八年级数学函数图像的基本作法
函数图像画法

考点名称:函数图象∙定义:点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。
∙函数图像的画法:(1)描点法:一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。
(2)用函数的性质画图一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。
(3)通过图像变换画图(一)平移变化:Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到;Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到.(二)对称变换:Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到;Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到;Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到;Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.函数图像的判断:这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。
常用结论:(1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a 成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。
数学函数图像操作方法

数学函数图像操作方法
在进行数学函数图像操作时,我们通常需要考虑以下几个方法:
1. 描点法:将函数的自变量取一组特定的值,然后计算对应的函数值,再将这些点连线,就可以得到函数的图像。
这种方法适用于简单的函数,但会忽略函数在两个点之间的变化。
2. 函数变化法:通过观察函数的表达式,分析函数的性质,确定函数的增减性,转折点,极值点等关键信息,再结合这些信息来画图。
这种方法适用于一些特殊函数或复杂函数,可以更全面地描述函数的特点。
3. 借助计算工具:借助数学软件或计算器,输入函数的表达式,通过计算工具可以直接绘制函数图像。
这种方法适用于复杂函数或需要更精确绘制的情况,可以节省时间和提高准确性。
4. 函数变换法:对于已知函数的图像,可以通过一些变换操作来得到新函数的图像。
例如,平移、伸缩、翻转等操作可以改变函数图像的位置、形状和方向。
这种方法可以通过调整参数或组合多个函数来得到不同的图像。
以上方法是常用的数学函数图像操作方法,根据具体情况选择合适的方法进行操作。
在进行图像操作时,要根据函数的性质和图像的需求来确定合适的方法,并
注意分析图像的特点和变化规律。
数学函数图像操作方法总结

数学函数图像操作方法总结数学函数图像操作方法总结如下:1. 平移:将函数图像沿x 轴或y 轴方向移动,可以使用平移公式进行计算。
对于函数y=f(x),平移后的函数y=f(x-a) 表示沿x 轴正方向平移a 个单位,y=f(x)+b 表示沿y 轴方向平移b 个单位。
2. 缩放:将函数图像沿x 轴或y 轴方向进行放大或缩小。
对于函数y=f(x),缩放后的函数y=a*f(bx) 表示沿x 轴方向放大a 倍,y=f(x/b)/a 表示沿x 轴方向缩小b 倍,y=a*f(x) 表示沿y 轴方向放大a 倍,y=f(x)/a 表示沿y 轴方向缩小a 倍。
3. 翻转:将函数图像沿x 轴或y 轴方向翻转。
对于函数y=f(x),翻转后的函数y=-f(x) 表示沿x 轴翻转,y=f(-x) 表示沿y 轴翻转。
4. 对称:将函数图像关于某条直线对称。
对于函数y=f(x),关于y 轴对称的函数为y=f(-x),关于x 轴对称的函数为y=-f(x),关于原点对称的函数为y=-f(-x)。
5. 拉伸和压缩:将函数图像在x 轴或y 轴方向进行拉伸或压缩。
对于函数y=f(x),拉伸后的函数y=f(cx) 表示在x 轴方向拉伸c 倍,y=f(x/c) 表示在x 轴方向压缩c 倍,y=d*f(x) 表示在y 轴方向拉伸d 倍,y=f(x/d) 表示在y轴方向压缩d 倍。
6. 旋转:将函数图像绕坐标原点或任意点进行旋转。
旋转后的函数可以使用旋转公式进行计算。
例如,绕坐标原点逆时针旋转a 弧度的函数为y=f(x)cos(a)+f(-x)sin(a),绕任意点(h, k) 逆时针旋转a 弧度的函数为y=f(x-h)cos(a)-f(x-h)sin(a)+k。
这些方法可以帮助对数学函数图像进行各种变换和操作,以便更好地理解和分析函数的性质和行为。
函数图像画法知识点总结

函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。
在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。
在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。
一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。
直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。
当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。
绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。
首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。
2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。
平方函数的一般形式为y=x^2。
平方函数的图像对称于y轴,开口向上。
绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。
3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。
开方函数的一般形式为y=sqrt(x)。
开方函数的图像对称于x轴,开口向右。
绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。
4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。
绝对值函数的一般形式为y=|x|。
绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。
以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。
初二数学知识点:函数的图象知识点

初二数学知识点:函数的图象知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特殊地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b 取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的'交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。
特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)由于在一次函数上的任意一点P(x,y),都满意等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最终得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t肯定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。
画函数图像的方法

画函数图像的方法函数图像是用于表达函数关系的一种图表。
它是把函数算式中的变量转换为横纵坐标的点,再把所有点连接起来形成的曲线。
函数图像的特点是把函数关系清晰地表达出来,可作为函数研究的重要参考材料。
二、如何画函数图像1、定画布:在坐标系中设定画布,一般用网格纸或绘图软件。
2、定函数:将函数表达式写入画布,如y=3x+2,x为横纵坐标,y为函数值。
3、出函数的根:函数的根为函数图像的拐点,可以使用试值代入法求出。
4、出函数图像:根据函数表达式可以求出横纵坐标的配对,在坐标系中一点一点的将它们连接起来,画出函数图像。
三、函数图像的类型1、稳函数:函数图像不发生变化,伴随变量x变化而变化,只有一条线。
例如y=2x。
2、函数:函数图像向下弯曲,伴随变量x变化而变化,只有一条线。
例如y=3x的平方。
3、函数:函数图像向上弯曲,伴随变量x变化而变化,只有一条线。
例如y=logx。
4、大值函数:函数图像最高点降低,伴随变量x变化而变化,只有一条线。
例如y=sinx。
5、物线:函数图像存在上拐点或下拐点,两端弯曲向上或向下,只有一条线。
例如y=4x的平方-2x。
四、画函数图像的应用(1)函数图像可以帮助研究函数的性质,从而解决函数的极值问题、求解函数的最大值和最小值的问题;(2)函数图像可以帮助更加直观地理解函数的定义域和值域;(3)函数图像可以帮助求解函数的极限值,以及估算函数斜率。
五、总结画函数图像是数学中常见的一种任务,它可以帮助我们理解函数的定义域和值域,求解函数的极值问题、求解函数的最大值和最小值的问题,以及估算函数斜率。
画函数图像的方法主要分为:确定画布,确定函数,画出函数的根以及画出函数图像,其中画出函数的根需要使用试值代入法求出。
在画函数图像时,应根据函数的特点区分函数的类型,如平稳函数、凹函数、凸函数、最大值函数以及抛物线,以便更加清晰准确地表达函数的关系,发挥画函数图像的最大价值。
函数作图的基本步骤与方法(精)

(3)当x 1时, y , 所以 x 1 是一条铅垂渐近线. b2 4ac
a lim f ( x) 2 lim(1 2 )1 x x x x 1 2x 而b lim[ f ( x ) ax ] lim( x 2 x) 0 x x x 1
(5)根据以上讨论, 列表、描点并作出函数 y = ƒ(x)的 图形.
2
例32 作函数 f ( x )
1 2
e
x2 2
的图形.
解 (1)定义域 D (, ) (2)因ƒ(–x) = ƒ(x), 则ƒ(x)为偶函数, 其图形关于 y 轴对 称, 从而只讨论 ƒ(x) 在 [0, ) 的情形
y 0.4 0.3 0.2 0.1 o
•
•
–2 –1
•
1 2
5
x
例32 作函数
f ( x) x
2x x2 1
的图形.
解 (1)定义域 D (, 1) (1,1) (1, ) (2) x = ±1 为无穷间断点. 而ƒ(–x) = –ƒ(x),则ƒ(x)为奇函数, 其图形关于原点对称, 从而只讨论ƒ(x)在 (0,1) (1, ) 的情形.
x
f ( x) f ( x)
0
0
(0, 1)
1
(1, )
–
极大值
ƒ(x)
1 2
– –
拐点
–
0
(1, 1 2 e )
– +
4
(5)描出点(0,
1 2
),(1,
1 2 e
)
(6)综合上述讨论, 可画出函数 在 y 轴右侧的图形, 再按图形 关于y轴对称, 画出y轴左侧的 图形. 如左图:
八年级数学函数图像的基本作法

述这辆摩托车行驶的过程。 s(千米)
解:先以30千米/时速度
行驶1小时,再休息半小 45
乙
时,•又以同样速度行驶半 30
小时到达乙地.
甲 O 1 2 t(小时)
图17-2-11
(6)李丹家距学校m千米,一天她从家上学先以a 千米/时的速度跑步锻炼前进,•后以匀速b千米/时 步行到达学校,共用n小时.图中能够反映李丹同学 距学校的距离s(千米)与上学的时间t(小时)之间 的大致图象是 (C )
什么是函数 的图象呢?
气温曲线是用图象表示图 函1数7.的1.一1 个实际例子。 函数的图象是由直角坐标系中的一系列点组成. 图象上每一点坐标(x,y)代表了函数的一对对应值,它的 横坐标X表示自变量的某一个值,纵坐标y表示与它对应 的函数值.
例 要画出y函 1x数 2的图象 第一步:列表
2
x … -3 -2 -1 0 1 2 3 …
__________.
1、什么是函数的图象? 2、画函数图象的步骤是什么?
《探究在线》P23-P24 第一课时 全做
; 自动发卡平台 hwh20jyc
的私盐贩子,南方机关船,在外地也有被其他私盐贩子使用的报告。老太太怀疑这次讹谢家的,也是私盐贩子。她很担心被这群无赖盯上后如何 脱身。第三件,宫中明诗传出口信,年前或者就能有机关,能叫个妹妹进宫“探望她”,探望后能不能留、留多久,再行说,反正先进去总是好 的,能让皇上碰巧见上一面就更好了。老太太看现有的几个女孩子,福珞自然是出挑的,宝音病好之后,却也表现不俗,竟不知选哪个的好。苏 小横只把第三件事儿,转述给了苏明裳听。裳儿埋头在剥一袋糖炒栗子,听了便眨眼笑道:“选哪个不是一样么?姐妹们别为这个抢破头才 好!”“不一样。”苏小横正告她。裳儿顿时也了悟了:“能有进宫面圣的机会,就有邀圣誊的机会。”苏小横犹嫌她说得不够透切。裳儿继续 剖释:“若只得一两次圣宠,白把身子赔在宫里,那是她自己倒霉。但若能助力,我、诗姐姐、同她,三个臭皮匠,顶个诸葛亮,那多好。退几 步说,纵使她不得圣宠,若知情达礼、能出谋划策,要紧时候说不定就救我们的命。她的人选,也要仔细。”苏小横点头:“所以我当然也要听 听你的意思,毕竟她不止是带你进宫的引子,还有希望成为你的同伴,影响到你的行动。你们之间应该具备最基本的信任才好。”裳儿思索道: “我跟奶奶重点提出的这两位,都不熟,只听闻笙妹妹体弱多病,人缘儿也不好,这样的人怎能进宫?倒是福家姊姊,灯会上照过面,憨顽娇美, 不失大家女儿涵养,我要是奶奶,不用想,就选她。”谢老太太到今日,完全不提明蕙,裳儿也不提,根本当她是透明的。资质不足,就是不足, 多使小手腕也没用。否则明秀一开始根本不会引福珞进来。宝音也不敌福珞么?苏小横等着裳儿的后文。裳儿果然吐舌笑道:“可惜福家姊姊, 风格跟我是一路的,美却不及我,鬼脑筋也不及我。我要个处处与我相似、却不及我的影子在旁边做什么呢?若只要她引我,那还说得过,她一 陪衬,皇上更见我的各种好处。而笙妹妹,病好后能有多久,怎样表现不俗?我很好奇呢!”“听说她在众姐妹计议神秘失银时,第一次提出, 重银搭底后,需要的拉力不一样。”苏小横道。不久前,苏小横也有把二老爷是如何“送”出的银子,讲给裳儿听,要她评议,以考较她的反应。 裳儿当时就道:“爹爹太傻了!爷爷说了送出去,他当中查来查去的做什么?万一贼子的智慧还不如他,直接被吓跑了,他银子送不出去,如何 跟爷爷交代?”又恨道:“真要查,需想想贼子能从船里就把银子偷了,运出去的手段能不花心思?查个船舱车子,能查出什么来?白费扰嚷! 要我说,水里走比陆里走快,我是贼子,就把银子吊在船底下,你就算是谢二老爷,不经官不动府,也未能将水里所有船底都
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1、在所给的直角坐标系中画出函数 y x 的图象 2
x y -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5
y
4 3 2 1 -4 -3 -2 -1 O -1 1 2 3 4
x
x y
-6 -5 -4 -3 -2 -1
1 1.2 1.5 2 3
6 的图象 x
例 x y
1 2 要画出函数y x 的图象 2
第一步:列表
… -3 -2 -1 0
y
3 … … 4.5 2 0.5 0 0.5 2 4.5 … 1 2
4 3 2 1 -4 -3 -2 -1 O -1 1 2 3 4
第二步: 描点
第三步: 连线
x
画函数图象的步骤是:
(1)列表:首先要考虑自变量的取值范围,• 再选择具有代表 性的自变量的值和函数的对应值列成表格. (2)描点:要把自变量的值作为点的横坐标,对应的函数值 作为点的纵坐标,在坐标系中描出表格中的各点. (3)连线:要按自变量由小到大的顺序依次连接各点,• 时刻 注意函数图象的发展趋势.
甲 O
1
2
t(小时)
图17-2-11
(6)李丹家距学校m千米,一天她从家上学先以a 千米/时的速度跑步锻炼前进,•后以匀速b千米/时 步行到达学校,共用n小时.图中能够反映李丹同学 距学校的距离s(千米)与上学的时间t(小时)之间 的大致图象是 (C )
s(千米) m
s(千米) m
s(千米) m
m
(2)若函数y=kx+5的图象经过点(1,-2),则k= -7 .
s(米) (3)如果A、B两人在一次百米赛跑中,路 A B 程s(米)与赛跑的时间t(秒)的关系如图 所示,则下列说法中正确的是 ( C ) (A)A比B先出发 (B)A、B两人速度相同 (C)A先到达终点(D)B比A跑的路程多 O t(秒)
s(千米)
O A
n
t(时)
O
n B
t(时)
O C
n
t(时)
O D
n
t(时)
补充练习: 1、你对点的坐标掌握多少?你能说出坐标系中一些 特殊点的坐标吗?
2、点P的横坐标是1,纵坐标比横坐标小2,则点P 的坐标是_________,点p处在第____象限;
3、已知点M的坐标为(a+1,2a-3),若点M在x轴上, 则a=_______,若点M在y轴上,则a=______. 4、点A(m-4,1-2m)在第三象限,则m的取值范围是
第18章 函数及其图象 18.2 函数的图象
y
4 3 2 1 -4 -3 -2 -1 O -1 1 2 3 4
y
4 3 2 1
x
-4 -3 -2 -1 O -1
1
2
3
4
x
回顾:
y
4 3 2 1 -4 -3 -2 -1 O -1
直角坐标系
A
1
2
3
4
xA点的Βιβλιοθήκη 坐标是3,横坐标是2,记作(3,2)
(10,2)
A
气温曲线上每一个点的 坐标(t,T) ,表示时间 为t时的气温是T
图 17.1.1 你是如何从图上找到各个时刻的气温的 ? 早上10时的气温是多少? 即当t=10时,对应的函数值T=2
什么是函数 的图象呢?
图 17.1.1 气温曲线是用图象表示函数的一个实际例子。
函数的图象是由直角坐标系中的一系列点组成. 图象上每一点坐标(x,y)代表了函数的一对对应值,它的 横坐标X表示自变量的某一个值,纵坐标y表示与它对应 的函数值.
__________.
1、什么是函数的图象?
2、画函数图象的步骤是什么?
《探究在线》P23-P24 第一课时 全做
; https:/// 自动发卡平台
hwh20jyc
的私盐贩子,南方机关船,在外地也有被其他私盐贩子使用的报告。老太太怀疑这次讹谢家的,也是私盐贩子。她很担心被这群无赖盯上后如何 脱身。第三件,宫中明诗传出口信,年前或者就能有机关,能叫个妹妹进宫“探望她”,探望后能不能留、留多久,再行说,反正先进去总是好 的,能让皇上碰巧见上一面就更好了。老太太看现有的几个女孩子,福珞自然是出挑的,宝音病好之后,却也表现不俗,竟不知选哪个的好。苏 小横只把第三件事儿,转述给了苏明裳听。裳儿埋头在剥一袋糖炒栗子,听了便眨眼笑道:“选哪个不是一样么?姐妹们别为这个抢破头才 好!”“不一样。”苏小横正告她。裳儿顿时也了悟了:“能有进宫面圣的机会,就有邀圣誊的机会。”苏小横犹嫌她说得不够透切。裳儿继续 剖释:“若只得一两次圣宠,白把身子赔在宫里,那是她自己倒霉。但若能助力,我、诗姐姐、同她,三个臭皮匠,顶个诸葛亮,那多好。退几 步说,纵使她不得圣宠,若知情达礼、能出谋划策,要紧时候说不定就救我们的命。她的人选,也要仔细。”苏小横点头:“所以我当然也要听 听你的意思,毕竟她不止是带你进宫的引子,还有希望成为你的同伴,影响到你的行动。你们之间应该具备最基本的信任才好。”裳儿思索道: “我跟奶奶重点提出的这两位,都不熟,只听闻笙妹妹体弱多病,人缘儿也不好,这样的人怎能进宫?倒是福家姊姊,灯会上照过面,憨顽娇美, 不失大家女儿涵养,我要是奶奶,不用想,就选她。”谢老太太到今日,完全不提明蕙,裳儿也不提,根本当她是透明的。资质不足,就是不足, 多使小手腕也没用。否则明秀一开始根本不会引福珞进来。宝音也不敌福珞么?苏小横等着裳儿的后文。裳儿果然吐舌笑道:“可惜福家姊姊, 风格跟我是一路的,美却不及我,鬼脑筋也不及我。我要个处处与我相似、却不及我的影子在旁边做什么呢?若只要她引我,那还说得过,她一 陪衬,皇上更见我的各种好处。而笙妹妹,病好后能有多久,怎样表现不俗?我很好奇呢!”“听说她在众姐妹计议神秘失银时,第一次提出, 重银搭底后,需要的拉力不一样。”苏小横道。不久前,苏小横也有把二老爷是如何“送”出的银子,讲给裳儿听,要她评议,以考较她的反应。 裳儿当时就道:“爹爹太傻了!爷爷说了送出去,他当中查来查去的做什么?万一贼子的智慧还不如他,直接被吓跑了,他银子送不出去,如何 跟爷爷交代?”又恨道:“真要查,需想想贼子能从船里就把银子偷了,运出去的手段能不花心思?查个船舱车子,能查出什么来?白费扰嚷! 要我说,水里走比陆里走快,我是贼子,就把银子吊在船底下,你就算是谢二老爷,不经官不动府,也未能将水里所有船底都
1
-6
2
-3
3
4
5
6
2、画出函数 y
6 y
6 5 4 3 2 1
-2 -1.5 -1.2 -1
-6 -5 -4 -3 -2 -1 0 -1 -2 -3 -4
1
2
3
4
5
6 x
注意:取自变量所的值 应在其取值范围内
-5 -6
达标反馈
3 (1)若点(a,6)在函数y= 的图象上,则a= 0.5 。 x
(4)根据下列问题,求出相应的函数解析式 ,并用 图17-2-10 描点法画出该函数的图象. 一种豆制品每千克售价4元,总售价y(元)与 所售出的数量x(千克)之间的关系.
(5)某人从甲地出发,骑摩托车去乙地,共用2小时. 已知摩托车行驶的路程s(千米)与行驶的时间t(小 时)的关系如图所示.假设这辆摩托车每行驶100• 千米的耗油量为2升,根据图中提供的信息,这辆车 从甲地到乙地共耗油 0.9 升,•请你用语言简单描 述这辆摩托车行驶的过程。 s(千米) 解:先以30千米/时速度 乙 45 行驶1小时,再休息半小 时,• 又以同样速度行驶半 30 小时到达乙地.