奥数质数、合数、分解质因素讲义及答案
六年下册奥数试题:质数与合数 全国通用(含答案)

第3讲质数与合数知识网络1.质数与合数(1)一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。
(2)一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数。
2.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42的质因数。
又如,50=2×5×5,2、5都叫做50的质因数。
重点·难点要注意以下几条:(1)1既不是质数,也不是合数。
(2)关于质数1)质数有无限多个。
2)最小的质数是2。
3)在质数中只有2是偶数,其余的质数全是奇数。
4)每个质数只有两个约数:1和它本身。
(3)关于合数1)合数有无限多个。
2)最小的合数是4。
3)每个合数至少有三个约数:1、它本身、其他约数。
例如,8的约数除1和8外,还有2、4,所以8是合数。
学法指导(1)对比一下几种判别质数与合数的方法,可以看出例1方法的优越性。
判别269,用2至268中所有的数试除,要除267个数;用2至268中的质数试除,要除41个数;而用本题的方法,只要除6个数。
(2)将质数按照从小到大的顺序逐一去除一个数,来判断这个数是质数还是合数的方法,有弊病。
如果一个数是质数,在我们试除的过程式中就永远找不到另一个质数是它的约数。
那么,试除的数有什么范围呢?能不能使试除的数少一点呢?请同学们学习例1。
(3)用例1的方法判断一个数是质数还是合数,有着它的优越性,它可以明确试除的质数范围,使试除的数的量进一步减少。
(完整版)小学奥数-质数与合数

质数与合数例1 :判断269 , 437两个数是合数还是质数。
分析与解:对于一个不太大的数N,要判断它是质数还是合数,可以先找出一个大于N且最接近N的平方数K2,再写出K以内的所有质数。
如果这些质数都不能整除N,那么N是质数;如果这些质数中有一个能整除N,那么N是合数。
因为269 V 172=289。
17 以内质数有2 , 3, 5, 7, 11 , 13。
根据能被某些数整除的数的特征,个位数是9,所以269不能被2, 5整除;2+6+9=17,所以269不能被3整除。
经逐一判断或试除知,这6个质数都不能整除269,所以269是质数。
因为437 V 212=441。
21 以内的质数有2, 3 , 5, 7, 11 , 13 ,17 , 19。
容易判断437不能被2 , 3 , 5, 7, 11整除,用13 , 17 , 19试除437 ,得到437 -19=23,所以437是合数。
对比一下几种判别质数与合数的方法,可以看出例2的方法的优越性。
判别269 ,用2〜268中所有的数试除,要除267个数;用2〜268中的质数试除,要除41个数;而用例2的方法,只要除6个数。
527 275 373 393 573 537例2判断数1111112111111是质数还是合数?分析与解:按照例2的方法判别这个13位数是质数还是合数,当然是很麻烦的事,能不能想出别的办法呢?根据合数的意义,如果一个数能够写成两个大于1的整数的乘积,那么这个数是合数。
根据整数的意义,这个13位数可以写成:1111112111111=1111111000000+1111111=1111111X(1000000+1)=1111111X 1000001。
由上式知,111111和1000001都能整除1111112111111,所以1111112111111 是合数。
这道例题又给我们提供了一种判别一个数是质数还是合数的方法。
例3判定298+1和298+3是质数还是合数?分析与解:这道题要判别的数很大,不能直接用例1、例2的方法。
小学奥数五年级数学质数、合数和分解质因数

• 总结 • 见积分解质因数。
• 例3:708除以一个两位数,余数为43,求这个两位数。
• 708-43=665
• 分解质因数:665=5×7×19
• 665=35×19
•
=7×95
• 因为除数必须比余数大,所以这个两位数是95。
• 答:这个两位数是95。
• 练习 • 1、310除以一个两位数,余数是37,求这样的两位数。 • 2、一个两位数除250余25,这个数可以是几?
• 14=2×7 24=2×2×2×3 27=3×3×3 • 55=5×11 56=2×2×2×7 99=3×3×11 • 共有:8个2,6个3,2个5,2个7,2个11 • 每一组可分:4个2,3个3,1个5,1个7,1个11 • 第一组:55、27、56、2 • 第二组:99、5、24、14
• 练习 • 1、把40,44,45,63,65个数的乘积相同。 • 2、把10,14,21,30,33,66这六个数平均分成两组,使两组
• 练习 • 1、植树节,赵老师带领同学排成两列人数相等的纵队去植树,已知赵老师和同学
们每人植树的棵数相等,一共植了111棵树。求有多少个同学?每人植树多少棵? • 2、五(2)班在班主任的带领下去种树,学生恰好平均分成3组,如果师生每人种树
一样多,一共种了1073棵,求有多少个同学?平均每人种多少棵?
• 15120=5×(2×3)×7×(2×2×2)×(3×3)
•
=5×6×7×8×9
• 答:这几个连续自然数是5、6、7、8、9。
• 练习 • 1、四个连续自然数的积是1680,这四个自然数是多少? • 2、小兰、小红、小明、小马四个人是好朋友,更巧的是他们的
年龄正好是四个连续的自然数,并且乘积是3024,你知道她们的 年龄分别是多少吗?
小学奥数质数合数分解质因数

本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解5-5质数合数分解质因数教学目标知识点拨111337=⨯⨯⨯⨯;=⨯;199535719=⨯⨯⨯;1998233337=⨯;1000173137=⨯;100171113=⨯⨯;1111141271=⨯⨯⨯.=⨯⨯⨯;10101371337200733223=⨯⨯;20082222515. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那一个大于且接近p的平方数2么p就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【巩固】(2008年南京市青少年“科学小博士”思维训练)炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,3k=时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【巩固】(2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律.但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,在3141,31415,314159,3141592,31415926,31415927中恰有一个是质数,是哪个?【巩固】(2004年全国小学奥林匹克)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?【例 2】两个质数之和为39,求这两个质数的乘积是多少.【解析】因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。
小学五年奥数-质数合数分解质因数

质数、合数和分解质因数【知能大展台】一个自然数,如果只有1和它本身这两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1既不是质数,也不是合数。
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
【试金石】例1:三个质数的和是80,这三个质数的积最大是多少?【分析】由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。
另外两个质数的和是78,要使乘积尽可能的大,那么这两个质数的差值应尽可能的小。
显然,和是78的两个质数中,以41和37的差最小,即这两个数的积最大。
【解答】80=2+37+412×37×41=3034答:这三个质数的积最大是3034。
【智力加油站】【针对性训练】三个质数的和是62,这三个质数的积最大是多少?【试金石】例2:班主任李老师带领五年(一)班同学去植树,学生按人数恰好平均分成三组,已知李老师与学生共种了312棵树,老师与学生、每人种的树一样多,并且不超过10棵。
这个班共有学生多少人?每人种树多少棵?【分析】种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上李老师一人,则师生总人数被3除余1。
因此先将312分解质因数312=2×2×2×3×13,然后按题意进行组合使之成为两数之积。
【解答】312=2×2×2×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题意不相符。
若312=6×52,52为师生总人数,则每人种树6棵。
答:这个班共有学生51人,每人种6棵。
【智力加油站】【针对性训练】小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号大6,小青买的电影票是几排几座?【试金石】例3在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,验证只有:1872=48×39,1872=78×24满足.【解答】当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.答:原来的积为1755或1800.【智力加油站】【针对性训练】在下面算式的框内,各填入一个数字,使算式成立。
小学奥数质数合数分解质因数

本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解5-5质数合数分解质因数教学目标知识点拨111337=⨯⨯⨯⨯;=⨯;199535719=⨯⨯⨯;1998233337=⨯;1000173137=⨯;100171113=⨯⨯;1111141271=⨯⨯⨯.=⨯⨯⨯;10101371337200733223=⨯⨯;20082222515. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那一个大于且接近p的平方数2么p就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【巩固】(2008年南京市青少年“科学小博士”思维训练)炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,3k=时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【巩固】(2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律.但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,在3141,31415,314159,3141592,31415926,31415927中恰有一个是质数,是哪个?【巩固】(2004年全国小学奥林匹克)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?【例 2】两个质数之和为39,求这两个质数的乘积是多少.【解析】因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。
小学生五年级奥数题目及答案讲解:分解质因数

无忧考小学五年级频道为大家整理的小学生五年级奥数题目及答案讲解:分解质因数,供大家学习参考。 分解质因数 一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。 解: ∵a与1080的乘积是一个完全平方数, ∴乘积分解质因数后,各质因数的指数一定全是偶数。 解:∵1080×a=23×33×5×a, 又∵1080=23×33×5的质因数分解中各质因数的指数都是奇数, ∴a必含质因数2、3、5,因此a最小为2×3×5。 ∴1080×a=1080×2×3×5=1080×30=32400。 答:a的最小值为30,这个完全平方数是3
五年级奥数题及答案:质数、合数和分解质因数问题3

五年级奥数题及答案:质数、合数和分解质因数问题3第一篇:五年级奥数题及答案:质数、合数和分解质因数问题3 五年级奥数题及答案:质数、合数和分解质因数问题3编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:质数、合数和分解质因数问题3,可以帮助到你们,助您快速通往高分之路!例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。
这样14×15=210=5×6×7。
这五个数可以分为14和15,5、6和7两组。
第二篇:五年级质数与合数奥数教案质数与合数第一部分知识梳理1、自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。
第二类:只能被两个不同的自然数整除的自然数。
因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除(2)质数、合数、分解质因数
教室 _______ 姓名___________ 学号_________
【知识要点】
1、质数与合数
自然数按其因数的个数可以分成三类:
(1)单位1:只含有1这一个因数的自然数。
(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。
)
(3)合数:含有三个或三个以上因数的自然数。
(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(5)因数个数定理:
例如:1980=22X 32X 5X 11
所以:(T 表示因数个数)T (佃80)= (1+2)X(1+2)X(1+1 )X(1+1)=36
(6)因数和的定理:
例如:1980=22X 32X 5X 11
所以:S (佃80)= (2° + 21+ 22)X( 30+ 31+ 32)X(5° + 51)X(11° +11)
=7X 13 X 6 X 12=6552
【典型例题】
例1、两个质数的和是49,这两个质数的积是多少?
解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数
中只有2是质数,于是另一个质数是49—2=47,从而得到它们的积是2 X 47=94。
例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按
任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。
解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。
任意取两张卡片排出
的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23 和43.取一张卡片排出的质数有2和3•所以最后排出的质数有2、3、23、43这四个。
例3、360这个数的因数有多少个?这些因数的和是多少?
解:360=2 X 2X 2X 3X 3X 5=23X 32X 5,所以360 有(3+1 )X(2+1 )X(1+1)=24 个因数。
因数的和是:(1+2+22+23)X( 1+3+32)X( 1+5) =1170
例4、筐里共有96 个苹果,如果不一次全拿出,也不一个个地拿;要求每次拿出的个数同样多,拿完时,又正好不多不少,有多少种不同的拿法?
解:每次拿的个数都是96的因数 (除96 和1 之外),这样问题转化为求96的因数个数,将
96分解质因数,得96=2 X 2 X 2X 2X 2X 3,除去96和1之外,96的因数有10个:2、3、4、6、8、12、16、24、32、48.有10 种不同拿法。
【精英班】例5、504乘一个自然数a,得到一个平方数,求a的最小值和这个平方数。
解:一个数的平方数所含不同的质因数的个数为偶数。
504=23X 32X 7=22X 32X(2X 7),还
少(2 X 7),使得504X a是个平方数,所以所求的a的最小值是2X 7=14;这个平方数是504
X 14=7056 。
【竞赛班】例6、将下列八个数平均分成两组,使这两组数的乘积相等,可以怎样分?说明
理由。
14, 33, 35, 30, 75, 39, 143, 169.
解:14=2X 7, 33=3X 11, 35=5X 7, 30=2X 3X 5, 75=3X 5X 5, 39=3X 13, 143=11X 13,
169=13X 13.这八个数分解质因数后共有质因数18 个(包括相同的) ,其中:质因数2 有两个,质因数3 有4 个,质因数5 有4 个,质因数7 有2 个,质因数11 有2 个,质因数13 有4 个。
相同的质因数应该平均分摊在两个乘积里,因此可以分为:
(1)(14, 75, 33, 169)和( 30, 35, 39, 143)
或( 2)(14, 75, 39, 143)和( 30, 35, 33, 169) .
【课后分层练习】
A 组:入门级
1、有7 个不同的质数,它们的和是60,其中最小的质数是多少?
解:6 个奇质数的和是偶数, 60 减去偶数仍是偶数, 所以剩下的一个质数应当是唯一的偶质数2,即这7 个数中最小的是2.
2、如果“O”是一个质数,“□”是一个合数,下列第(4 )项的值一定是一个质数。
(1)0 + □(2 )0—口
(3)OXD (4 )OX□-□
3、210的因数有几个。
这些因数的和是多少?
解:210=2X3X 5X 7,根据因数个数和及因数和定理有:210的因数有(1+1)X(1+1) X( 1 + 1)X( 1
+ 1) =16 个。
这些因数的和是1+2)X( 1+3)X( 1+5)X( 1+7) =576.
2、用105 个大小相同的正方形拼成一个长方形,有多少种不同的拼法?
解:105=3X 5X 7; 105 共有(1 + 1)X(1 + 1 )X(1+1)=8 个因数,所以共有不同8-2=4 (种)拼法。
3、有三个学生,他们的年龄一个比一个大 3 岁,他们三人年龄的乘积是1620.这三个学生
的年龄分别是几岁。
解:1620=2X 2X 3X 3X 3X 3X 5=9 X 12X 15•他们的年龄分别是9岁、12岁、15岁。
B 组:进阶级
1、哥德巴赫猜想是说:每个大于2的偶数都可以表示为两个质数之和,问:168是哪两个
两位数的质数之和,并且其中一个的个位数字是1?
解:个位数字是1 的两位质数有11,31,41,61,71;其中168-11=157,168-31=137,168-41=127,168-61=107,都不是两位数,只有168-71=97是两位数,而且是质数,所以168=71+97.
2、甲、乙二人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的因数。
最后不能写的人为失败者。
如果甲第一个写数,试问谁一定获胜?给出一种获胜的方法。
解:甲必胜。
甲先写6,这样除去6 的因数1,2,3,6,乙只能写4,5,7,8,9,10中的一个数,甲心中把(4,5),(7,9),(8,10)分组,乙写任何一组中的某个数,甲写这一组中的另一个数,则甲总可获胜。
3、将1、2、3、
4、
5、
6、
7、
8、9 这九个数分成三组,第一组数的连乘积与第三组数的连乘积相等,第二组各数的和是15,问每组的数各是多少?
解:2,4=2X2,6=2X3,8=2 X 2 X 2 ,由于两组的积相等,显然是4和6在一组,1、2、5、7只出现一次,其和正好为15.这样3,4,6,8,9分成两组,即为3,4,6和8,9.因此三组数是:(3,4,6);(1,2,5,7);(8,9)。
4、1X 2X 3X-X 40 能否被90909 整除?
3
解:首先将90909 分解质因数,得90909=33X7X13X37。
因为33(=27), 7, 13 , 37都在1〜40中,所以1X 2X 3X・・・X能被90909整除。
C 组:挑战级
1、学区举行团体操表演,有1430 名学生参加,分成人数相等的若干队,要求每队人数在
100 至200之间,共有几种分法?
解:按题意,每队人数X队数=1430,每队人数在100至200之间,所以问题相当于求1430 有多少个在100至200之间的因数。
为此,先把1430分解质因数,得1430 = 2X 5X 11X 13。
从这四个质数中选若干个, 便是队数。
2X5X11=110, 使其乘积在100 到200 之间, 这是每队人数, 其余的质因数之积13;2X5X13=130, 11;11X13=143, 2X5=1 0。
所以共有三种分法,即分成
队143 人。
13 队,每队110 人;分成11 队,每队130 人;分成10 队,每
2、试求不大于 50 的所有因数个数为 6 的自然数。
解:因为这个数有六个因数, 6=5+1=(2+1)X(1+1),所以,当这个数只有一个质因数a时,这个数是a5;当这个数有两个质因数a和b时,这个数是a2x b。
因为这个数不大于50,所以对于a5,只有a=2,即25=32;对于a2X b,经试算得到,22x 3=12,22x 5=20, 22x 7=28, 22x 11=44, 32x 2=18, 32x 5=45, 52x 2=50。
所以满足题意的数有八个: 32, 12, 20, 28, 44, 18, 45, 50
3、要使1X 2 X 3 x 4X 5 x-x n的积得尾部仅有10个连续的零,n最小值是(); 最大值是()。
解:这n 个连续自然数分解质因数后至少必须共含有十个因数2和十个因数5.当n=45 时, 其中5 的倍数有9个,一个倍数是25的,已经含有十个因数5.这样最小值是45,最大值是。