断层、裂缝识别属性
利用测井方法识别井旁裂缝及断层的技术探讨

1引言地壳岩层受力达到一定强度而发生破裂并沿破裂面有明显相对位移的构造被称为断层,岩石发生破裂作用而形成的不连续面被称为裂缝,井下断层和裂缝都是岩石受力而发生破裂作用的结果。
理论研究和实际观测结果表明,井下断层和裂缝的形成机理是一致的。
断层的形成可分为几个阶段:第一个阶段是大量微裂缝形成;第二个阶段是由于微裂缝形成而使岩石的坚固性下降,导致应力集中,许多微裂缝合并而成为大裂缝;第三个阶段形成大断裂。
断层是裂缝的宏观表现,断层的两盘岩层沿断裂面发生了明显的相对位移,裂缝是断层形成的雏形。
在已存在的断层附近,一般总有裂缝与其伴生,两者发生的应力场是一致的,断层和裂缝都破坏了岩层的完整性。
裂缝是油气储层中一种重要的储渗空间,在油气藏形成过程中裂缝是油气运移的通道,在油田开发中储层裂缝的存在增强了储存空间和流体渗流条件。
岩石裂缝分为天然裂缝和人工裂缝。
天然裂缝是在地质应力作用下形成的;人工裂缝是在人为应力作用或诱导下形成的。
世界上许多大型、特大型油气田的储层即为裂缝性储层。
裂缝对地层渗透率影响既有正面的也有负面的。
一方面裂缝提供了基本的地层渗透率,可以提高油气藏的产量和采收率;另一方面,裂缝也会形成漏失层,对产层造成损害。
在预探及提高采收率的项目中,裂缝可能造成邻近的井旁水体过早或非常利用测井方法识别井旁裂缝及断层的技术探讨摘要:地层裂缝对地层渗透率影响既有正面的也有负面的。
一方面裂缝提供了基本的地层渗透率,可以提高油气藏的产量,另一方面,裂缝会形成漏失层,对产层造成损害。
一些预探井的试油结果和电测解释结论差别过大,电测解释的油层,试油结果出水或未预料的水产出。
本文通过对井下断层、裂缝形成过程的分析和认识,结合常规成像仪器和偶极横波远探测仪器的测量原理及实际应用效果,对实际作业案例试油结果不理想的原因进行分析,说明探井井位布置以及后续的试油求产,都需要考虑到井下断层及可能裂缝分布的影响,需要借助地震资料及测井新技术的应用,探测井下断层和裂缝的存在及和井旁水体的连通情况,评估井下断层及隐蔽裂缝可能造成的试油后果并提前采取措施。
裂缝的识别[指南]
![裂缝的识别[指南]](https://img.taocdn.com/s3/m/602cb021ef06eff9aef8941ea76e58fafbb04551.png)
裂缝的识别裂缝是指岩石的断裂,即岩石中因失去岩石内聚力而发生的各种破裂或断裂面,但岩石通常是那些两个未表现出相对移动的断裂面。
其成因归纳为:(1)形成褶皱和断层的构造作用;(2)通过岩层弱面形成的反差作用;(3)页岩和泥质砂岩由于失水引起的体积收缩;(4)火成岩在温度变化时的收缩。
从FMI图像上,我们可以总结出裂缝的类型:(1)高角度缝:裂缝面与井轴的夹角为0~15度;(2)低角度缝:裂缝面与井轴的夹角为70~90度;(3)斜交缝:裂缝面与井轴的夹角为15~70度。
在某些特定的地区,我们可以从FMI图像上观察出网状缝,弥合缝和一些小断层。
第一节地层真假裂缝的识别方法在微电阻率扫描成像测井图FMI上,与裂缝相似的地质事件有许多,但它们与裂缝有本质的区别。
一、层界面与裂缝前者常常表现为一组相互平行或接近平行的高电导率异常,且异常宽度窄而均匀;但裂缝由于总是与构造运动和溶蚀相伴生,因而高电导率异常一般既不平行,又不规则。
二、缝合线与裂缝缝合线是压溶作用的结果,因而一般平行于层界面,但两侧有近垂直的细微的高电导率异常,通常它们不具有渗透性。
裂缝主要受构造运动压溶作用的影响,因此与缝合线的形状不一样,并且与裂缝也不相关。
三、断层面与裂缝断层面处总是有地层的错动,使裂缝易于鉴别。
四、泥质条带与裂缝泥质条带的高电导率异常一般平行于层面且较规则,仅当构造运动强烈而发生柔性变形才出现剧烈弯曲,但宽窄变化仍不会很大;而裂缝则不然,其中总常有溶蚀孔洞串在一起,使电导率异常宽窄变化较大。
五、黄铁矿条带与裂缝黄铁矿条带成像测井特征与泥质条带的特征混相似,但其密度明显增大,可作为鉴别特征。
总之,如图3—1所示,除断层面以外,其他地质现象基本平行于层理面,而裂缝的产状各异。
无论怎样弯曲变形,相似的这些地质现象的导电截面的宽度却相对稳定,相反裂缝的宽度通常因岩溶与充填作用变化较大。
第二节地层中天然裂缝和诱导裂缝的鉴别方法要鉴别天然裂缝和诱导裂缝,就须搞清诱导缝产生的机理和相应的特征。
地震资料预测裂缝

日期(月)
永158-56井含水变化曲线 含水变化(%)
99.9 99.9 99.9 99.9 99.9
100 50
8 25
61.5 18.3
9
12.5
14.6
0
4 2001.5 6 7 8 2001.9 10 11 12 2002.1 2 3
日期(月)
永156-48井和永158-56井含水变化曲线 156-48井和永158-56井含水变化曲线 井和永158 油井见水明显的方向性 ,油井见水后含水上升很快
A、一般软件不考虑倾角问题
B、较好的软件使用固定倾角
C、Dtect考虑了实际的倾角 Dtect考虑了实际的倾角
叠后资料检测裂缝——Detect 叠后资料检测裂缝——Detect切片 Detect切片
叠后资料检测裂缝——相干、边缘检测、Dtect处理效果对比 叠后资料检测裂缝——相干、边缘检测、Dtect处理效果对比 相干
叠前资料检测裂缝——FRS Fracture裂缝检测 叠前资料检测裂缝——FRSTM Fracture裂缝检测
FRS
TM
Fracture利用 波地震属性(振幅、频率、波阻抗、 Fracture利用P波地震属性(振幅、频率、波阻抗、衰 利用P
减等属性)随不同方位的变化特征, 减等属性)随不同方位的变化特征,来求取一段时窗内各种属 性的椭圆,通过椭圆长轴、短轴判别裂缝的方向;通过椭圆的 性的椭圆,通过椭圆长轴、短轴判别裂缝的方向; 扁率确定裂缝的密度,从而检测断裂 扁率确定裂缝的密度,
资料品质较差
下沟组K 下沟组K1g3顶沿层相干数据体平面图
窿7
Hale Waihona Puke Q2-15 Q2-2 窿4
Q2-3 窿103
裂缝识别与评价

三、岩心裂缝观测与分析
1.岩心裂缝几何参数的相关分析 裂缝几何参数:裂缝长度、宽度(即张开度)、倾 角和方位 ),从岩心裂缝观测研究裂缝的发育特征,
裂缝性灰岩成像测井响应特征
成像测井: FMS 图像显示为高
导暗色正弦曲线,倾向 155o ,
倾 角 88 o , ARI 图 像 显 示 缝 呈 NE-SW异常反映裂缝沿 NE—SW方 向延伸较远, DSI 图像有“斜” 条纹及斯通利波能衰减,表明
裂缝连通较好。
取心观察:岩心严重破碎,在裂缝密度较小处(4500—4505m), 取心相对完整,见一条直劈裂缝
四、基本概念 1.裂缝孔隙度:裂缝孔隙体积/岩石总体积; 2.基质孔隙度:岩石基质孔隙/岩石基块体符号 基块孔隙度:岩石基块孔隙/岩石总体积 3.总孔隙度:总孔隙体积/岩石总体积 4.裂缝孔隙度分布指数(基块孔隙度分布指数) (1)A型孔隙度分布(Vf =10-15%):裂缝孔隙储藏能力低,而原 生的基块孔隙储油能力高,总它的储量大,产量高,产量不降慢, 稳产时间长,但采收率较低。 ( 2 ) B 型孔隙度分布( Vf= 40%-50% ):裂缝孔隙储藏能力与基块 储藏能力相当,储量大,产量高,产量下降较慢稳产时间较长, 采收率高。 (3) C 型孔隙度分布( Vf =95-100% ):油气全部储存在裂缝孔隙 中,原生的基块孔隙小储藏油气,储藏能力较小,储量小,在短 时间内,油气产量特别高,采收率最高,但油气产量下降快,稳 产时间短。 华北A、B型之间Vf =33% 四川:B、C型之间
节理裂隙层理断层断裂的区别

节理、裂隙、层理、断层、断裂的区别节理:岩石中的裂隙,其两侧岩石没有明显的位移。
地壳上部岩石中最广泛发育的一种断裂构造。
通常,受风化作用后易于识别,在石灰岩地区,节理和水溶作用形成喀斯特。
岩石中的裂隙,是没有明显位移的断裂。
节理是地壳上部岩石中最广泛发育的一种断裂构造。
按成因节理可分为:①原生节理,成岩过程中形成,如沉积岩中因缩水而造成的泥裂或火成岩冷却收缩而成的柱状节理;②构造节理,由构造变形而成;③非构造节理,由外动力作用形成的,如风化作用、山崩或地滑等引起的节理,常局限于地表浅处。
片理又称“片状构造”。
指岩石形成薄片状的构造。
板状、千枚状、片状、片麻状构造可通称为片理。
在变质岩中极为常见,是重要特征之一。
对于其成因观点不一,一般认为在应力和温度的联合作用下,导使沿剪切面方向之一发育成一组劈理,或因重结晶较强烈,进而在此方向上形成片理构造。
片理面的方向有的与原岩层理斜交,但也有与原岩层理方向一致的,后者说明片理的形成可能是继承原岩层理发育而成。
层理岩石层之间的分割面称为层理面。
沉积岩层的原始产状多是趋于水平的,后来的构造运动可以使其倾斜、直立、弯曲甚至发生破裂,形成褶皱、节理、断层、劈理等构造形态。
裂隙【crack;crevice;fracture】裂开的缝儿地质地貌学:裂隙是断裂构造的一种,通常把岩体中产生的无明显位移的裂缝叫做裂隙。
水文地质学:裂隙是指固结的坚硬岩石(沉积岩,岩浆岩和变质岩)在各种应力作用下破裂变形而产生的空隙.以裂隙率表示.fissure由构造应力作用形成的裂隙叫做构造裂隙或节理。
由于构造应力在一个地区有一定的方向性,所以由构造应力形成的各种构造裂隙在自然界中的分布是有规律的,排布方向是一定的。
编辑本段构造裂隙的分类按力学性质分类,可分为张裂隙和剪切裂隙两种。
另外,对形态微细,分布密集,相互平行排列的构造裂隙,又称为[劈理]。
节理-岩体两侧未发生显著相对位移的破裂;裂隙-坚硬岩体呈裂缝状的间隙;断层-岩层在内动力作用下断裂并沿断裂面发生位移的一种构造变动形迹;断裂-由于地壳构造运动,使岩石、岩土体失去连续性和完整性,造成机械破裂的总称,如裂隙、节理、断裂带等。
GeoEast属性提取及分析子系统主要模块介绍—LQH按分类_20130401

antiform
kneg = 0
plane
kneg > 0
dome 26
曲率---振幅曲率
构造曲率与振幅曲率
构造曲率:倾角反映时间对x,y方向上的二阶导数;输入数据为倾角扫描结果。 振幅曲率:倾角反映振幅对x,y方向上的二阶导数;输入数据为相干能量梯度。
两 种 滤 波 方 法
带通滤波(按距离关系):通过参数给
功能和特色
用于构造解释及识别特殊岩性体 储层预测 用于油气检测
1. 多窗口地层倾角扫描 2. 构造导向滤波 3. 相干体 4. 边缘检测 5. 属性体比例融合
出空间滤波面元大小 Dis1 距离1(4*dx<=距离1<=nline*dx Dis2 距离2(<=距离1) Dis3 距离3(>=距离4) Dis4 距离4(=2*dx) 分数导数滤波:参数取值范围 0.25~2。一 般取值为0.25、0.5、0.75.其值越小,尺度
越大。
Lamda Min 一般为2*dx; Reference Velo 参考速度与倾角扫描时 参数一致; operator_dip 滤波算子振幅截断比例,最 大振幅乘以截距的门槛值,大于其输出, 小于其充零。
20
相干-实际效果
基于特征值算法的相干时间切片 (t=1660ms)
21
功能和特色
用于构造解释及识别特殊岩性体 储层预测 用于油气检测
1. 多窗口地层倾角扫描 2. 构造导向滤波 3. 相干体 4. 边缘检测 5. 属性体比例融合
6. 方差体(1)
7. 体曲率类(22) 8. 边缘保护平滑滤波
11. 相干和能量梯度类(10)
多窗口倾角扫描-概述
在三维地震资料解释中,解释的地震反射层位的倾角 和方位角是非常重要的, 由于在通常情况下,不能得到一个精确的时深转换关 系,所以倾角和方位角体只是体现了倾角和方位角的 相对变化关系。通常,利用垂直窗口进行倾角和方位 角估算比在拾取的层位进行估算能提供更为稳定的估 算结果。倾角和方位角体是体曲率、相干、能量梯度 和构造导向滤波的基础。
5.五裂缝识别

图5 剪切力分布图
图6 二元变形网格图
图7 铜锣峡构造长兴组岩石破坏接近程度等值线图
岩地层的破坏接近程度值的相对大小,可将研 究区划分为不同的岩石破坏区或裂缝发育区。 1)在断层和断层附近地区,其破坏接近程度值很 高,属地层破碎区。 2)在铜锣峡主构造区,其破坏接近程度值大于 1.248,岩石破坏程度比较高,属破裂发育区。 3)在铜锣峡构造西北边平缓带及东南边部分高陡 地带, 破坏接近程度值在1.142~1.248之间,为破 裂临界发育区。 4)在东南边部分高陡地带, 破坏接近程度值在 0.99~1.142之间,为欠发育区。 5)小于0.99为破裂不发育区。
2
F
W W x y
2 2
W G 1 y
2
W W 1 y x
2
W xy
2
W W 1 y x W W 1 y x
g ( x, h ) 1 Z ( x) Z ( x h)2 2
根据样品点计算的变差函数叫做实验变差函教, 其计算公式为:
1 N (h) Z ( xi ) Z ( xi h)2 r (h) 2 N (h) i 1
i
式中:xi—为第个观测点的坐标; Z(i)、Z(xi+h)—分别为xi及xi+h两点处的 观测值; h—为两观测点间的距离; N(h)—为相距h数据对数目; r(h)—为实验变差函数的值。
前处理主要有作图、识别分析域、约束条件设定、 荷载条件的设定、网格生成、材料参数的设定等功 能,作图窗口用于定义分析对象的形状、材料范围、 挖掘断面等几何信息。识别分析域的功能用于区分 不同材料(地层),并指定各区域材料。约束条件 设定是设定所选择边界约束,载荷条件的设定用于 设定所选择边界或点的载荷。网格生成根据所设定 的网格分割数自动生成有限元计算网格。材料参数 设定通过填写参数设定对话框来完成材料参数的设 定。通过前处理,得到有限元分析所需要的所有数 据后,便可进行分析计算。
综合蚂蚁体及曲率属性的断裂识别方法及应用

震 曲率属性对 规模 较大 的断带具有较 强的识别能力 , 特征清 晰, 但细 节模 糊 ; 蚂蚁 追踪在 断裂精 确定 位 、 小断裂及裂缝 带
识别பைடு நூலகம்细节表现 方面具有优势 , 但连 续性差 、 特征模糊 。最终采用蚂蚁体 与 曲率 融合属 性进 行断层 、 裂缝 的综合 刻画 , 可
( 1 . 昆明理工大学 国土资源学院 , 云南 昆明 6 5 0 0 0 0 ; 2 . 中国石油大学 ( 北京 ) 地球科学学院 , 北京 1 0 2 2 0 0 ; 3 . 中国石油西部钻探钻井工程技术研究 院 , 新疆 克拉玛依 8 3 4 0 0 0 ) 摘要 : 为提 高断层及 裂缝 解释精度 , 众多地震属性体被广泛应用 于辅助 断层及 裂缝解释 , 然而 由于断层与裂缝在地质尺度
Ab s t r a c t : I n o r d e r t o i mp r o v e t h e i n t e r p r e t a t i o n a c c u r a c y o f f a u l t a n d f r a c t u r e , ma n y s e i s mi c a t t r i b u t e d a t a i s wi d e l y u s e d i n a i d e d
同时清 晰识别 规模大 而连 续的断层 、 规模小且 带状分布 的裂缝 。通过岩心裂 缝识 别结果证 明, 蚂蚁体 与 曲率融合属性 裂
缝识别较为可信。 关键 词 : 蚂蚁追踪 ; 曲率; 断层 ; 裂缝 ; 川 I 西
中 图分 类 号 : P 6 3 1 . 4 4 5 文献标识码 : A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断层、裂缝识别属性
地震相干、倾角和方位角
相干体技术是通过三维数据体来比较局部地震波形、相位的相似性。
当地层岩性、特征等地质因素横向发生变化时,必然导致地震波发生变化,从而进一步引起地震波的各种属性变化。
反之,作为一种属性应用,地震波横向变化时,根据地震道相干性计算的数值必然发生变化,且变化敏感,相干值低的点与地质不连续性(如断层、地层、特殊岩性体边界)密切相关。
因此,相干体切片包含了断层、微断裂的信息,它可直观地显示微断裂的相对发育程度。
通常,长度较大的线状或大曲率半经的曲线为断层的显示,长度较短的则为微断裂的显示,微断裂的显示越密集,则预示微断裂越发育。
层倾角和方位角图也有类似的功能,只是各有所长。
图片上较长的线性条带显示,一般也是断层的体现,其中短促的线性条带通常是微断裂的体现;而断层之间,方位角的线状或大小(色彩)变化现象则体现了裂缝的发育状况,通常线状显示越密集、色彩越丰富,则预示裂缝越发育。
通过地震相干、倾角和方位角的叠合显示,可更加清晰地描述地质体产状的细微变化,有利于分析构造的变形程度和裂缝的发育程度,从而有助于分析储层物性的相对优劣。
SMT中该类属性应用
SMT中所有高级属性都集成在一个模块RSA中,因此要计算该类属性首先从project中找到RSA模块,打开进入属性选取窗口。
RSA模块中相干属性名称为Similarity,这里翻译过来实际上是相似性,意为相似性越差,越不相干,反映横向的不连续性,指示断层、裂缝或者特殊岩性体的存在;相似性越好,越相干,反映横向上地层具有连续性。
在实际应用中利用该属性silimarity来检测尺度较大的断层,当然有时候也对小断层有用。
在similarity属性下方为silimarity variance,翻译为相似性的方差。
数学上,方差是各个数据与平均数之差的平方的平均数。
通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
应用到相似性计算时,也就是某三维空间内各样点之间相似性偏离该空间内平均相似性的程度大小。
这种属性对小尺度的不连续性很敏感,可以用来检测小断层、裂缝的存在。
RSA模块中地层瞬时倾角属性名称为Instantaneous Dip,地层倾角方位角复合属性名称为Dip Azimuth,还有倾角方差属性为dip variance。
这些属性在识别小断层尤其是裂缝方面很有用处。