活套张力计算
冷轧立式活套控制原理

冷轧立式活套控制原理金琳【摘要】立式活套在连续带材生产线上具有广阔的应用,活套的张力通过卷扬电机进行调节,卷扬电机采用速度控制,卷扬电机的线速度设定值由活套入口和出口的线速度决定.活套采用直接张力控制,张力附加速度由张力控制器产生.张力前馈控制可降低活套在升降套时产生的张力波动.带钢惯量补偿可消除活套升降套过程引起的张力升高.通过上述研究,为活套动态过程产生的张力波动问题提供了解决思路.【期刊名称】《山西冶金》【年(卷),期】2019(042)001【总页数】4页(P20-22,82)【关键词】立式活套;张力控制;张力前馈;带钢惯量补偿【作者】金琳【作者单位】首钢京唐钢铁联合有限责任公司冷轧作业部,河北唐山063210【正文语种】中文【中图分类】TG335.121 概述随着冶金自动化技术的不断发展,冷轧带钢生产多采用连续运行的机组系统。
为了实现工艺段带钢的连续运行,需在机组的入口段和出口段分别设置立式活套[1-3]。
入口活套的功能为当入口段停车时通过抽套保证工艺段的带钢供应,出口活套的功能为当出口段停车时通过填充活套来存储工艺段送出的带钢[4-5]。
如图1所示,立式活套主要由卷扬机、钢结构、活套小车、链轮组、配重块、定辊和动辊几个部分组成[6-8]。
本文将对西门子立式活套控制方案进行研究,并重点分析活套线速度设定、张力控制、张力前馈控制和带钢惯量补偿四个方面的内容。
图1 立式活套结构图2 活套的张力控制原理立式活套的张力通过卷扬电机进行调节,卷扬电机采用速度控制模式,其速度设定值包括四个部分,分别为:线速度设定值、张力控制附加值、张力前馈附加值、带钢惯量补偿。
其中线速度设定值保证了活套升降套速度与实际套量相匹配,张力控制、张力前馈和带钢惯量补偿通过附加速度调节活套带钢的实际张力。
2.1 卷扬线速度设定活套卷扬电机采用带增量型编码器的速度控制,线速度设定值由活套入口和出口线速度决定,计算原理如图2所示。
机组张力表及张力计算

机组张力表及张力计算二、1#张力辊计算计算条件:1#张力辊处于发电状态,辊子直径Φ790,辊子包角α=4.09弧度,总包角8.18。
欧拉公式:T 1=T 2 e -f α,T 2=T 3 e -f α。
T 1---1#辊与开卷机之间的张力,max=1.0*0.5*1000=500kgf T 2---1#辊与2#辊之间的张力T 3---2#辊与活套入口之间的张力,max=2.0*0.5*1000=1000kgf f----带钢与辊子之间的摩擦系数,辊面为聚氨酯,取f=0.28 张力辊的临界张力放大倍数:T 30/T 10= e 2f α= e 2*0.28*4.09=9.9,大于实际张力 放大倍数,张力辊满足要求。
张力辊的张力差:T3-T1=1000-500=500kgf则总的传动负载转矩为:M=500*0.79/2=197.5kgf.m选择马达转速n N =1500rpm ,则减速机传动比i=17,效率约0.9。
总的马达功率:P=197.5*1500/(975*17*0.9)=19.9kw 。
一般可根据包角的比例分配每根辊子的传动功率,均匀分担负载,故可选择2台11KW 的马达。
故原选择的马达型号:YVP160M-4,11kwYVP160L-4,15kw 满足要求。
1T 3三、活套出口张力计算计算条件:入口单位张力 2.0kg/mm2,活套辊13根(Φ370,调心辊子轴承23220C/W33---140mm,辊子重量295kg),纠偏辊2根(Φ400,调心辊子轴承22218C/W33---125,辊子重量409kg),转向辊1根(Φ400,调心辊子轴承23222C/W33---155mm,辊子重量362kg)。
滚子轴承的滚动摩擦因数μk=0.07*2=0.14cm辊子轴承摩擦阻力矩计算:M=N*μk *(d+D)/2d1N----辊子轴承的正压力,N=2T+G(-G),T 为带钢张力d----轴承内径D----轴承外径d1----滚子直径G----辊子重量产生的附加张力:T f=2M/D0D0----辊子直径对于0.5*1000规格的带钢,活套入口的带钢张力T0=2*0.5*1000=1000kg,活套其余各层的带钢张力分别为T1、T2、T3、….、T13。
张力设置及驱动控制浅谈 Microsoft Word 文档 (2)

连续生产线张力设置及驱动控制浅谈一. 张力的作用及数值选择1. 张力的作用及其影响连续生产线的带钢必须在张力之下运行,张力的最基本作用是保证带钢的正常运行,即使带钢尽可能沿着生产线中心线运行而不致因走偏造成边部刮伤甚至断带。
同时,纠偏辊也只有在张力足够的情况下才能起到纠偏的作用。
在镀锌生产线上,连续进行着各种工序,不同的工序各有其特点,张力的产生和作用也不尽相同。
有了张力辊,就可以把各个区域的张力隔开,在不同的区域设置不同大小的张力。
1.1开卷张力开卷张力主要是防止开卷时具有弹性的轧硬卷发生松动,在开卷机轴上发生横向偏移,形成喇叭状,影响带钢沿着中心线进入生产线。
1.2清洗段张力清洗段一般需要较大的张力,因为清洗段有很多的挤干辊、刷洗辊,不管其是在动力作用之下主动运转还是无动力作用之下被动运行,它们对带钢都有一定的作用力,如果其轴线与生产线中心线不垂直,或其水平度偏差较大,都会造成给带钢的作用力与生产线运行方向不一致的现象,会有一个侧向分力,使带钢沿辊子的表面向侧面滑行,严重时被箱体内的机件刮伤,造成断带事故,如图所示。
生产实际表明,这种现象经常发生。
防止这一事故发生的办法除严格检测挤干辊、刷洗辊的垂制度、水平度以外,就是适当加大清洗段的张力。
1.3活套张力卧式活套的张力过小除易造成钢带走偏以外,还会使钢带严重下垂,活套摆壁开合时对钢带造成刮伤甚至断带,也会使钢带和卷扬机钢丝绳产生振动而引起张力的波动。
一般卧式活套之后带钢便进入炉区,活套张力过大会影响到炉区张力的稳定。
1.4炉区张力炉区张力控制是镀锌生产线的重点和难点,这是因为炉区内带钢必须被加热到再结晶温度范围以上,而生产线出现故障,速度下降或停车时,带钢的温度会更高。
在700~800℃下的带钢的抗拉强度极低,塑性很高。
如果张力较高,甚至由于张力波动造成的瞬时张力过高,都会使带钢拉断而造成停产事故的发生。
在生产线正常运行的情况下,张力的作用也会使炉区带钢受到拉伸而发生宽度变窄的现象。
张力逐点计算法

张力逐点计算法
【原创实用版】
目录
1.张力计算法的概述
2.张力逐点计算法的原理
3.张力逐点计算法的应用实例
4.张力逐点计算法的优缺点
正文
张力计算法是工程中常用的一种计算方法,主要用于计算各种结构在受力情况下的张力。
而张力逐点计算法则是张力计算法中的一种,它通过对结构中的每一个点进行受力分析,从而得出整个结构在受力情况下的张力。
张力逐点计算法的原理非常简单,首先,需要对结构进行受力分析,确定每个点的受力情况。
然后,根据力学原理,计算出每个点所受的张力。
最后,将所有点的张力相加,得出整个结构在受力情况下的总张力。
张力逐点计算法在工程中有广泛的应用,例如,在建设桥梁时,可以通过张力逐点计算法来计算出桥梁在受力情况下的张力,从而确保桥梁的安全。
张力逐点计算法虽然操作步骤较为繁琐,但优点也非常明显。
首先,它可以精确计算出每个点的张力,使得工程设计更加精确。
其次,它可以考虑到结构的所有受力点,使得工程设计更加全面。
然而,张力逐点计算法也存在一些缺点。
首先,由于需要计算大量的数据,所以计算过程较为繁琐,需要耗费大量的时间和精力。
其次,由于张力逐点计算法需要对结构进行受力分析,所以只适用于静力结构,对于动态结构,则需要采用其他的计算方法。
镀锌生产线张力驱动控制基础

镀锌生产线张力驱动控制基础生产线带钢的张力来源于电机的驱动,正是在电机的驱动下,各个辊子的速度不同,前面辊子的速度大于后面辊子的速度,才使带钢绷紧,即有了张力。
所以必须从电机驱动知识入手,才能完全掌握张力控制的真谛,灵活自如的调整生产线张力,达到既保证产品质量又保证设备正常运转的最佳状态。
1.变频调速技术简介以前的生产线都是采用直流驱动,那是因为当时的驱动技术只能对直流电机实现调频调压控制,使电机的转速和输出力矩按照生产线工艺要求调整,而交流电机只能在50Hz工频下按一定的速度运转。
但直流电机体积大、结构复杂、维修费用高,给生产线的管理和运行成本带来很大的影响。
目前,随着变频调速技术的发展,特别是矢量控制技术的成熟,使交流异步电动机全面取代了直流电机,使用到各种连续运行的生产线中。
矢量控制的交流变频电机与传统的直流电机相比,不但结构紧凑、维修费用小,而且其机械特性、调速精度都可以与直流电机相媲美。
1.1交流异步电机变频调速原理交流异步电机的转速公式为:p fs n60 )1(-=式中:f——定子供电的频率,Hz;p——定子线圈磁极对数;s——转子转速与定子旋转磁场转速之间的转差率;n——电机转速,min/r。
由上式可知,对于一台电机来说,s和p都是固定不变的,只要平滑的调节其供电频率f ,就可以平滑的调节其转速,这是变频调速最基本的原理。
1.2变频调速系统的特性通过变频器以后,使变频发生了变化,电压有什么变化呢?我们再看异步电机定子绕组的感应电动势E 的关系公式:m r N f k E Φ=111144.4式中:1E ——气隙磁通在定子每相中感应电动势的有效值, V ; 1f ——定子频率,Hz ;1N ——定子每相绕组串联匝数; 1r k ——与绕组有关的结构常数; m Φ——每极气隙磁通量,b W 。
上式中,1r k 、1N 对于同一台电机而言基本是常量,而定子每相感应电动势与电机输入电压基本相等,所以:m kf E V Φ=≈111或 111f V k m •=Φ 式中:k ——对于同一电机而言不变的比例系数。
1450mm酸连轧机组活套张力控制

1450mm酸连轧机组活套张力控制冷连轧活套张力控制的动静态精度对于稳定轧制过程至关重要。
在结合活套张力控制原理的基础上设计出1 450 mm 冷连轧机活套电气控制系统,详细介绍了活套张力控制系统的控制原理及实现方案,对惯性力矩、弯曲力矩和摩擦力矩进行补偿,随后分析活套的运行情况。
实践证明此活套控制系统具有较好的控制效果,满足生产工艺的要求。
标签:冷连轧机;活套;恒张力控制;S120交流传动装置1、概述在冷轧带钢控制系统中,为保证产品质量和工艺过程稳定,无论是冷连轧机还是可逆冷轧机均需要稳定的张力控制。
按照不同的工艺要求:较典型的张力控制方法有间接张力控制和直接张力控制,间接张力控制常用于开卷、卷取、活套的控制;直接张力控制则用于精度较高的张力控制系统,冷连轧生产中常用于机架间的张力控制。
文中所设计的1450mm 6辊5机架酸连轧机组已于2019年初正式投产,其活套控制系统采用间接张力控制。
在活套的控制系统中,活套不仅需在同步运行时保持张力恒定,且要求系统能准确地在加减速过程中进行动态力矩补偿,并根据活套车的位置对张力给定进行修正。
2、入口水平活套2.1设备组成入口活套为水平活套,活套系统由活套车、活套车驱动装置、活套门、底部带钢支承辊、换辊小车和钢绳缓冲装置组成。
活套车上设有带钢转向辊、滑轮组及带钢支承辊和车轮,活套车的一侧设有水平滚轮,通过偏心轮来调整滚轮的开口度。
活套车上带有滑槽用以控制活套门的关闭。
活套车车体为焊接钢结构框架。
活套车驱动装置由电机减速机驱动,并保证活套车时刻处于可控状态。
当活套车运动时,设在活套车上的滑槽引导与活套门关联的连杆机构开始转动并带动活套门开闭。
活套门用于支撑存储的带钢,安装在活套车行进方向的两边,通过连杆机构由活套车驱动来完成开闭摆动。
底部带钢支承辊用来支持底部存储带钢的运行。
2.2设备性能酸洗入口活套由3臺电机组成,电机参数如下:其交流传动采用西门子公司交流传动装置,型号为:S120系列。
张力控制总结

张力控制一、开卷机、卷取机控制开卷机和卷取机采用间接张力控制:上图为开卷机和卷曲机的控制框图,主控制环还是速度电流控制双环,但其设定值和速度主令有一个速差。
在主控制环的速调输出上叠加一个张力限幅值,这个值就是开卷机和S 辊间的张力值转换为的转矩值。
二、活套控制活套控制采用直接张力控制:主控制环也还是速度和电流控制双环,另外根据活套的张力设定值,通过张力调节其输出速度调整量,叠加到到速度调节器的输入上。
张力调节器的实际张力值来源:1)张力计2)进行间接计算。
三、张力辊的控制张力辊为S辊,其分为两类:(1)速度控制张紧辊主辊做标准速度电流控制双环,速调用PI调节器,从辊也是速度电流双环,但是采用P调节器,其I来自于主辊(因为P和I调节器分开,所以一定要关闭从调节器的I环节)(2)张力控制张紧辊有以下4种情况:1)直接张力控制,有张力计2)直接张力控制,无张力计3)间接张力控制4)转矩控制注:A速度控制张紧辊和张力控制张紧辊都要分为主辊和从辊,其中主辊的速度调节器采用PI 调节器,而从辊的速度调节器采用P调节器,其I分量来自于主辊,因为主辊的积分分量反映了主辊的转矩,这样两辊的出力百分值都相同了。
B两辊中到底那个作为主辊:对于P100=4 功率大的作为主。
P100=5,靠近张力计的为主。
在没有张力计的场合,带钢进入的为主。
对于以上1)和2),主辊的控制方法都是在速度电流双环的速度环上叠加张力调节器输出,张力调节器的张力实际值可能来自于张力计,也有可能来自于计算值。
作负荷平衡需要SCB2,通过硬线连接,做点对点通讯。
四、速度调节器和张力调节器在张力调试中,调试的主要参数是能够对速度调节器及张力调节器产生影响的参数。
如下图(1)所示为速度调节器,在程序中所在位置为NCNOT/H3/NCO200。
如图(2)所示为张力调节器,在程序中所在位置是TECON/E3/TREG120。
速度调节器张力调节器(一)、速度调节器控制:1、速度环速度给定的由来:(1)速度控制器:当采用“经典积分控制环节时”,速度给定用的速度给定参考模型NSET_RM,当不采用“经典积分控制环节时,速度给定用的是综合速度N_ADD。
张力换算公式

张力换算公式
张力换算公式是用来计算物体上的张力的公式。
张力是指物体内部的受力,它的大小与物体的形状、材质以及外界施加的力有关。
张力换算公式可以通过测量物体上的张力来计算出张力的大小。
在物理学中,张力换算公式可以表示为:
T = F * cosθ
其中,T是物体上的张力,F是施加在物体上的外力的大小,θ是外力与物体之间的夹角。
通过这个公式,我们可以计算出物体上的张力。
例如,如果一个物体受到一个大小为10牛的外力,并且外力与物体的夹角为30度,根据张力换算公式,我们可以计算出物体上的张力为10 * cos30° = 8.66牛。
张力换算公式的应用非常广泛。
在工程领域中,我们可以使用张力换算公式来计算桥梁、绳索、电线等物体上的张力,从而确保它们能够承受外界施加的力。
张力换算公式还可以用于运动学中的问题。
例如,在斜面上滚动的物体,我们可以使用张力换算公式来计算物体所受到的张力,从而解决相关问题。
张力换算公式是一个重要的物理公式,它可以帮助我们计算物体上
的张力,进而解决与张力相关的问题。
通过应用张力换算公式,我们可以更好地理解和掌握物体的受力情况,为工程设计和物理学研究提供有力的支持。
通过学习和应用张力换算公式,我们可以更好地理解和掌握物体的受力情况,为工程设计和物理学研究提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热连轧活套张力计算
1.1.1活套控制基本力矩
活套的几何结构图如下所示:
图2.9 活套几何结构图
图2.10 活套本体结构图
符号描述单位
A 活套支点到上游机架的距离mm
B 活套支点到下游机架的距离mm
其中:
02sin H D
LL H -+
*=θ θθcos arctan
1*+=LL A H
θθcos arctan
2*-=LL B H
活套高度和张力控制根据L2设定值自动执行。
本系统有三种控制理论用于活套控制,包括:传统控制,交叉解耦控制,传统控制+ILQ 控制(具体参见活套控制模型部分)。
这三种控制方式,都离不开基本力矩的计算,参见图4-2和图4-3,其计算过程如下:
B S G m T T T T T +++=σ
其中
m T :电机输出力矩[Nm] G T :活套重力矩[Nm]
S T :带钢重力矩[Nm] σT :带钢张力矩[Nm]
B T :带钢弯曲力矩[Nm]
()()[]LL
h W T *1sin 2sin θθθθσσ--+***=
LL L h W T S *cos *2θρ
***=
LL
E L h H W T B *cos *163
θ*⎪⎭⎫
⎝⎛***=
)
cos(***P G P g GE T θθ-=
其中
W :带钢宽度[mm]
h :带钢出口厚度设定值[mm]
σ :带钢张力设定值[KG/mm 2] ρ :带钢密度[KG/m 3]
E :带钢杨氏模量 [KG/mm 2
] g :重力加速度,9.807m/s 2
1.1.2 带钢张力计算
单位张力值计算为活套电机力矩减去带钢重力矩、弯曲力矩、离心力矩、活套辊重力矩四个量得到的。
与基本力矩相比,它多了一个带钢离心力矩。
()()[]LL
h W T T T T T E
B S G m ***--++---=
1sin 2sin θθθθσ
()LL g
V W h T E *cos 212θρθθ**+***=
其中:
E T :带钢离心力矩[Nm]
V :上游机架速度[m/s]。