风压的计算公式

合集下载

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风压与风速是设计建筑物和结构时需要考虑的重要参数。

风压是指风力对建筑物或结构物表面单位面积的作用力,而风速则是指风在单位时间内通过单位面积的空气体积。

风压与风速之间存在一定的关系,下面将介绍风压与风速的计算方法。

1.风压计算方法:风压的计算方法主要包括静风压和动风压。

静风压:静风压是指风作用力与表面正交且单位面积上的总垂直静风压力。

其计算方法如下:P=0.5*ρ*V²*Cp其中,P为静风压力(Pa),ρ为空气密度(kg/m³),V为风速(m/s),Cp为风压系数。

动风压:动风压是指风速引起的压力变化导致的风压力。

对于其中一稳定的风压系数,动风压与表面风速变化成正比。

其计算方法如下:Pd=0.5*ρ*Vd²*Cp其中,Pd为动风压理论值(Pa),ρ为空气密度(kg/m³),Vd为设计风速(m/s),Cp为风压系数。

2.风速计算方法:风速的计算方法主要包括平均风速和顶风速。

平均风速:平均风速是指其中一位置一段时间内风速的平均值。

可以通过气象观测数据统计得出,也可以通过计算模型进行估算。

顶风速:顶风速是指建筑物或结构物顶部其中一高度处的风速。

顶风速通常要考虑地形、建筑物高度、热力效应等因素。

可以通过实地测量、参考相似结构物或使用风洞模型进行估算。

3.风压与风速关系:风压与风速之间的关系并非简单的线性关系,而是受到多种因素的影响,包括空气密度、气象条件、建筑物或结构物的几何形状、地理环境等。

因此,确定准确的风压与风速关系需要进行风洞试验、数值模拟或根据经验公式进行计算。

有一种经验公式被广泛应用于建筑物风压与风速的估计,即弗郎克公式:P=0.5*ρ*V²*Cd*Af其中,P为风压力(Pa),ρ为空气密度(kg/m³),V为风速(m/s),Cd为流体动力学计算系数,Af为面积系数。

总结起来,风压与风速的计算方法需要根据具体情况进行综合考虑。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v? (1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r= [kN/m?]。

纬度为45°处的重力加速度 g=[m/s?], 我们得到wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r= [kN/m?]。

纬度为45°处的重力加速度g=[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

风压与风速的计算方法[整理版]

风压与风速的计算方法[整理版]

风压与风速的计算方法风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。

纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。

纬度为45°处的重力加速度g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

风压与风速

风压与风速

风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用Cyberspace的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v²(1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

风速与风压的关系

风速与风压的关系

风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v²(1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

风压计算公式

风压计算公式

风压计算公式
风压计算是用来测量空气流体中重力加速度和空气密度变化的重力场力量。

它考虑到了空气密度变化,空气密度变化也会影响空气流体的阻力,从而识别风的风压,既是风力发生的重要应用之一。

风压的计算公式是:风压=海平面大气压力× (风速²/ 9.81)。

其中,海平面大气压力是指将气压补偿到海平面气压(1000hPa)的指标,它根据不同场地的实际情况来考虑,而海拔高度就是确定该大气压力补偿量的重要参数。

风速是指风的瞬间速度,如果风的瞬间速度很小,那么风压也就很小。

最后,9.81是重力加速度的数值,意味着在计算风压时都是以重力作为作用力的参照物。

通过上述计算公式,可以计算出受某处地方的风吹拂而产生的风压,从而更好地理解风速的变化对当地的气流情况的影响。

对于风压的计算,如果运用计算机系统及软件,可以根据实时采集到的数据结果,实时计算出风速和风压,反映当前风力的实时变化情况,从而更好地预测未来的气流情况。

风压计算和风力等级表

风压计算和风力等级表

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为:
wp=0.5·ρ·v2 (1)
其中wp为风压[kN/m2],ρ为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ρ)和重度(r)的关系为r=ρ·g, 因此有ρ=r/g。

在(1)中使用这一关系,
得到
wp=0.5·r·v2/g (2)
此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15℃), 空气重度
r=0.01225 [kN/m3]。

纬度为45°处的重力加速度g=9.8[m/s2], 我们得到
wp=v2/1600 (3)
此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,ρ在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

现在我们将风速代入(3), 10 级大风相当于24.5-28.4m/s, 取风速上限28.4m/s, 得
到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。

风机性能换算公式

风机性能换算公式

风机性能换算公式风机性能的换算公式是非常重要的,它可以帮助我们理解和比较不同风机的性能指标。

在风机工程中,性能参数包括风机的风量、风压、效率和功率等。

下面将详细介绍风机性能的换算公式。

1.风量的换算公式:风量是指单位时间内通过风机的气体体积。

风量的换算公式是:Q=V*A其中,Q表示风量,V表示风速,A表示风道的截面积。

2.风压的换算公式:风压是指风机在风道中产生的气体压力。

风压的换算公式是:P=(ρ*V^2)/2其中,P表示风压,ρ表示空气密度,V表示风速。

3.功率的换算公式:风机的功率是指风机运行所消耗的能量。

功率的换算公式是:P=Q*Pw其中,P表示功率,Q表示风量,Pw表示单位风力所需的功率。

4.效率的换算公式:风机的效率是指风机产生的有用功率与输入的总功率之间的比值。

效率的换算公式是:η=Pw/P其中,η表示效率,Pw表示风机的有用功率,P表示风机的总功率。

需要注意的是,以上公式是基于理想条件下的计算,实际工程中还需要考虑一些修正因素,如风机的效率衰减,风机与风道之间的阻力损失等。

另外,还有一些常用的风机性能参数的换算公式,包括:-风量与转速的关系:Q2/Q1=(RPM2/RPM1)^3其中,Q1和Q2分别表示两种不同转速下的风量,RPM1和RPM2分别表示两种不同转速。

-风量与叶片直径的关系:Q2/Q1=(D2/D1)^2其中,Q1和Q2分别表示两种不同叶片直径下的风量,D1和D2分别表示两种不同叶片直径。

-风压与转速的关系:P2/P1=(RPM2/RPM1)^2其中,P1和P2分别表示两种不同转速下的风压。

-风压与叶片直径的关系:P2/P1=(D2/D1)^2其中,P1和P2分别表示两种不同叶片直径下的风压。

以上是风机性能的一些常用换算公式,它们可以帮助我们理解风机的性能指标,并进行性能参数的比较和评估。

在实际的风机工程中,根据具体的工况和需求,可以选择合适的性能指标进行换算和比较,以便选取最适合的风机设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风压的计算公式
幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001)计算:
wk=βgzμzμsw0 ……7.1.1-2[GB50009-2001]
上式中:wk:作用在幕墙上的风荷载标准值(MPa);
Z:计算点标高:100m;
βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算:
βgz=K(1+2μf)
其中K为地面粗糙度调整系数,μf为脉动系数
A类场地: βgz=0.92×(1+2μf) 其中:μf=0.387×(Z/10)-0.12
B类场地: βgz=0.89×(1+2μf) 其中:μf=0.5(Z/10)-0.16
C类场地: βgz=0.85×(1+2μf) 其中:μf=0.734(Z/10)-0.22
D类场地: βgz=0.80×(1+2μf) 其中:μf=1.2248(Z/10)-0.3
对于C类地区,100m高度处瞬时风压的阵风系数:
βgz=0.85×(1+2×(0.734(Z/10)-0.22))=1.6019
μz:风压高度变化系数;
根据不同场地类型,按以下公式计算:
A类场地: μz=1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地: μz=(Z/10)0.32 当Z>350m 时,取Z=350m,当Z<10m时,取Z=10m;
C类场地: μz=0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;
D类场地: μz=0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于C类地区,100m高度处风压高度变化系数:
μz=0.616×(Z/10)0.44=1.6966
μs:风荷载体型系数,根据计算点体型位置取1.2;
w0:基本风压值(MPa),根据现行<<建筑结构荷载规范>>GB50009-2001附表
D.4(全国基本风压分布图)中数值采用,按重现期50年,北京地区取
0.00045MPa;
wk=βgzμzμsw0 =1.6019×1.6966×1.2×0.00045 =0.001468MPa。

相关文档
最新文档