公务员考试十大数字推理规律详解
公务员行测中的数字推理与解题技巧

公务员行测中的数字推理与解题技巧数字推理是公务员行测中的重要内容之一,它需要考生运用逻辑思维和数学知识进行推理和解题。
本文将介绍一些数字推理的基本方法和解题技巧,帮助考生更好地应对公务员行测中的数字推理题。
一、数字推理的基本方法在解决数字推理题时,考生首先需要明确题目给出的数字序列或者关系,并找到其中的规律。
下面介绍几种常见的数字推理方法。
1. 数列推理数列推理题是公务员行测中常见的题型,它要求考生根据已知的数字序列,推断出接下来的数字。
解决这类题目的关键在于找到数列中数字的变化规律。
常见的数列规律有等差数列和等比数列。
其中,等差数列的每个数字之间的差值相等,等比数列的每个数字之间的比值相等。
通过观察数列中数字间的关系,找出变化规律,即可准确推测出下一个数字。
2. 数字关系推理数字关系推理题要求考生从一组数字中找出相互之间的关系,进而推断出缺失的数字。
解决这类题目需要考生具备较强的逻辑思维能力。
常见的数字关系有加减乘除、平方立方等运算关系;还有数字的奇偶、大小关系等。
考生需要仔细观察数字间的变化规律,找出其中的逻辑关系,才能正确推断出缺失的数字。
3. 数字排列与组合推理数字排列与组合推理题要求考生从一组数字排列或者组合中找出符合一定条件的数字。
解决这类题目需要考生熟练掌握排列组合的知识。
在排列与组合的题目中,数字的顺序、重复与否等都可能是解题的关键。
考生需要根据题目给出的条件,灵活运用排列组合的规则,准确地确定符合条件的数字。
二、数字推理解题技巧除了掌握数字推理的基本方法,考生还可以借助一些解题技巧,提高解决数字推理题的效率。
1. 注意整体和局部在解决数字推理题时,考生既要关注数字序列的整体规律,又要注意其中的局部规律。
有时候,数字序列的整体规律并不明显,但是通过观察数字间的局部规律,也可以推断出接下来的数字。
2. 多角度观察考生要习惯从不同的角度观察数字推理题。
有时候,单一的数学运算规律并不能完全解释题目中的数字关系,此时考生可以从逻辑思维、几何形状等其他角度出发,寻找隐藏的规律。
行测指导:近10年国考《行测》数字推理命题规律分析

从2000年至今十余年的时间里,国考中数字推理部分也是历经沉浮,甚至在2004年和2011年的国考中取消了这部分的测试,依据以往规律,今年国考中数字推理重考的机会还是很大的。
这里就近10年来国考中数字推理部分的命题规律进行以下分析,希望对各位考生的复习备考起到一定的帮助作用。
在03年之前,数字推理相对简单,考察题型多为多级数列中的二级做差数列、简单递推数列和多重数列等,考察题型单一,难度较低。
从03年开始,考察题型增加了非整数数列,但难度并不大,但是递推数列的难度明显加大。
04年暂未考数字推理,05年开始又重新考察这个部分,但是这时的题量已经由原来的5道增加到10道,考察的题型也变得五花八门,多级数列的比例下降,幂次数列也由之前的简单幂次变为幂次修正数列。
06年之后的数字推理呈现的特点就是题型多样化,考察难度加大,分数数列已经着重从反约分的角度来出题,递推数列已经基本上不从递推和及递推差上出题,转而主要是考察递推积、递推倍和递推方数列,甚至在2008年出现了图形推理。
总之,根据近10年来数字推理的命题规律,我们可以发现,随着公务员考试报名趋热,公务员试题的难度不论是横向还是纵向上都迅速加大。
从横向上看考察的题型变得多样,由最简单的多级做差数列、递推和数列到分数数列、幂次修正数列及递推积、递推倍数列;纵向看每种题型的考察难度变大,考察的深度变深,但是只要考生好好复习,熟悉各种题型的特点和解题方法,多加练习,就会取得理想的成绩的。
公务员考试行测数字推理典型例题解析

(1)2、3、10、15、() 解析: 1的平⽅+1=2、2的平⽅-1=3、3的平⽅+1=10、4的平⽅-1=15、5的平⽅+1=(26) (2)10、9、17、50、() 解析: 10*1-1=9、9*2-1=17、17*3-1=50、50*4-1=(199) (3)2、8、24、64、() 解析: 2*2+4=8、8*2+8=24、24*2+16=64、64*2+32=(160) (4)0、4、18、48、100、() 解析: 这道题的关键是将每⼀项分解,0*1=0、2*2=4、6*3=18、12*4=48、20*5=100、30*6=(180) (5)4、5、11、14、22、() 解析: 前项与后项的和是到⾃然数平⽅数列。
4+5=9、5+11=16、11+14=25、14+22=36、22+(27)=49 (6)2、3、4、9、12、15、22、() 解析: 每三项相加,得到⾃然数平⽅数列。
2+3+4=9、3+4+9=16、4+9+12=25、9+12+15=36、12+15+22=49、15+22+(27)=64 (7) 1、2、3、7、46、() 解析: 后⼀项的平⽅减前⼀项得到第三项,2的平⽅-1=3、3的平⽅-2=7、7的平⽅-3=46、46的平⽅-7=(2109) (8)2、2、4、12、12、()、72 这是⼀个组合数列2*1=2、2*2=4、4*3=12、12*1=12、12*2=(24)、24*3=72 (9) 4、6、10、14、22、() 每项除以2得到质数列 2、3、5、7、11、(26)/2=13 (10)5、24、6、20、()、15、10、() 5*24=120、6*20=120、(8)*15=120、10*(12)=120 (11)763951、59367、7695、967、() 本题并未研究计算关系,⽽只是研究项与项之间的数字规律。
将第⼀项763951中的数字“1”去掉,并从后向前数得到下⼀项59367;将59367中的“3”去掉,并从后向前数得到7695;7695去掉“5”,从后向前数得到967;967去掉“7”,从后向前数得到(69)。
公务员考试数字推理大全

精心整理公务员考试数字推理大全1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40, 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302∴下一个数为302+5=307。
公务员行测数字推理必知的30个规律

公务员行测数字推理必知的30个规律一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ()3三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
行测考试十大数据推理规律

一、行测考试十大数据推理规律:①奇偶数规律:各个数都是奇数(单数)或偶数(双数)。
②等差:相邻数之间的差值相等,整个数字序列依列递增或递减。
③等比:相邻数之间的比值相等,整个数字序列依次递增或递减。
④二级等差:相邻数之间的差或比构成了一个等差数列。
⑤二级等比数列:相邻数之间的差或比构成一个等比数列。
⑥加法规律:前两个数之和等于第三个数。
⑦减法规律:前两个数之差等于第三个数。
⑧乘法(除法)规律:前两个数之乘积(或相除)等于第三个数。
⑨完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含。
⑩混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
二、经典题型分类练习:1.等差数列例1:1, 4, 7, 10, 13,( )A.14B.15C.16D.172.等差数列的变式例1:3, 4, 6, 9,( ),18A.11B.12C.13D.143.“两项之和等于第三项”型例1:34, 35, 69, 104, ( )A.138B.139C.173D.179例2:…101102203305508( )1321…A.812B.814C.813D. 8114.等比数列例1:3, 9, 27, 81, ( )A.433B.342C.243D.1355.等比数列的变式例1:8, 12, 24, 60, ( )A.90B.120C.180D.240例2:8, 14, 26, 50, ( )A.104B.100C. 98D. 76例3:1/2, 1, 7/5, 13/9, ( )A. 17/13B. 19/15C. 21/17D. 23/196.平方型及其变式例1:1, 4, 9, ( ), 25, 36A.10B.14C.16D.20例2:1/2, 1, 5/7, ( ), 9/32A. 5/11B.7/11C.7/16D.9/167.利用“凑整法”求解例1:52+136+38+64的值为:A. 300B. 292C. 290D. 280例2:12.5×0.25×0.5×32的值为:( )A. 50.25B. 100C. 50D. 258.利用“尾数估算法”求解例1:425+683+544+828的值是:A. 2484B. 2482C. 2480D. 2478例2:1997+1998+1999+2000+2001A. 9993B. 9994C. 9995D. 9996。
数字推理的十大规律

数字推理的十大规律数字推理是通过对数字、数字关系、数字规律等进行分析、推理来解决问题的一种思维方式。
数字推理可以应用于数学、逻辑、信息处理、统计学等领域。
在数字推理中,存在着一些常见的规律,通过了解这些规律,我们可以更好地进行数字推理。
下面是数字推理中的十大常见规律:1. 自然数规律自然数规律是最基本的数字规律之一。
自然数由1开始依次递增,其中包含了所有整数。
我们可以通过对自然数序列的观察,进一步推导出一些数学规律。
例如,自然数序列的平方数规律:1, 4, 9, 16, 25, ...,可以看出平方数是自然数序列的某种特殊规律。
2. 等差数列规律等差数列是一种特殊的数字序列,其中相邻的数字之间的差值是相等的。
等差数列常用于数学题目、数列的求和问题等。
例如,2, 5, 8, 11, 14, ...,可以看出每个数字都比前一个数字增加了3。
3. 等比数列规律等比数列是一种特殊的数字序列,其中相邻的数字之间的比值是相等的。
等比数列常用于数学问题中,比如指数增长、连续复利等。
例如,2, 6, 18, 54, ...,可以看出每个数字都是前一个数字乘以3。
4. 斐波那契数列规律斐波那契数列是一个非常特殊的数列,其中每个数字都是前两个数字之和。
斐波那契数列在自然界中广泛存在,如植物的叶子排列、兔子繁殖等。
例如,1, 1, 2, 3, 5, 8, 13, ...,可以看出每个数字都是前两个数字之和。
5. 奇偶数规律奇偶数规律是数字推理中的一种常见规律。
奇数是整数中不能被2整除的数,偶数则是能被2整除的数。
例如,1, 3, 5, 7, 9, ...是奇数序列;2, 4, 6, 8, 10, ...是偶数序列。
6. 质数规律质数是只能被1和自身整除的自然数。
质数规律在密码学、因数分解等领域有重要应用。
例如,2, 3, 5, 7, 11, ...,可以看出每个数字都是质数。
7. 素数规律素数是指除了1和本身外没有其他除数的数,素数可以是质数或者合数。
图形推理的十大规律及数字

图形推理的十大规律图形专项突破中绝大多数例题都是公考真题,命题规范,指导性明确,具有很高的价值。
图形专项突破编写系统,几乎含盖图形推理全部类型的题目。
图形推理的两大灵魂是数量关系和图形的转动。
牢牢把握住这两大灵魂就基本把握了图形推理题目。
在这两大灵魂统帅下的十大基本规律,是每个想要在公考中取得优异成绩的考生必须系统熟练把握的。
图形推理的两大灵魂:数量关系和图形的转动。
这里以2007年国家公务员考试真题为例子来说明图形推理的两大灵魂。
1.答案:B分析:方法一,从图形旋转的角度来分析这个题目。
顺时针方向看,会发现黑色小方框在作顺时针旋转。
具体的说,第一行三个图形中,黑色小方框在作顺时针旋转;然后从第三列往下看,发现黑色小方框仍然在作顺时针旋转。
整个观察顺序是:第一行,从左向右,到了第三个图形,从上往下;到了右下角的图形,从右往左,到了左下角,再从下往上。
如果选择逆时针方向分析,会发现黑色小方框在作逆时针旋转。
最后同样得到答案B。
方法二,从图形的数量关系来分析这个题目。
图中含有黑色小方框的图形是成对出现的。
因此答案为B。
2.答案:A分析:第一列,从下往上,三个图形中,图形外的线段数量分别是1,3,5。
第二列,从上往下,三个图形中,图形外的线段数量分别是7,9,11。
第三列,从下往上,三个图形中,图形外的线段数量分别是13,15,17。
从列的角度来考察的。
分析这类题目的时候,如果从行的角度去考察,难以发现规律,不妨改变一下角度,从列的角度去考察。
本题每个图形出头线段数目如下图:3.答案:D分析:这个题目看从什么角度来分析。
如果把第一行三个小图形放在一起分析,然后把第二行三个图形放在一起分析,就很难找到正确的答案来。
如果把第一列的三个图形放在一起分析,把第二列的三个图形放在一起分析,就比较容易找出答案来。
整个题目的规律是:从列方向上来看,第一个图形的直线边数等于下面两个图形的边数之和。
以前考试的题目和参考书上的练习题目大多是从行的方向来考察的,这次考题换了一个角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员考试十大数字推理规律详解(2009-6-11 上午 07:55:46)备考规律一:等差数列及其变式【例题】7,11,15,( )A 19B 20C 22D 25【答案】A选项【广州新东方戴斌解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,( )A.28 B.29 C.32 D.33【答案】B选项【广州新东方戴斌解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,( )A.15 B.14.5 C.16 D.17【答案】B选项【广州新东方戴斌解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,( )A.5 B.4 C.16 D.15【答案】A选项【广州新东方戴斌解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,-5,6,X。
很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5。
即答案为A选项。
(三)等差数列的变形四:【例题】7,11,16,10,3,11,( )A.20 B.8 C.18 D.15 【答案】A选项【广州新东方戴斌解析】这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。
第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。
总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。
很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。
即答案为A选项。
备考规律二:等比数列及其变式【例题】4,8,16,32,( )A.64 B.68 C.48 D.54 【答案】A选项【广州新东方戴斌解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。
题中第二个数字为8,第一个数字为4,“后面的数字”是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。
那么在此基础上,我们对未知的一项进行推理,即32×2=64,第五项应该是64。
(一)等比数列的变形一:【例题】4,8,24,96,( )A.480 B.168 C.48 D.120 【答案】A选项【广州新东方戴斌解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,3,4,X。
很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为96×5=480。
即答案为A选项。
(二)等比数列的变形二:【例题】4,8,32,256,( )A.4096 B.1024 C.480 D.512 【答案】A选项【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,4,8,X。
很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为256×16=4096。
即答案为A选项。
(三)等比数列的变形三:【例题】2,6,54,1428,( )A.118098 B.77112 C.2856 D.4284 【答案】A选项【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X我们发现“倍数”分别为3,9,27,X。
很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为1428×81=118098。
即答案为A选项。
(四)等比数列的变形四:【例题】2,-4,-12,48,( )A.240 B.-192 C.96 D.-240 【答案】A选项【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X我们发现“倍数”分别为-2,3,-4,X。
很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此戴老师认为我们可以推出X=5,即第五个数为48×5=240,即答案为A选项。
备考规律三:求和相加式的数列规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】56,63,119,182,()A.301 B.245 C.63 D.364 【答案】A选项【广州新东方戴斌解析】这也是一个典型的求和相加式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119。
同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确备考规律四:求积相乘式的数列规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】3,6,18,108,()A.1944 B.648 C.648 D.198 【答案】A选项【广州新东方戴斌解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18。
同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。
备考规律五:求商相除式数列规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】800,40,20,2,()A.10 B.2 C.1 D.4 【答案】A选项【广州新东方戴斌解析】这是一个典型的求商相除式的数列,即“第一项除以第二项等于第三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20。
同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。
备考规律六:立方数数列及其变式【例题】8,27,64,( )A.125 B.128 C.68 D.101 【答案】A选项【广州新东方戴斌解析】这是一个典型的“立方数”的数列,即第一项是2的立方,第二项是3的立方,第三项是4的立方,同理我们推出第四项应是5的立方。
所以A选项正确。
(一)“立方数”数列的变形一:【例题】7,26,63,( )A.124 B.128 C.125 D.101 【答案】A选项【广州新东方戴斌解析】这是一个典型的“立方数”的数列,其规律是每一个立方数减去一个常数,即第一项是2的立方减去1,第二项是3的立方减去1,第三项是4的立方减去1,同理我们推出第四项应是5的立方减去1,即第五项等于124。
所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,戴老师认为就一定可以演变成“每一个立方数加上一个常数”。
就上面那道题目而言,同样可以做一个变形:【例题变形】9,28,65,( )A.126 B.128 C.125 D.124 【答案】A选项【广州新东方戴斌解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个常数,即第一项是2的立方加上1,第二项是3的立方加上1,第三项是4的立方加上1,同理我们推出第四项应是5的立方加上1,即第五项等于124。
所以A选项正确。