际问题。
02
函数与极限
函数的基本性质
函数的定义域和值域
高中数学PPT课件全套
• 集合与逻辑 • 函数与极限 • 三角函数与三角恒等变换 • 数列与数学归纳法 • 解析几何初步 • 立体几何初步
01
集合与逻辑
集合的基本概念
总结词
理解集合的基本定义和性质
详细描述
介绍集合的基本概念,包括元素、子集、并集、交集等,以及集合的表示方法 。
集合的运算
总结词
01
02
03
数列的定义
数列是一种按照一定顺序 排列的数集。它可以是无 限的,也可以是有限的。
数列的项
数列中的每一个数被称为 一项。
数列的项数
数列中的数的个数称为项 数。
等差数列与等比数列
1 2
等差数列的定义
如果一个数列从第二项起,后一项与前一项的差 等于同一个常数,则这个数列被称为等差数列。

人教版高中数学必修二全册PPT课件

人教版高中数学必修二全册PPT课件
【提升总结】
圆柱、圆锥可以看作是由矩形或三角形绕其一边所在直线旋转而成,圆台是否也可看成是某图形绕轴旋转而成?
探究点3 圆台的结构特征
圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.如图:

下底面
上底面
侧面
母线
表示方法:用表示它的轴的字母表示,如圆台O′O.
O′
B
【变式练习】
轴:旋转轴叫做圆柱的轴;
底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;
侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.

底面
底面
侧面
母线
表示方法:圆柱用表示它的轴的字母表示,如圆柱O′O.
A
B
探究点2 圆锥的结构特征
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.如图:
练习
练习
1. 对几何体三视图,下列说法正确的是:( )
A . 正视图反映物体的长和宽
B . 俯视图反映物体的长和高
C . 侧视图反映物体的高和宽
D . 正视图反映物体的高和宽
C
2 . 若某几何体任何一种视图都为圆,那么这个几何体是 ___________
球体
5、正棱锥的直观图的画法
研一研·问题探究、课堂更高效
画板演示
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
A
练一练·当堂检测、目标达成落实处

人教A版数学必修二高中全册课堂教学用精品PPT模版

人教A版数学必修二高中全册课堂教学用精品PPT模版
• 提示:(1)圆台可以看做是直角梯形以垂直于 底边的腰所在的直线为旋转轴,其他三边旋转 一周而成的曲面所围成的旋转体;(2)圆台也 可以看作是等腰梯形以其底边的中线所在的直 线为轴,各边旋转半周形成的曲面所围成的几 何体.
• 2.根据“球”的定义,我们用的篮球、排球 、铅球都是球吗?
• 提示:球是球体的简称.球体包括球面及所围 成的空间部分.从集合观点看,球可看做是空 间中与一个定点的距离小于或等于定长的点的 集合,这个定点就是球心,定长就是球的半径 .通常我们用的篮球、排球是指球面,而铅球 才是球体.
平行于棱锥 底面
棱 台 的平面去截 棱锥,底面 与截面之间 的部分叫做 棱台
图形及表示
如图可记作: 棱台 ABCD-
A′B′C′D′
相关概念
上底面:原棱锥的 截面 ;下底面: 原棱锥的 底面 ; 侧面:其余各面; 侧棱:相邻侧面的 公共边; 顶点:侧面与上(下 )底面的公共顶点
• 多面体最少有几个面,几个顶点,几条棱? • 提示:多面体最少有4个面、4个顶点和6条棱.
→ 回答有关问题
• 【规范解答】截面BCFE右侧部分是棱柱,因 为它满足棱柱的定义. 2分
• 它是三棱柱BEB′-CFC′,其中△BEB′和 △CFC′是底面.4分
• EF,B′C′,BC是侧棱.
6分
• 截面BCFE左侧部分也是棱柱. 8分
• 它是四棱柱ABEA′-DCFD′,其中四边形 ABEA′和四边形DCFD′是底面.
• 【题后总结】棱柱的定义中有两个面互相平行 ,指的是两底面互相平行,但棱柱的放置方式 不同,两底面的位置也不同.但无论怎样放置 ,都应满足棱柱的定义.
• 2.本例中平面BCFE左侧的几何体A′EFD′- ABCD是棱台吗?简述理由.

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

高中数学必修一课件全册课件(2024)

高中数学必修一课件全册课件(2024)
高中数学必修一课件 全册课件
2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。

高中数学ppt课件大全

高中数学ppt课件大全

06
排列组合与概率初步
排列组合的概念与运算
排列
从n个元素中取出m个元素,按照一定的顺序排列起来,叫做从n 个元素中取出m个元素的一个排列。
组合
从n个元素中取出m个元素,并成一组,叫做从n个元素中取出m个 元素的一个组合。
排列与组合的计数原理
分步乘法计数原理、分类加法计数原理。
概率的初步概念与计算方法
互斥事件的概率计算
P(A∪B)=P(A)+P(B)。
THANKS
感谢观看
02
三角函数与解三角形
三角函数的概念与性质
总结词
基础核心概念、周期性、振幅、相位、初相、终相、正弦函数、余弦函数、正切 函数、余切函数、反正弦函数、反余弦函数、反正切函数、反余切函数。
详细描述
三角函数是高中数学的基础核心概念,包括正弦函数、余弦函数、正切函数、余 切函数等。这些函数都具有周期性,且与振幅、相位、初相、终相等相关。通过 对这些函数的图像和性质的掌握,可以深入理解三角函数的本质和应用。
掌握空间几何体的表面积和体积的计算方法,能够正确 计算简单几何体的表面积和体积。
详细描述
本节内容主要介绍空间几何体的表面积和体积的计算方 法,包括长方体、正方体、圆柱体、圆锥体等立体图形 的表面积和体积的计算方法,让学生能够掌握各种立体 图形的表面积和体积的计算方法,为后续学习打下基础 。同时,本节还介绍了立体图形的组合与分解,让学生 能够更好地理解立体几何的基本概念和性质,提高解决 实际问题的能力。
概率
表示事件发生的可能性大小的数 值,叫做该事件的概率。
概率计算方法
公式法、列举法、列表法、图示 法。
独立事件与互斥事件及其概率计算
独立事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学课件
高中数学不像初中数学那么简单,以下是专门为你收集整理的人教版高中数学课件,供参考阅读!
人教版高中数学课件
一、教材分析
1、教材的地位和作用:
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。

因此本节课内容十分重要,它对知识起着承上启下的作用。

2、教学的重点和难点:
根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。

二、教学目标分析
基于对教材的理解和分析,我制定了以下教学目标:
1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

三、教法学法分析
1、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。

因此思考问题片面不严谨。

2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。

一方面培养学生的观察、分析、归纳等思维能力。

另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

3、学法分析
让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。

再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

四、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?
学生回答: 与之间的关系式,可以表示为。

问题2:折纸问题:让学生动手折纸
学生回答:①对折的次数与所得的层数之间的关系,得出结论
②对折的次数与折后面积之间的关系(记折前纸张面积为
1),得出结论
问题3:《庄子。

天下篇》中写到“一尺之棰,日取其半,万世不竭”。

学生回答:写出取次后,木棰的剩留量与与的函数关系式。

设计意图:
(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。

从而引入两种常见的指数函数① ②
(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接
受指数函数的形式。

(二)导入新课
引导学生观察,三个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。

函数分别以的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

(三)新课讲授
1.指数函数的定义
一般地,函数叫做指数函数,其中是自变量,函数的定义域是R。

的含义:
设计意图:为按两种情况得出指数函数性质作铺垫。

若学生回答不合适,引导学生用区间表示:
问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?
设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:
(1)若会有什么问题?(如,则在实数范围内相应的函数值不存在)
(2)若会有什么问题?(对于,都无意义)
(3)若又会怎么样?( 无论取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:
2:若函数是指数函数,则
3:已知是指数函数,且 ,求函数的解析式。

设计意图:加深学生对指数函数定义和呈现形式的理解。

2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线
思考如何列表取值?
教师与学生共同作出图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。

关键在于弄清底数a对于函数值变化的影响。

对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。

为此,必须利用图像,数形结合。

教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数的图象,观察分析图像的共同特征。

由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习
例1:比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。

(6)题底不同,指数也不同,可以借助中介值比较大小。

例2:已知下列不等式 , 比较的大小 :
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结
通过本节课的学习,你学到了哪些知识?
你又掌握了哪些数学思想方法?
你能将指数函数的学习与实际生活联系起来吗?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

(六)布置作业
1、练习B组第2题;习题3-1A组第3题
2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
3、观察指数函数的图象,比较的大小。

相关文档
最新文档