传递过程原理习题答案
材料加工冶金传输原理习题答案

第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V V K ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0yx νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
传递过程原理第二章习题解

,
10求证流函数 和势函数 满足 方程
据流函数与势函数定义
有
分别对x y求偏导数
对应式相加可得
1.甘油在流道中心处的流速与离中心25mm处的流速:
2.通过单位管长的压力降:
3.管壁面处的剪应力。
2流体在两块无限大平板之间作一维稳态层流,试计算截面上等于主体流速 的点距板壁面的距离。又如流体在管内作一维稳态层流时,该点与壁面的距离为若干?
解:
两无限大平板之间 可得
分离变量并积分有: 得到流线方程得一般形式
当 、 、 时, ,过(1,3)点的流线方程为:
当 、 、 时, ,过(1,3)流线方程仍为:
8已知某不可压缩流体作平面流动时的速度 , ,试导出此情况下的流函数。
解:
,
9某不可压缩流体作二维流动时的流函数可用下式表示:
试导出点(2,1)处的速度值。
第二章
1温度为20℃的甘油以10kg/s的质量流率流过宽度为1m、高为0.1m的的矩形截面管道,流动已充分发展,试求算:
1.甘油在流道中心处的流速与离中心25mm处的流速;
2.通过单位管长的压力降;
3.管壁面处的剪应力。
已知20℃的甘油的密度 ,粘度为
解:
确定流型
流动为层流,处理为两大平板之间稳态层流流动
解:
流动为层流
中心处:
半径中点处:
壁面处:
5常压下,温度为45℃的空气以 的体积流率流过水平套管环隙,套管的内管外径为50mm,外管内径为100mm,试计算:
1.空气最大流速处的径向距离;
2.单位长度的压力降;
3.内外管间中点处的空气流量;
4.空气最大流速;
5. 及 处的壁面剪应力。
传递过程原理复习题最后报告

《传递工程基础》复习题第一单元传递过程概论本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。
掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。
熟悉本课程的研究方法。
第二单元动量传递本单元主要讲述连续性方程、运动方程。
掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。
第三单元热量传递本单元主要讲述热量传递基本方式、微分能量方程。
了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。
结合实际情况,探讨一些导热理论在工程实践中的应用领域。
第四单元传量传递本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。
掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。
第一部分 传递过程概论一、填空题:1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。
2. 化学工程学科研究两个基本问题。
一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。
3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。
传递过程原理作业题解(1-7章)

第二章1. 对于在r θ平面的不可压缩流体的流动,r 方向的速度分量为2cos /r u A r θ=-。
试确定速度的θ分量。
解:柱坐标系的连续性方程为11()()()0r z ru u u r r r z θρρρρθθ∂∂∂∂+++='∂∂∂∂对于不可压缩流体在r θ平面的二维流动,ρ=常数,0,0z z u u z∂==∂,故有11()0r u ru r r r θθ∂∂+=∂∂ 即22cos cos ()()r u A A ru rr r r rθθθθ∂∂∂=-=--=-∂∂∂将上式积分,可得22cos sin ()A r A u d f r r θθθθ=-=-+⎰式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。
令()0f r =,可得到u θ的最简单的表达式:2sin A u r θθ=-2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
(1)在矩形截面管道,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。
解: ()0ρρθ∂+∇=∂u(1) 在矩形截面管道,可压缩流体作稳态一维流动0x z x y z u u u u u u x y z x y z ρρρρρθ∂∂∂∂∂∂∂++++++=∂∂∂∂∂∂∂⎛⎫⎪⎝⎭y 稳态:0ρθ∂=∂,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρρ∂∂+=∂∂, 即 ()0z u zρ∂=∂ (2)在平板壁面上不可压缩流体作稳态二维流动()()()0y x z u u u xyzρρρρθ∂∂∂∂+++=∂∂∂∂稳态:0ρθ∂=∂,二维流动:0z u = ∴()()0y x u u xyρρ∂∂+=∂∂, 又cons t ρ=,从而0yx u u x y∂∂+=∂∂ (3)在平板壁面上可压缩流体作稳态二维流动 在此情况下,(2)中cons t ρ≠∴()()0y x u u xyρρ∂∂+=∂∂(4)不可压缩流体在圆管中作轴对称的轴向稳态流动()()()110r z r u u u r r r zθρρρρθθ∂∂∂∂+++='∂∂∂∂ 稳态:0ρθ∂='∂,轴向流动:0r u =,轴对称:0θ∂=∂ ∴()0z u z ρ∂=∂, 0z uz∂=∂ (不可压缩cons t ρ=) (5)不可压缩流体作球心对称的径向稳态流动22()(sin )()1110sin sin r r u u u r r r r θφρρθρρθθθθφ∂∂∂∂+++='∂∂∂∂ 稳态0ρθ∂='∂,沿球心对称0θ∂=∂,0φ∂=∂,不可压缩ρ=const ∴221()0r r u r r ∂=∂ ,即 2()0r d r u dr= 3.某粘性流体的速度场为22538=x y xyz xz +-u i j k已知流体的动力粘度0.144Pa s μ=⋅,在点(2,4,-6)处的法向应力2100N /m yy τ=-,试求该点处的压力和其它法向应力和剪应力。
传输原理课后答案

传输原理课后答案1. 传输原理的基本概念。
传输原理是指在信息传输过程中所涉及的各种原理和技术。
它涉及到电信号的传输、调制解调、数字信号的传输、传输介质的选择等内容。
在信息技术日新月异的今天,传输原理显得尤为重要,它关乎着信息的传递速度、传输质量以及网络的稳定性。
2. 传输原理的基本分类。
根据传输介质的不同,传输原理可以分为有线传输和无线传输两大类。
有线传输是指通过电缆、光纤等有线介质进行信息传输,它的优点是传输速度快、传输质量高,但受限于线路长度和布线成本。
而无线传输则是指通过无线电波进行信息传输,它的优点是灵活便捷,但受限于信号受干扰、传输距离有限等问题。
3. 传输原理的关键技术。
在传输原理中,调制解调技术是一项非常重要的技术。
调制是指将数字信号转换为模拟信号,以便在传输过程中能够通过介质传输;而解调则是将模拟信号转换为数字信号,以便接收端能够正确解读信息。
调制解调技术的发展,使得数字信号的传输更加稳定可靠。
4. 传输原理的应用。
传输原理在现代社会中有着广泛的应用,比如在通信领域,传输原理决定了通信网络的速度和质量;在互联网领域,传输原理决定了网络的稳定性和安全性。
此外,在工业自动化、智能家居等领域,传输原理也扮演着重要的角色。
5. 传输原理的未来发展。
随着信息技术的不断发展,传输原理也在不断创新和进步。
未来,随着5G、6G等新一代通信技术的应用,传输原理将迎来新的发展机遇。
同时,随着人工智能、物联网等新技术的兴起,传输原理也将在更多领域得到应用和拓展。
总结,传输原理作为信息技术的重要组成部分,对于信息的传输和通信至关重要。
通过对传输原理的学习和理解,可以更好地掌握信息技术的核心内容,为未来的发展打下坚实的基础。
希望同学们能够认真学习传输原理的相关知识,不断提升自己的专业能力。
传递过程原理习题答案

《传递过程原理》习题一一、在一内径为2cm 的水平管道内,测得距管壁5mm 处水的流速为s 。
水在283K 温度下以层流流过管道。
问:(1)管中的最大流速。
(2)查出283K 下水的粘度,注明出处。
(3)每米管长的压强降(N/m 2/m )。
(4)验证雷诺数。
【解】:(1) ])(1[4)(42222RrL R P r R LP v g g -∆=-∆=μμ (1) 在r =0处,即管中心处速度最大为2max 4R LP v g μ∆=本题中R =1cm, 在r ==,v =s ,带入(1)得,])1/5.0(1[41.022-∆=LR P g μ =∆=LR P v g μ42max s=s(2) 31031.1-⨯=μ (3)2max 4R v L P g μ=∆= Pa/s (4) 10201031.13.1301.0101212Re 33max max=⨯⨯⨯⨯====-μρμρμρRv v R vd <2100为层流二、用量纲确证有效因子(节)中的K 为无量纲数。
(R D a k K A /1=)【解】:11][-⋅=s m k1][-=m a 12][-⋅=s m D ABm R =][所以,1)/(][1211=⨯⋅⨯⋅=---m s m m s m K 故,K 为无量纲数三、对双组份A 和B 系统证明下列关系式: 1.A B B A A B A A x M x M x M M w d )(d 2+=(从ρρAA w =出发先推出w A 与x A 的关系式) 2.2)//(d dB B A A B A AA M W M W M M w x +=(从CC x A A=出发先推出x A 与w A 的关系式)【解】方法1:从w A 与x A 的关系式推导(M A 与M B 为常量)()/()/A A A A AA A BA AB B A A B BC M C x M w C M C M C x M x M ρρρ===+++, A A w x 求导(略),得2()A A BA A AB B dw M M dx x M x M =+ (/)//(//)///A A A A AA AB A A B B A A B BC M w M x C C M M w M w M ρρρρρ===+++, A A x w 求导(略),得 21(//)A A A B A A B B dx dw M M w M w M =+ 注意:22, A A B A A A A B dw M M dx M dx dw M M M ==方法2:从M 的定义推导,1,,1,1///A B A A B B A B A A B B x x M x M x M w w M w M w M +=⎧⎪=+⎪⎨+=⎪⎪=+⎩20() (1)0(1/)(1/)(1/) ()/() (2)A B A A B B A B A A B A A B BA B A B A dx dx dM M dx M dx M M dx dw dw M dM M dw M dw M M M M dw +=⎧⎪=+=-⎪⎨+=⎪⎪-=+⎩=--⋅ (2)÷(1),得22()A A B A BA A AB B dw M M M M dx M x M x M ==+ (1)÷(2),得221(//)A A A B A B A A B B dw M dx M M M M w M w M ==+四、在管内CO 2气体与N 2气进行等摩尔逆向扩散。
《传递过程原理》课后习题参考答案

《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。
2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。
《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。
又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。
已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。
试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。
传递过程原理作业题和答案

《化工传递过程原理(H)》作业题1. 粘性流体在圆管内作一维稳态流动。
设 r 表示径向距离,y 表示自管壁算起 的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩 散系数)X(动量浓度梯度)表示的现象方程。
1. (1-1) 解:d (讪 T — V/du (y / , u . /,> 0) dydyd(Pu)/du (rv , U 八dr< 0)T = -V ———-dr2.试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。
2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出:2.扩散系数D AB 具有相同的因次,单位为 m 2/s ; 3•传递方向与该量的梯度方向相反3. 试写出温度t 对时间,的全导数和随体导数,并说明温度对时间的偏导数、 全导数和随体导数的物理意义。
3. (3-1)解:全导数:dt _ : t : t dx t dy :: t dz 小 v x 卍 :yd : z d随体导数:Dt:t:t:t:tu u uD Vvux::x 叽y物理意义:表示空间某固定点处温度随时间的变化率;j A --DAB.dyd (讪 dyq/ Ad( ’C p t) dy1.它们可以共同表示为:通量 (1-3)(1-4)(1-6)=—(扩散系数)x(浓度梯度);. ――?•u(x, y, z,8)=xyzi +yj _3z8k = xyz + yj —3z& k试求点(2,1, 2,1 )的加速度向量。
Du Du ~ Du y - Du ~(3-6)解: D u ^1 ^j >k-■■■4: 44 H H---- = ----- + u ---- 十 u ----- + u ---- D : ' u x :: x u ^ y % z=0 xyz( yz) y(xz) _ 3z 丁 (xy)二xyz yz1 _3 )DU y1 = y ° - y 二 y °(1一可)D屠一表示测量流体温度时'测量点以任意速度屠、变、吏运动所测得的温度随时间的变化率Dt—表示测量点随流体一起运动且速度u-d|4. 测得的温度随时间的变化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故,K 为无量纲数 三、对双组份 A 和 B 系统证明下列关系式:
1. dwA
M AMB (xAM A xBM B )2
dxA (从 wA
A
出发先推出
wA 与
xA 的关系式)
2. dxA
M AM B (WA
dwA /MA
WB
【解】取柱坐标,设 A 为 CO2,B 为 N2,L 为管长。 假设(1)一维定态 (2)等摩尔逆向扩散:NAz+NBz=0 (3)理想气体: C p /(RT ), CA pA /(RT )
并有 p=const,T=const,DAB=const 由假设(1)作壳体平衡, R2 N Az z R2 N Az zz 0
五、通过非等温球形膜的扩散(双组份)问题的求解。
方程:
N
Ar
CDAB
dx A dr
x A (N Ar
N Br )
d dr
(r
2
N
Ar
)
0
边界条件:当 r=r1 时,xB=xB1 当 r=r2 时,xB=xB2
假定
T T1
r r1
n
,
D AB D AB,1
T T1
3 /
2
,C=p/RT,p=常量,NBr=0(组份
B
静止)
求:(1)xB=f(r,xB1,xB2)的表达式。(n≠-2)
(2)WA 4r12 N Ar rr1 ?
(n≠-2)
(3)用洛必大法则求出 n=-2 时的 xA 和 WA。
【解】:
N Ar
CDAB
dx A dr
dxA
M2
dxA M 2 dwA M AM B
方法 2:从 M 的定义推导
xA xB 1,
M
wA
xAM A wB 1,
xB
M
B
,
1/ M wA / M A wB / M B,
dxA dxB 0 dM M AdxA M BdxB (M A M B )dxA (1) dwA dwB 0 (1/ M 2 )dM (1/ M A )dwA (1/ M B )dwB
dN Az dz
0 ,得
NAz=const
由假设(2)
J
* Az
N Az
xA (N Az
NBz )
N Az
由假设(3) C p /(RT ) const
C 1.0132 105 Pa 40.9 N / m2 40.9mol / m3
8.314J /(mol k) 283k
N m / mol
xA
CA / C
pA /(RT ) p /(RT )
pA /
p
xA0
456mmHg 760mmHg
0.6,
xAL
76mmHg 760mmHg
0.1
再利用
Fick
扩散定律(一维),
J
* Az
CDAB
dxA dz
Q
N
Az
(本例即为
J
* Az
),C,DAB
均为常数
dxA dz
k1 (k1=const)
/ M B )2
(从 xA
CA C
出发先推出
xA 与
wA 的关
系式)
【解】方法 1:从 wA 与 xA 的关系式推导(MA 与 MB 为常量)
wA
A A B
(CAM A ) / C (CAM A CB M B ) / C
xAM A xAM A xB M B
,
wA xA
求导(略),得 dwA
M AM B
(3)
Pg L
4vmax R2
=6.97
Pa/s
(4)
Re
dv
2R
1 2
vmax
Rvmax
1
103 0.01 13.3 1.31 103
1020
<2100
为层流
二、用量纲确证有效因子(2.3 节)中的 K 为无量纲数。 ( K k1a / DA R )
【解】: [k1] m s1 [a] m1 [DAB ] m2 s 1 [R] m
(M A M B ) /(M AM B ) dwA (2)
(2)÷(1),得 dwA M AM B
M AM B
dxA
M2
(xAM A xB M B )2
(1)÷(2),得 dwA M 2
1
dxA M AM B M AM B (wA / M A wB / M B )2
四、在管内 CO2 气体与 N2 气进行等摩尔逆向扩散。管长为 0.20m,管径为 0.01m,管内 N2 气的温度为 298K,总压为 101.32kPa。管两端 CO2 的分压 分别为 456mmHg 和 76mmHg。CO2 通过 N2 气的扩散系数 DAB=1.67×105m2/s。试计算 CO2 的扩散通量。
《传递过程原理》习题一
一、在一内径为 2cm 的水平管道内,测得距管壁 5mm 处水的流速为
10.0cm/s。水在 283K 温度下以层流流过管道。问:(1)管中的最大流速。 (2)查出 283K 下水的粘度,注明出处。(3)每米管长的压强降(N/m2/m)。 (4)验证雷诺数。
【解】:(1)
v Pg (R2 r2 ) Pg R2 [1 ( r )2 ]
解得 xA=k1z+k2
由边条件可定出 k1 2.5m1, k2 0.5
通量
N Az
J
* Az
CDAB k1
40.9mol / m3
1.67 105 m2
/ s (2.5 / m)
1.71103 mol
/(m2
s)
WA R2 N Az 1.34 107 mol / s
附:管道体积V R2 L 1.57 105 m3 管道的气体量V C 6.42104 mol 讨论:圆截面通量 wA 为 1.34×10-7mol/s,与管道内气体量 6.42×10-4mol 相比 很小,可见求通量时,假设为“定态”可认为是合理的。
dxA (xAM A xB M B )2
xA
CA CA CB
(A / MA) / (A / M A B / MB ) /
wA / M A wA / M A wB / M B
,
xA wA
求导(略),得 dxA
1
dwA M AM B (wA / M A wB / M B )2
注意:
dwA M AM B ,
4L
4L
度最大为 vmax
Pg 4L
R2
本题中 R=1cm, 在 r =1-0.5=0.5cm,v=0.1m/s,带入(1)得,
0.1 Pg R2 [1 (0.5 /1)2 ] 4L
vmax
Pg R2 4L
0.133m/s=13.3cm/s
(2) 1.31 103 Pa.s