高分子化学复习

合集下载

高分子化学复习资料

高分子化学复习资料

过氧化二苯甲酰(BPO, benzoyl peroxide)——过氧类引 发剂中最常用的低活性引发剂
C OO C
O
O
2
CO
2
+ 2CO2
O
60℃下,kd=10-6 S-1,t1/2=96hr
不对称的过氧化酰类引发剂的活性特别高。 如:过氧化乙酰环己烷磺酰(ACSP)
31℃下,t1/2=10hr
• 过氧化二碳酸酯类
• 氢过氧化物——低活性的引发剂
特丁基过氧化氢(t-BHP) 、异丙苯过氧化氢(CHP)
• 过氧化二烷基类——低活性引发剂
过氧化二特丁基、过氧化二异丙苯
• 过氧化二酰类——低活性引发剂
过氧化二苯甲酰(BPO)、过氧化十二酰(LPO)
• 过氧化酯类——中活性引发剂
过氧化特戊酸特丁酯(BPP)、过氧化苯甲酸特丁酯
过氧化二碳酸二异丙酯(IPP) 液体 -10 ℃下贮存
过氧化二碳酸二乙基己酯(EHP) 固体
5℃下贮存
过氧化二碳酸二环己酯(DCPD) 固体 室温下贮存
过氧化二碳酸二苯氧乙酯(BPPD)固体 室温下贮存
过氧化二碳酸酯类引发剂的特点:
(1)活性高,易分解,高活性的引发剂 (2)有较强的溶剂效应 (3)随R基团的增大,引发剂贮存稳定性增加
有机过氧类引发剂分解活性的次序:
不对称过氧化二酰> 过氧化二碳酸酯> 过氧化二酰>过氧化特烷基酯>过氧化二烷 基>过氧化氢物
2) 无机过氧化物
最常用的无机过氧化物——过硫酸盐 典型代表:水溶性的过硫酸钾(KSP)和过硫酸 铵 一般用于乳液聚合和水溶液聚合
O
O
KO S O O S OK

《高分子化学》复习题

《高分子化学》复习题

高分子化学一、选择题1.聚乙烯醇的单体是()A.乙烯醇B.乙醇C.乙醛D.醋酸乙烯酯2.下列聚合物中,单体单元、结构单元、重复单元与链节都相同的是()。

A.聚异戊二烯B.尼龙-6C.硅橡胶D.聚碳酸酯3.下列聚合物中属于杂链高分子的是()。

A.丁腈橡胶B.有机玻璃C.蛋白质D.丁基橡胶4.在自由基聚合过程中,如发生向单体转移的链转移反应,则对自由基聚合的影响是()。

A.聚合速率和平均聚合度都下降B.聚合速率不变,平均聚合度下降C.聚合速率下降,平均聚合度不变D.聚合速率和平均聚合度都不变5.合成全同PP可以使用以下哪种引发剂()。

A. H2O+SnCl4B. NaOHC. TiCl3+AlEt3D. O26.阳离子聚合的特点可以用以下哪种方式来描述()。

A.慢引发,快增长,速终止B.快引发,快增长,易转移,难终止C.快引发,慢增长,无转移,无终止D.慢引发,快增长,易转移,难终止7.能采用阳离子、阴离子与自由基聚合的单体是()。

A.苯乙烯B.甲基丙稀酸甲酯C.异丁烯D.丙烯腈8.下面哪种组合可以制备无支链高分子线形缩聚物()。

A.1-2官能度体系B.2-2官能度体系C.2-3官能度体系D. 3-3官能度体系9.Q-e方程中,e代表()。

A.单体的共轭效应B.单体的位阻效应C.自由基的位阻效应D.单体和自由基的极性效应10.下列进行自由基聚合的单体中,活性最大的是()A.氯乙烯B.丙烯腈C.丁二烯D.醋酸乙烯酯11.下面哪种组合可以制备无支链的线形缩聚物()A.1-2官能度体系B.2-2官能度体系C.2-3官能度体系D.3-3官能度体系12.下列哪个不属于三大合成材料()A.塑料B.合成橡胶C.合成纤维D.胶粘剂13.聚酰胺根据高分子主链结构分类是()A.碳链高聚物B.杂链高聚物C.元素有机高聚物D.无机高聚物14.熔融缩聚反应的关键问题是()A.反应热的排出B.充分脱除低分子副产物C.溶剂的选择D.搅拌15.反应温度在单体熔点以下的缩聚反应称为()A.溶液缩聚B.固相缩聚C.熔融缩聚D.乳液缩聚16.产生自动加速现象的根本原因是( )A.放热集中B.产物中有气泡C.聚合体系粘度增大D.单体气化17.自由基聚合链增长反应中,链自由基与单体的连接方式主要是( )A.头-头连接B.头-尾连接C.尾-尾连接D.顺式连接18.影响引发效率的因素有( )A.电子效应和位阻效应B.笼蔽效应和诱导分解C.取代基的数量和体积D.引发剂的性质和用量19.引发剂活性大小可以用( )来衡量。

高分子化学复习题

高分子化学复习题

选择题:1.许多阴离子聚合反应都比相应的自由基聚合有较快的聚合速率,主要是因为(B )A.阴离子聚合的K P值大于自由聚合的心值B.阴离子聚合活性种的浓度大于自由基活性种的浓度C.阴离子的Kp值和活性种的浓度大于自由基的K P值活性种的浓度D.阴离子聚合没有双基终止2•在高分子合成种,容易制得有价值的嵌段共聚物的是(B ) A•配位阴离子聚合氏阴离子活性聚合C.自由基共聚合3.阴离子聚合最主要的链终止方法是(C )A・向反罔子转移氏向单体转移C.自发终止4.烯类单体自由基聚集合中,存在自动加速效应时,将导致(D )A.聚合速率和相对分子质量同时下降B.聚合速率增加但相对分子质量下降C.聚合速率下降但相对分子质量增加D.聚合速率和相对分子质量同时增加而相对分子质量分布变宽5•在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A.阴离子本身比较稳定氏阴离子无双基终止而是单基终止C.从活性链上脱除负氢原子困难D•活化能低,在低温下聚合6•在自由基共聚中,e值相差较大的单体,易发生(A ) A.交替共聚B.理想共聚C.非理想共聚D.嵌段共聚7.开发一聚合物时,单体能否聚合需要从热力学和动力学两方面进行考察。

热力学上判断聚合倾向的主要参数是(B )。

A.聚合物玻璃化转变温度B.聚合焙HC.聚合物的分解温度D.聚合反应速率8•烯类单体在悬浮或本体聚合中,存在自动加速效应时,将导致(D ) oA.聚合速率和相对分子质量同时降低;B.聚合速率增加但相对分子质量降低;C.沁生凝胶;D.聚合速率和相对分子质量同时增加而相对分子质量分布变宽;9.下列单体进行自由基聚合时,相对分子质量仅由反应温度来控制,而聚合速率由引发剂用量来调节的是(C )。

A. CH2=CHC0N2; HB. CH 2=CHOCO3C; HC. CH 2=CHC ; 1D. CH2=CHC6H510.在自由基共聚中,具有相近Q,e值的单体发生(A )。

高分子化学复习题资料

高分子化学复习题资料

《高分子化学》复习题一.填空题1. 逐步聚合法有熔融缩聚和、、等四种。

2. 按聚合物材料性能及用途进行分类,一般可分为、、三大类。

根据聚合物主链所含元素,又可将聚合物分为:、、。

3. 按单体和聚合物在组成和结构上发生变化聚合反应可分为:、、。

按聚合机理聚合反应可分为:、。

4. 合成天然橡胶单体是。

5. 高分子化合物(又称聚合物)其分子量一般在多大范围内。

6. 乳液聚合中,经典理想体系的组成为: 、、、。

7. 苯乙烯连续本体聚合的散热问题可由、来克服。

8影响缩聚物聚合度的因素有、、。

其中是决定因素9.生成线形缩聚物的必要条件是单体的官能度为。

10. 聚合物降解的原因元有有、、、和四种。

11. 聚合物的一次结构是与结构单关的结构它包括、和12 本体聚合应选择引发剂、乳液聚合应选择引发剂。

13 聚合物聚合度变大的化学反应有、和等14 引发剂引发的自由基聚合体系中,影响聚合速率的因素是、、和。

17..高分子,又称(),一个大分子往往由许多简单的()通过()重复键接而成。

18.()和()是评价聚合物耐热性的重要指标。

19 高分子化合物有()和()两大类。

20 合成高分子化合物有()、()、()和()等。

21 引发剂引发的自由基聚合体系中,影响聚合速率的因素是()、()、()和()。

22 60℃时,在自由基聚合体系中,链自由基链终止方式苯乙烯是(),甲基丙烯酸甲酯是()终止兼有()终止,氯乙烯是()终止。

23 引发剂引发的自由基聚合体系中,影响聚合物相对分子质量的因素是()、()和()等。

24 使引发剂引发效率降低的原因有()、()和()。

25 引发剂的选择原则是根据聚合实施方法选择引发剂的()、根据聚合温度选择引发剂的()、根据聚合周期选择引发剂的()26 高分子化合物与低分子化合物相比较,其特征表现在()、()和()等三方面。

26 按照参加反应的单体种类,缩聚反应的单体可分为()、()和()等三类。

二、判断题1.烯类单体的聚合属于缩聚反应()2.本体聚合是指不加其它介质,只有单体本身,在引发剂、热、光等作用下进行的聚合反应。

有关高分子化学考试复习题

有关高分子化学考试复习题

高分子化学复习题一、问答题1、与低分子化合物比较,高分子化合物有什么特征?答:高分子化合物分子量很大,分子往往有许多相同的、简单的结构通过共价键重复链接而成。

即使是“纯”高分子化合物,它也是化学组成相同而分子量不同、结构不同的同系聚合物的混合物。

它具有分子量和结构的多分散性。

高分子化合物的结构非常复杂,需用一次、二次和三次结构来描述它。

一次结构是指一个大分子链中所包含的结构单元和相邻结构单元的立体排序。

二次结构是指单个大分子链的构象或聚集态类型。

三次结构是指形成复杂的高分子聚集体中大分子的排列情况。

2、聚合物分子量有几种表示方法,写出其数学表达式。

答:○1重均分子量:○2数均分子量○3粘均分子量○4Z均分子量(具体数学表达式请同学们看书上的第9页)3、简述逐步聚合的主要特点。

答:无所谓链引发、增长、终止,各步速率和活化能基本相同;单聚体低聚物、缩聚物任何物种之间均能缩聚,使链增长,无所谓活性中心;聚合初期,单体全部所聚成低聚物,再由低聚物缩聚成高聚物,转化率变化小,反应程度逐步增加;延长聚合时间,提高分子量;由于平衡的限制、两基团数不相等、温度过低而使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。

4、简述线形缩聚的逐步机理,以及转化率和反应程度的关系。

答:逐步特征反映在:缩聚过程时期单体聚合成二、三、四聚体等低聚物,低聚物之间可以进一步相互反应,在短时间内,单体转化率很高,基团的反应程度却很低,聚合度缓慢增加,直至反应程度很高时,聚合度才增加到希望值。

在缩聚过程中,体系由分子量递增的系列中间产物组成。

反应程度是参与反应的基团数占起始基团数的分数,是针对于官能团而言的,转化率是是反应的单体占起始单体的分数,针对单体来说的,转化率为100%时,反应程度可以是50%。

5、影响线性缩聚物聚合度的因素有哪些?两单体非等化学计量,如何控制聚合度?答:反应程度,平衡常数,基团数比。

俩单体非等化学计量其实就是基团数比的问题。

高分子化学复习

高分子化学复习

逐步聚合反应
5、逐步聚合/缩聚方法的配方、特点 逐步聚合/缩聚方法的配方、 熔融缩聚 逐步聚合方法 溶液缩聚 界面缩聚
自由基聚合反应
1、基本概念如自动加速现象、凝胶效应、动力学链长等 、基本概念如自动加速现象、凝胶效应、动力学链长等 如自动加速现象 2、单体聚合能力的判断与类型的选择 、
带烷基取代基的单体、 、烷基乙烯基醚、 带烷基取代基的单体、VC、烷基乙烯基醚、丙烯等
控制反应程度 控制官能团摩尔比 用单官能团单体封端
逐步聚合反应
4. 体形缩聚凝胶点的控制
Carothers方程 方程
pc =
2 f
2 Xn = 2 Pf -
平均官能度
2 fA 2(NANa + NC fC ) f= NA + NB + NC
能够参与聚合的总官能团数除以体系中 以 能够参与聚合的总官能团数除以体系中 分子总数来求取平均官能度
阳离子聚合 引发剂
a.质子酸/含氧酸 质子酸/
b.Lewis酸 Lewis酸
BF3-H2O引发体系 引发体系
离子聚合
4.阴阳离子聚合反应特点及分子量的控制 阴阳离子聚合反应特点及分子量的控制 阴离子聚合 阴离子聚合无终止聚合 why? why? 阴离子聚合 阴离子聚合化学计量聚合 阳离子聚合异构化聚合 离子聚合 离子聚合 阳离子聚合低温聚合 离子聚合 why? why? why? why? why? why?
相对 分子 量
T、[I]是影响与控制 、 是影响与控制 是影响与控制Mn 的主要 因素, ∝ 因素,Xn∝[M]/[I] 各种链转移反应使Mn↓ 各种链转移反应使 相对分子量大 T℃↑,Rp↑ ℃ , T℃↑,Xn↓ ℃ ,
本体聚合 why? why? 溶液聚合

高分子复习资料(准确情报)

高分子复习资料(准确情报)
因为:
所以:
即:
答……
第四章.离子、配合聚合
一.叙述下列定义:
1.离子聚合
离子聚合是单体在引发剂或催化中心作用下,按离子反应历程转化为聚合物的化学过程。
2.阴离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
3.阳离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
4.配位聚合
配位聚合也称配位离子聚合,是由两种或两种以上组分组成的配位催化剂引发的聚合反应。单体首先在过渡金属活性中心的空位上配位,形成σ→п配位化合物,进而这种被活化的的单体插入过渡金属-碳键进行链增长,最后形成大分子的过程。
综合各种情况,聚合速率方程可表达为:
Rp=K[I]n[M]m
一般情况下,式中指数n=0.5~1.0;m=1~1.5(个别为2)
2.局限性:主要是基于稳态法的基本假定
.不考虑链转移,为双基终止;
.单体总消耗速率=聚合反应总速率;链增长速率等于聚合反应总速率Rp=-d[M]/dt=Ri+Rp;
.游离基活性与链增长无关,Kp为常数;
O
2.-[HN-(CH2)5-C]n-聚合物名称:聚w-氨基己酸
单体名称:w-氨基己酸
合成式:
n H2N-(CH2)5-COOH→H-[N-(CH2)5-CO]n-OH + (n-1)H2O3.-[CH2-C-CH2]n-聚合物名称:聚1-甲基环丙烷
CH3单体名称:1-甲基环丙烷
合成式:CH3
C →-[CH2-C-CH2]n-
(3)
.链终止
偶合终止:
岐化终止:
(4)
式中
根据假定自由基浓度不变,进入稳定状态,或者说引发速率和终止速率相等,即Ri=Rt构成平衡,则

高分子化学期末复习要点

高分子化学期末复习要点

高分子化学期末复习要点1.单体、结构单元、重复单元合成聚合物的原料称做单体;在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用两种单体缩聚成缩聚物,则由两种结构单元构成重复单元。

2.玻璃化温度无定型和结晶热塑性聚合物低温时都呈玻璃态,受热至某一较窄温度(2~5℃),则转变成橡胶态或柔韧的可塑态,这一转变温度特称做玻璃化温度Tg。

3.聚合反应分类(机理、单体—聚合物结构变化)(1).按单体聚合物结构变化分类:①.缩聚,是官能团单体多次缩合成聚合物的反应,除形成聚合物外,还有水、醇、氨、氯化氢等低分子副产物产生。

②.加聚,是烯类单体π键断裂而后加成聚合起来的反应。

③.开环聚合,是环状单体σ键断裂而后聚合成线性聚合物的反应。

(2).按聚合机理分类:①.逐步聚合多数缩聚和聚加成反应属于逐步聚合,由单体逐步形成二、三、四聚体等低聚物(齐聚物)。

②.连锁聚合多数烯类单体的加聚反应属于连锁聚合,连锁聚合从活性种(可以是自由基、阳离子、阴离子)开始,有自由基聚合、阳离子聚合、阴离子聚合,经链引发、链增长、链终止等基元反应形成聚合物。

4.高分子聚合物的特征分子量大多分散性5.线性缩聚机理的特征①逐步特性②可逆平衡6.官能度、平均官能度、凝胶点化合物分子中官能团的个数为官能度f单体混合物的平均官能度定义为,每一份子平均带有的基团数:f平均=ΣNifi/ΣNi开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点,用Pc表示。

7.Carothers法预测该聚合体系的凝胶点(P31、32)8.逐步聚合实施方法:实施逐步聚合有熔融聚合、溶液聚合、界面缩聚、固相缩聚等四种方法。

需考虑下列原则和措施:①.原料要尽可能纯净;②.单体按化学计量配制加微量单官能团物质或某双官能团单体微过量来控制分子量;③.尽可能提高反应程度;④.采用减压或其他手段去除副产物,使反应向聚合物方向移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子化学复习(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--功能高分子材料一、吸附分离高分子材料:定义:吸附分离高分子材料是利用高分子材料与被吸附物质之间的物理或化学作用,使两者之间发生暂时或永久性结合,进而发挥各种功效的材料。

用途:广泛应用于物质的分离与提纯。

分类:物理吸附:吸附树脂吸附机理化学吸附:离子交换树脂和螯合树脂树脂形态:无定形、球形和纤维状孔结构:微孔、中孔、大孔、特大孔和均孔吸附树脂:定义:吸附树脂是指一类多孔性的、高度交联的高分子共聚物,又称为高分子吸附剂。

这类高分子材料具有较大的比表面积和适当的孔径,可从气相或溶液中吸附某些物质。

吸附机理:吸附树脂与被吸附物质之间的作用主要是物理作用,如范德华力、偶极- - 偶极相互作用、氢键等较弱的作用力。

分类:非极性吸附树脂:主要通过范德华力吸附水溶液中的疏水性物质。

物理吸附树脂非极性树脂的修饰中极性吸附树脂与中等极性单体共聚强极性吸附树脂:主要通过氢键作用和偶极- - 偶极相互作用进行。

亲和吸附树脂:基于生物亲和原理设计合成的,对目标物质的吸附呈现专一性或高选择性的吸附剂。

其吸附专一性或分子识别性能,来源于氢键、范德华力、偶极- - 偶极作用等多种键力的空间协同作用,是生命体系中普遍的现象,如抗体- - 抗原、酶- - 底物、互补的DNA 链。

成球技术:悬浮聚合:溶有引发剂的单体以液滴状悬浮于水中进行自由基聚合的方法。

整体看水为连续相,单体为分散相。

聚合在每个小液滴内进行,反应机理与本体聚合相同,可看作小珠本体聚合。

同样也可根据聚合物在单体中的溶解性有均相、非均相聚合之分。

反相悬浮聚合:如是将水溶性单体的水溶液作为分散相悬浮于油类连续相中,在引发剂的作用下进行聚合的方法,称为反相悬浮聚合法。

成球技术包括:疏水性单体的悬浮聚合单体:疏水性单体通常不含极性基团,如苯乙烯;交联剂:二乙烯苯,提高机械强度、热稳定性和化学稳定性;致孔剂:提高吸附树脂比表面积;球体:影响因素分散剂、搅拌速度、油相/水相比例、反应器及搅拌装置结构。

含极性基团的取代烯烃单体的悬浮聚合单体:含有极性基团的烯烃单体,如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、醋酸乙烯酯、丙烯酰胺等;通常在水相中加入食盐或同时在有机相中加入非极性溶剂,以增大单体与水相之间极性的差异,减少单体在水中的溶解度,尽量避免单体在水相或两相界面上的非成球聚合;选择合适的引发剂,以降低聚合温度,减小单体在水相中溶解度;加入自由基捕捉剂,减少水相中的聚合反应;极性较强的单体如丙烯酰胺,必须采用反相悬浮聚合技术。

交联剂:与单体的聚合速率要匹配,提高交联均匀性。

水溶性单体的悬浮缩聚聚合(单体:水溶性的,故必须采用反相悬浮缩聚反应极性成球聚合;缩聚体系:酚- - 醛、胺- - 醛、脲- - 醛、胍- - 醛、酰胺- - 醛、多胺- - 环氧氯丙烷、聚氨酯等体系。

缺点是不耐酸碱,作为离子交换树脂需注意。

)线形高分子的悬浮交联成球反应(原则上,所有含有反应性基团的水溶性高分子,都可以由反相悬浮交联反应制备成多孔球形树脂;带有反应性基团的油溶性高分子则能够通过悬浮交联反应成球;线形高分子一般为天然高分子化合物,如明胶用醛类交联剂交联成球,壳聚糖用戊二醛交联成球,葡聚糖及其他多糖可采用环氧氯丙烷交联成球。

也有针对某些特殊用途人工合成的线形高分子经悬浮交联制备球形树脂,如某些大孔型吸附树脂的后交联技术。

)致孔技术:惰性溶剂致孔、线形高分子致孔、后交联成孔(1)惰性溶剂致孔:惰性溶剂所占有的体积并不一定能完全成为孔体积;未处理的含致孔剂的大孔聚合物球粒中,存在两种主要的相互作用:溶剂/高分子链、高分子链之间的相互作用;机理:溶剂改变时,两种作用发生改变。

当溶剂由高分子的良溶剂向不良溶剂转变,则高分子链之间的作用得到加强,使链间微孔释放出来,最终形成的孔(尤其是原来的小孔)应当大于致孔剂存在时的孔;同时,也使整个大孔聚合物球粒的内敛作用加强,使总的孔体积缩小,一些大孔的孔径收缩,甚至塌陷,出现缩孔现象。

反之,由不良溶剂改为良溶剂时,聚合物溶胀,孔体积增加,同时微孔增多。

(说明不良溶剂致孔的大孔型树脂比良溶剂致孔的大孔型树脂有较大的孔径和较小的比表面积)(聚合物的良溶剂<溶胀剂>聚合物的不良溶剂<沉淀剂> ) (习题1)特点:通过改变交联度、致孔剂用量、种类以及引入适量的功能基团,可以得到高比表面积和极性的大孔吸附树脂。

(2) 线形高分子致孔在悬浮聚合的单体相中加入线形高分子也可合成大孔树脂,可用的线形高分子有聚苯乙烯、聚醋酸乙烯酯、聚丙烯酸酯类等。

机理:在聚合过程中,线形高分子促进相分离的发生。

随着聚合反应的进一步极性,作为线形高分子溶剂的单体逐渐减少和消失,使线形高分子卷曲成团;悬浮聚合反应完成后,采用溶剂抽提提出聚合物球粒中的线形高分子,可得到孔径较大的大孔树脂。

特点:采用高分子致孔剂,合成的树脂具有特大孔,比表面积小;线形高分子可与良溶剂或非良溶剂混合使用,可通过增加小孔的比例提高比表面积;线形高分子的分子量对致孔性能有影响,分子量较低的引起相分离的作用较小,形成特大孔的能力较弱。

对于线形聚苯乙烯用于苯乙烯/二乙烯苯悬浮共聚体系而言,分子量大于5万的高分子致孔剂致孔作用较稳定。

(3) 后交联成孔方法:先制备低交联度或线形的高分子,然后将其进行化学反应以达到所需的交联度。

特点:交联点均匀发生在高分子链上较远的位置,形成大网均孔结构,故也称为大网均孔树脂,其比表面积可达1000m2/g 以上的吸附树脂。

用途:不仅可制备非极性的吸附树脂,还可制备溶解性和中极性的吸附树脂,大大提高了比表面积。

吸附树脂的性能及吸附原理:从显微结构上看,大孔吸附树脂包含有许多具有微观小球组成的网状孔穴结构,故颗粒的总表面积很大,加上合成时引入了一定的极性基团,使大孔树脂具有较大的吸附能力;另一方面,这些网状孔穴在合成树脂时具有一定的孔径,使得它们对通过孔径的化合物根据其分子量的不同而具有一定的选择性。

通过以上这种吸附性和筛选原理,有机化合物根据吸附能力的不同及分子量的大小,在大孔吸附树脂上经过一定的溶剂洗脱而达到分离的目的。

吸附平衡:由于气态分子处于自由运动状态,达到吸附平衡时,吸附剂对气体物质的吸附量与气体的压力p有关,当压力增大时,吸附继续进行;当压力降低时,部分被吸附的分子就会脱附出来,经过足够长的时间又会按照变化的压力达到新的平衡。

吸附等温线:将在恒温下测得的吸附量与压力或浓度的关系画成曲线,即是吸附等温线。

吸附动力学:研究吸附过程的速度问题,其影响因素可分为两种:膜扩散、粒扩散吸附选择性:(1)水溶性不大的有机化合物易被吸附,且在水中的溶解性越差越易被吸附。

(2)吸附树脂难于吸附溶于有机溶剂中的有机物。

(3)当化合物的极性基团增加时,树脂对其吸附能力也随之增加。

(4)在同一种树脂中,树脂对体积较大的化合物的吸附作用较强。

脱附:根据极性“相似相溶”原理,对非极性大孔吸附树脂来说,洗脱剂极性越小,其洗脱能力越强,而对于中极性大孔树脂和极性较大化合物,则用极性较大的溶剂较为合适。

离子交换树脂:离子交换树脂是指具有离子交换基团的高分子化合物。

离子交换树脂的结构:离子交换树脂是一类带有可离子化基团的三维网状高分子材料它由高分子骨架、与高分子骨架以化学键相连的固定离子以及可在一定条件下离解出来并与周围的外来离子相互交换的可在一定条件下离解出来并与周围的外来离子相互交换的反离子组成。

其功能基团为固定离子与反离子组成的离子化基团。

功能基团中的可交换离子与外来离子完成交换过程后,通过改变条件又可再生为原有的反离子。

其外形一般为颗粒状,不溶于水和一般的酸、碱,也不溶于普通的有机溶剂,如乙醇、丙酮和烃类溶剂。

常见的离子交换树脂的粒径为~。

一些特殊用途的离子交换树脂的粒径可能大于或小于这一范围。

树脂由三部分组成:三维空间结构的网络骨架;骨架上连接的可离子化的功能基团;功能基团上吸附的可交换的离子。

通常,将能解离出阳离子、并能与外来阳离子进行交换的树脂称作阳离子交换树脂;而将能解离出阴离子、并能与外来阴离子进行交换的树脂称作阴离子交换树脂。

阳离子交换树脂可进一步分为强酸型、中酸型和弱酸型三种。

如R—SO3H为强酸型, R—PO(OH)2为中酸型,R—COOH为弱酸型。

习惯上,一般将中酸型和弱酸型统称为弱酸型。

阴离子交换树脂又可分为强碱型和弱碱型两种。

如R3—NCl 为强碱型,R— NH2、R—NR’H 和,R—NR”2为弱碱型。

按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。

按合成方式分为加聚型、缩聚型。

凝胶型离子交换树脂在干态和溶胀态都是透明的,呈现出均相结构。

树脂在溶胀状态下存在聚合物链间的凝胶孔,小分子可以在凝胶孔内扩散。

凝胶型离子交换树脂的优点是体积交换容量大、生产工艺简单、成本低。

其缺点就是耐渗透强度差、抗有机污染性差。

大孔型离子交换树脂内存在海绵状的多孔结构,因而是不透明的。

大孔型离子交换树脂的孔径从几纳米到几百纳米甚至到微米级,比表面积可以达到每克几百平方米甚至每克几千平方米。

大孔型离子交换树脂的优点是耐渗透强度高、抗有机污染性好、可交换分子量较大的离子。

其缺点就是体积交换容量小、生产工艺复杂、成本高、再生费用高。

载体型离子交换树脂具有特殊用途,主要用作液相色谱的固定相。

一般是将离子交换树脂包覆在硅胶或玻璃珠表面上制成的,可经受液相色谱中流动介质的高压。

(习题2)树脂的交换容量离子交换树脂的交换容量是指单位质量或单位体积树脂可交换的离子基团的数量的能力。

离子交换选择性(1)一般来说,离子交换树脂对价数较高的离子的选择性较大,如对二价的离子比一价离子的选择性高。

(2)对于同价离子,原子序数大的离子的水合半径小,因此对其选择性高。

(3)一般离子交换树脂对尺寸较大的离子如络阴离子、有机离子的选择性较高。

(4)树脂的交联度越大,选择性越高,但过高的交联度反而使选择性降低。

高吸水性树脂:是一种含有强亲水性基团并有一定交联度的功能高分子材料。

机理:见书49页二、高分子分离膜定义:在一种流体相内或两种流体相之间,有一薄层凝聚相物质将流体分隔成两部分,则该薄层物质就是所谓的“膜”。

根据分离膜的分离原理和推动力的不同,可将其分为根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超/过滤膜、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜。

多孔膜分离原理:机械过滤作用分离膜上有孔,像筛子一样截留住直径相应大于它们的溶质和颗粒,从而达到分离目的;溶解―扩散作用当某一种物质在膜材料中具有一定的溶解度时,在驱动力的作用下,溶解的物质能够在膜中扩散运动,从膜的一侧扩散到膜中,再从膜扩散到另一侧的溶液中。

相关文档
最新文档