抛物线中的等腰三角形PPT课件
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
2020年中考复习专题:运动中的等腰三角形(共16张PPT)

中考复习专题
运动产生的等腰三角形
考点梳理
已知点A、B和直线l,在l上求点P,使△PAB为等腰三角形
方法指导: (1)以点A为圆心,线段AB长为半径作圆,与l的交点P1,P4即为所求点即:AP=AB (2)以点B为圆心,线段AB长为半径作圆,与l的交点P2,P5即为所求P点即:BP=BA (3)作AB的垂直平分线,与l的交点P3即为所求P点 ,即PA=PB
(1)解:∵抛物线过点A(1,0),B(4,0),
∴设抛物线的表达式为y=a(x-1)(x-4)(a≠0),
将点C(0,3)代入得a(0-1)(0-4)=3,解得a= ,
∴抛物线的表达式为 y=3(x-1)(x-4),即 y=3x2-15x+3 ,
∴抛物线对称轴为直线
4 x=-
b
=5
;
44
2a 2
(2)如图①,D为OB段上的一动点,连接CD,若CD=BD,求点D的坐标;
5
的交点即为所求点
2
P.连接CP、PO,
∵点C坐标为(0,3), ∴OC的中点E的纵坐标为 3 , 即点P的纵坐标为 3 , 2
2 ∴点P的坐标为( 5,3 );
22
例题解图①
(4)如图③,在抛物线的对称轴上是否存在一点G,使得△COG是以CO为腰的等 腰三角形,若存在,求点G的坐标;若不存在,请说明理由; 温馨提示
,
4k1+b1=0
b1=3
∴直线BC的表达式为
y=-3x+3 4
,
∵点M在线段BC上,
∴设点M的坐标为( m,-3m+3 ),其中0<m<4, 4
如解图③,过点M分别作x轴、y轴的垂线MN、MP,交x轴于点N,交y轴于点P,
等腰直角三角形存在性问题

等腰直角三角形存在性问题一、复习回顾二次函数存在性问题中等腰三角形的存在性、直角三角形存在性问题,等腰三角形的存在性问题有两种思路:①两圆一线确定点的位置,结合图形特点解决问题;②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解;直角三角形的存在性问题有两种思路:①两线一圆构图,“改斜归正”转化横平竖直线段长,②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解。
二、特殊三角形之等腰直角三角形存在性问题如图,抛物线y=x2-2x-3与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,点P是抛物线上一动点,点Q在直线x=-3上,是否存在以点P为顶点的等腰直角三角形△PBQ,若存在,求出点P的横坐标,若不存在说明理由。
解法分析:通过读题,不难求得A、B、C三点坐标,点P、Q是两个动点,位置不确定,如何确定它们的位置是解决问题的一个难点。
此时不妨通过草图分析,大体分两种情况:①直角顶点在BQ下方,②直角点P在BQ上方,结合上辑课讲到的直角三角形存在性问题的处理思路,容易考虑使用“改斜归正”的处理办法结合等腰直角三角形的特点构造一线三等角全等模型,从而顺利转化线段长建立等量。
三、练习1.(本小题25分)如图,抛物线y=x2-4x+3交x轴于A,C两点(点A在点C的右侧),交y 轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为()A.(-1,4) 或(1/2,5/2)B. (-1,3)或(1,2)C. (-1,4)或(1,2)D. (-1,4),(1,2)或(5,-2)2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线l,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为() A.(1,4/3)或(3/2,1) B.(-1/3,4/3)或(-1/2,1) C.(1,0)或(-1/3,0)或(1/2,0) D.(1,0)或(-1/3,0)或(4/3,0)3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为()A. -4B. -3C. -3或-4D. -4或44.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线y=-x2-3x+4于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为()A. (-2,2)B. (-2,6)C. (-3,4)或(-2,6)D. (-3,1)或(-2,2)5.如图,抛物线y=-x2+4x经过A(4,0),B(1,3)两点,点C与点B关于抛物线的对称轴对称,过点B作直线BH△x轴于点H,点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形时,若存在,求出点M坐标,若不存在说明理由。
抛物线中的等腰三角形问题

抛物线中的等腰三角形问题
在数学中,抛物线广泛被研究和探讨。
而抛物线中的等腰
三角形问题是其中一个经典的问题。
抛物线是一个二次方程的图像,具有对称性质。
而等腰三
角形是指三边长度相等的三角形。
那么,抛物线中是否存在等腰三角形呢?
答案是肯定的。
事实上,抛物线上的任何一点都可以构成
一个等腰三角形。
这是因为抛物线的性质决定了在对称位置上的两个点关于焦点的距离相等,从而满足等腰三角形的定义。
具体来说,我们可以选择抛物线上的一个点P,并且连接P 点与抛物线的焦点F。
然后,从P点向下垂直引一条垂线,与
抛物线的切线交于点Q。
这样,三角形PFQ就是一个等腰三
角形,因为PF和QF的长度相等。
值得注意的是,抛物线上的每个点都可以成为等腰三角形
的顶点,因此存在无数个等腰三角形。
抛物线中的等腰三角形问题不仅有理论上的意义,而且在
实际应用中也有一定的应用。
例如,在物体抛出运动中,抛物线的形状对于确定物体的落点和轨迹起到重要作用。
对于特定起始条件,等腰三角形在抛物线上能够提供更多的信息。
总结而言,抛物线中存在无数个等腰三角形,这是由抛物
线的对称性质所决定的。
这个问题不仅仅是数学理论上的问题,也有着实际应用中的意义。
通过研究抛物线中的等腰三角形,我们可以更深入地了解抛物线的性质和特点。
专题02 二次函数中的存在性问题之等腰三角形(19眉山)(解析版)

专题02 二次函数中的存在性问题之等腰三角形【典例1】(2019•眉山)如图1,在平面直角坐标系中,抛物线y=−49x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点拨】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【解答】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P 的横坐标为−174; (3)∵∠DMN =∠DBA , ∠BMD +∠BDM =180°﹣∠ADB , ∠NMA +∠DMB =180°﹣∠DMN , ∴∠NMA =∠MDB , ∴△BDM ∽△AMN ,AN BM=AM BD,而AB =6,AD =BD =5, ①当MN =DM 时, ∴△BDM ≌△AMN ,即:AM =BD =5,则AN =MB =1; ②当NM =DN 时, 则∠NDM =∠NMD , ∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM=AM BD,即AN6−256=2565,解得:AN =5536; ③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN , ∴DN ≠DM ; 故AN =1或5536.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似和全等、等腰三角形性质等知识点,其中(3),要注意分类求解,避免遗漏.【精练1】抛物线y =−29x 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.【点拨】(1)函数的表达式为:y=29(x+1)(x﹣5),即可求解;(2)确定PB、CE的表达式,联立求得点F(2−2m3,0),S△PCF=12×PC×DF=12(2﹣m)(2−2m3−2)=5,即可求解;(3)分当CP=CF、CP=PF、CP=PF三种情况,分别求解即可.【解答】解:(1)函数的表达式为:y=29(x+1)(x﹣5)=−29x2+89x+109;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=−13mx+5m3,∵CE⊥PE,故直线CE表达式中的k值为3m,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=3mx+(2−6m),解得:x=2−2m 3,故点F(2−2m3,0),S △PCF =12×PC ×DF =12(|2﹣m |)(|2−2m 3−2|)=5, 解得:m =5或﹣3,故点P (2,﹣3)或(2,5); (3)由(2)确定的点F 的坐标得: CP 2=(2﹣m )2,CF 2=(2m 3)2+4,PF 2=(2m 3)2+m 2,①当CP =CF 时,即:(2﹣m )2=(2m 3)2+4,解得:m =0或365(0舍去),②当CP =PF 时,同理可得:m =−9±3√132, ③当CF =PF 时,同理可得:m =±2(舍去2), 故点P (2,365)或(2,﹣2)或(2,−9−3√132)或(2,−9+3√132) 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.【精练2】如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过点B 、C ,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式;(2)在x 轴上找一点E ,使EC +ED 的值最小,求EC +ED 的最小值;(3)在抛物线的对称轴上是否存在一点P ,使得∠APB =∠OCB ?若存在,求出P 点坐标;若不存在,请说明理由.【点拨】(1)直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式,即可求解;(2)如图1,作点C 关于x 轴的对称点C ′,连接CD ′交x 轴于点E ,则此时EC +ED 为最小,即可求解;(3)分点P 在x 轴上方、点P 在x 轴下方两种情况,分别求解.【解答】解:(1)直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:{−9+3b +c =0c =3,解得:{b =2c =3,故函数的表达式为:y =﹣x 2+2x +3, 令y =0,则x =﹣1或3,故点A (﹣1,0);(2)如图1,作点C 关于x 轴的对称点C ′,连接CD ′交x 轴于点E ,则此时EC +ED 为最小,函数顶点D 坐标为(1,4),点C ′(0,﹣3), 将CD 的坐标代入一次函数表达式并解得: 直线CD 的表达式为:y =7x ﹣3, 当y =0时,x =37, 故点E (37,0),则EC +ED 的最小值为DC ′=√1+(4+3)2=5√2; (3)①当点P 在x 轴上方时,如下图2,∵OB =OC =3,则∠OCB =45°=∠APB ,过点B作BH⊥AP于点H,设PH=BH=m,则PB=P A=√2m,由勾股定理得:AB2=AH2+BH2,16=m2+(√2m﹣m)2,解得:m2=8+4√2,则PB2=2m2=16+8√2则y P=√PB2−22=2+2√2;②当点P在x轴下方时,则y P=﹣(2+2√2);故点P的坐标为(1,2+2√2)或(1,﹣2﹣2√2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、点的对称性等,其中(3),要注意分类求解,避免遗漏.【精练3】如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=14OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【点拨】(1)点A(2,0)、点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),即可求解;(2)PE=14OD,则PE=(14x2+12x﹣2−12x+2)=14(﹣x),求得:点D(﹣5,0),利用S△PBE=12PE×BD=12(14x2+12x﹣2−12x+2)(﹣4﹣x),即可求解;(3)BD =1=BM ,则y M =﹣BM sin ∠ABC =﹣11√5=−√55,即可求解.【解答】解:(1)点A 的坐标是(2,0),抛物线的对称轴是直线x =﹣1,则点B (﹣4,0), 则函数的表达式为:y =a (x ﹣2)(x +4)=a (x 2+2x ﹣8), 即:﹣8a =﹣2,解得:a =14, 故抛物线的表达式为:y =14x 2+12x ﹣2;(2)将点B 、C 的坐标代入一次函数表达式:y =mx +n 并解得: 直线BC 的表达式为:y =−12x ﹣2,则tan ∠ABC =12,则sin ∠ABC =15, 设点D (x ,0),则点P (x ,14x 2+12x ﹣2),点E (x ,−12x ﹣2),∵PE =14OD ,∴PE =(14x 2+12x ﹣2+12x +2)=14(﹣x ),解得:x =0或﹣5(舍去x =0), 即点D (﹣5,0) S △PBE =12×PE ×BD =12(14x 2+12x ﹣2+12x +2)(﹣4﹣x )=58; (3)由题意得:△BDM 是以BD 为腰的等腰三角形,①当BD =BM 时,过点M 作MH ⊥x 轴于点H , BD =1=BM ,则MH =y M =BM sin ∠ABC =1×5=√55, 则x M =20+2√55, 故点M (−20+2√55,√55);②如图,当BD=DM时,过点D作DH⊥BC于H,∴BM=2BH,在Rt△BHD中,BH=BD cos∠ABC=2√5 5,∴BM=4√5 5,过点M作MG⊥x轴于G,MG=BM•sin∠ABC=4 5,BG=BM•cos∠ABC=8 5,点M(−285,45);故点M坐标为(−20+2√55,√55)或(−285,45).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【精练4】如图1,在平面直角坐标系中,抛物线y=−49x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点拨】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【解答】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P的横坐标为−17 4;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,ANBM =AMBD,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM =DN 时, 则∠NDM =∠NMD , ∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM=AM BD,即AN6−256=2565,解得:AN =5536; ③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN , ∴DN ≠DM ; 故AN =1或5536.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似和全等、等腰三角形性质等知识点,其中(3),要注意分类求解,避免遗漏.【精练5】如图1,在平面直角坐标系中,抛物线y =13x 2−13x ﹣4交x 轴于A 、B 两点,交y 轴于点C . (1)点P 为线段BC 下方抛物线上的任意一点,一动点G 从点P 出发沿适当路径以每秒1个单位长度运动到y 轴上一点M ,再沿适当路径以每秒1个单位长度运动到x 轴上的点N ,再沿x 轴以每秒√2个单位长度运动到点B .当四边形ACPB 面积最大时,求运动时间t 的最小值;(2)过点C 作AC 的垂线交x 轴于点D ,将△AOC 绕点O 旋转,旋转后点A 、C 的对应点分别为A 1、C 1,在旋转过程中直线A 1C 1与x 轴交于点Q .与线段CD 交于点I .当△DQI 是等腰三角形时,直接写出DQ 的长度.【点拨】(1)过点B 作BK ⊥BC 交y 轴于点K ,作P ′H ⊥BK 交BK 于点H 、交y 轴于点M 、交x 轴于点N ,则此时运动的时间最小,即可求解;(2)将△AOC 绕点O 旋转,相当于存在一个半径为OR 圆O ,在整个旋转过程中,AC 始终为垂直于OR 的切线,确定圆的半径OR 后,分OR 靠近x 轴、y 轴两种大情况,分别在四个象限逐次求解即可. 【解答】解:(1)y =13x 2−13x ﹣4,令x =0,则y =﹣4,令y =0,则x =3或﹣4, 故点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,﹣4), 则直线BC 的表达式为:y =x ﹣4, S 四边形ACPB =S △ABC +S △PBC ,∵S △ABC 为常数,∴只要S △PBC 取得最大值,四边形ACPB 面积即为最大, 设点P (x ,13x 2−13x ﹣4),则点S (x ,x ﹣4),S △PBC =12×PS ×OB =12×4×(x ﹣4−13x 2+13x +4)=−23x 2+43x , ∵−23<0,则S △PBC 有最大值,即四边形ACPB 面积有最大值, 此时,x =2,故点P (2,−103);作点P 关于y 轴的对称点P ′(﹣2,−103), 过点B 作BK ⊥BC 交y 轴于点K ,作P ′H ⊥BK 交BK 于点H 、交y 轴于点M 、交x 轴于点N , 则此时运动的时间最小, t =P ′M +MN +√22BN =PM +MN +HN ,直线BK ⊥BC ,则直线BK 的表达式为:y =﹣x +b , 将点B 的坐标代入上式并解得: 直线BK 的表达式为:y =﹣x +4…①,同理可得直线P ′H 的表达式为:y =x −43⋯②,联立①②并解得:x =83, 故点H (83,43),则t =P ′H =√(−2−83)2+(−103−43)2=14√23, 故运动时间t 的最小值为14√23;(2)∵AC ⊥AD ,则直线CD 的表达式为:y =34x ﹣4, 故点D (163,0);如图2,过点O 作OR ⊥AC 于点R ,由面积公式得:12OR ×AC =12OA ×OC ,即:OR =3×45=125, 设∠ACD =α,则tan α=34,sin α=35, 则tan2α=247,tan 12α=12(证明见备注), 情况一:当OR 靠近y 轴时,①当OR 在一、三象限时,如图3,4:在图3中,IQ=ID,则OQ=ORsinα=12535=4,故QD=163+4=283;在图4中,IQ=ID,同理QD=163−4=43;②当OR在二、四象限时,如图5,6:在图5中,DI=DQ,则∠DQI=∠DIQ=12∠ODC=12α,OQ=ORsin12α=12√55,则DQ=12√55−163,在图6中,同理可得:DQ=12√55+163;情况二:当OR靠近x轴时,如下图:当点R在二、四象限时,如图7,见左侧图,同理可得:DQ=163+52=476;见右侧图,同理可得:DQ=163−52=176;当点R 在一、三象限时,如图8,同理可得:DQ =163−6√53(左侧图)或163+6√53(右侧图);综上,DQ 的长度为283或43或12√55−163或12√55+163或476或176或163−6√53或163+6√53.备注:已知tan α=34,求tan2α和tan 12α.如图△ABD 是以BD 为底的等腰三角形,AC ⊥BD ,过点D 作DH ⊥AB ,则设:∠DAC =∠BAC =α,tan α=34,设BC =CD =3a ,则AC =4a , 由三角形的面积公式得:12AH ×AB =12×DB ×AC ,解得:AH =6a×4a 5a=245, 则sin2α=sin ∠BAD =DHAD =2425,tan2α=247, 同理可得:tan 12α=12.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识、图形的面积计算等,其中(2),要注意分类求解,通过画图确定图象的位置,避免遗漏.【精练6】如图,已知抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标; (3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t (t >0)秒. ①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【点拨】(1)将A 、B 关坐标代入y =﹣x 2+bx +c 中,即可求解;(2)确定直线BC 的解析式为y =﹣x +3,根据点E 、F 关于直线x =1对称,即可求解; (3)①△AOC 与△BMN 相似,则MB MN=OA OC或OC OA,即可求解;②分OQ =BQ 、BO =BQ 、OQ =OB 三种情况,分别求解即可.【解答】解:(1))∵点A 、B 关于直线x =1对称,AB =4, ∴A (﹣1,0),B (3,0),代入y =﹣x 2+bx +c 中,得:{−9+3b +c =0−1−b +c =0,解得{b =2c =3,∴抛物线的解析式为y =﹣x 2+2x +3, ∴C 点坐标为(0,3);(2)设直线BC 的解析式为y =mx +n , 则有:{n =33m +n =0,解得{m =−1n =3,∴直线BC 的解析式为y =﹣x +3, ∵点E 、F 关于直线x =1对称, 又E 到对称轴的距离为1, ∴EF =2,∴F 点的横坐标为2,将x =2代入y =﹣x +3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,连接BC交MN于Q,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则MBMN =OAOC或OCOA,即:3−2t−4t+4t+3=3或13,解得:t=32或−13或1(舍去32、−13),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t=3 4;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=√2BM,∴BO=√2BM,即3=√2(3−2t),∴t=6−3√24;第三种,当OQ=OB时,则点Q、C重合,此时t=0 而t>0,故不符合题意综上述,当t=34秒或6−3√24秒时,△BOQ为等腰三角形.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
(已整理)中考数学必刷压轴题专题:抛物线之等腰三角形(含解析)

中考数学抛物线压轴题之等腰三角形(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.3.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.4.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.6.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.7.在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B 的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.8.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l 经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m 为何值时,△OPQ是等腰三角形.10.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11.在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE 为等腰三角形,求Q点的坐标.12.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.13.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.14.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.15.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.16.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.17.如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.18.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.19.如图1,抛物线y=﹣++2与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点C,对称轴与x轴相交于点H,与AC相交于点T.(1)点P是线段AC上方抛物线上一点,过点P作PQ∥AC交抛物线的对称轴于点Q,当△AQH面积最大时,点M、N在y轴上(点M在点N的上方),MN=,点G在直线AC上,求PM+NG+GA的最小值.(2)点E为BC中点,EF⊥x轴于F,连接EH,将△EFH沿EH翻折得△EF'H,如图所示,再将△EF'H沿直线BC平移,记平移中的△EF'H为△E'F″H',在平移过程中,直线E'H'与x轴交于点R,则是否存在这样的点R,使得△RF'H'为等腰三角形?若存在,求出R点坐标.20.如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣4交x轴于A、B两点,交y轴于点C.(1)点P为线段BC下方抛物线上的任意一点,一动点G从点P出发沿适当路径以每秒1个单位长度运动到y轴上一点M,再沿适当路径以每秒1个单位长度运动到x轴上的点N,再沿x轴以每秒个单位长度运动到点B.当四边形ACPB面积最大时,求运动时间t的最小值;(2)过点C作AC的垂线交x轴于点D,将△AOC绕点O旋转,旋转后点A、C的对应点分别为A1、C1,在旋转过程中直线A1C1与x轴交于点Q.与线段CD交于点I.当△DQI是等腰三角形时,直接写出DQ的长度.1.抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).方法二:(1)∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).2.(1)抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)3.(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).4.(1)∵该抛物线经过点A(5,0),O(0,0),∴该抛物线的解析式可设为y=a(x﹣0)(x﹣5)=ax(x﹣5).∵点B(4,4)在该抛物线上,∴a×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x.(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x<4时,点M在抛物线OB段上时,如答图1所示.∵B(4,4),∴易知直线OB的解析式为:y=x.设M(x,﹣x2+5x),过点M作ME∥y轴,交OB于点E,则E(x,x),∴ME=(﹣x2+5x)﹣x=﹣x2+4x.S△OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B=ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x<5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点Q为顶点,即QP=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.5.(1).(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P 1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x 2=0(舍去).∴P3(,﹣).∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).方法二:(1)略.(2)①由A(﹣1,﹣1),B(3,﹣3)得l AB:y=﹣x﹣,∴C(0,﹣),l OB:y=﹣x,设P(t,﹣t),O(0,0),C(0,﹣),∵△OPC为等腰三角形,∴OP=OC,OP=PC,PC=OC,(t﹣0)2+(﹣t﹣0)2=(0﹣0)2+(0+)2,∴t1=,t2=﹣(舍),(0﹣0)2+(0+)2=(t﹣0)2+(﹣t+)2,∴t1=,t2=0(舍),(t﹣0)2+(﹣t﹣0)2=(t﹣0)2+(﹣t+)2,∴t=,∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过D作x轴垂线交OB于Q,∵B(3,﹣3),∴l OB:y=﹣x,设D(t,﹣t2+t),Q(t,﹣t),∵S△OBD=(D Y﹣Q Y)(B X﹣O X),∴S△OBD=(﹣t2+t+t)•(3﹣0)=﹣t2+t,当t=时,S有最大值,D(,﹣).(3)∵△FAB是以AB为斜边的直角三角形,∴∠GOA+∠BOH=90°,∵BH⊥OH,∴∠OBH+BOH=90°,∴∠GOA=∠OBH,∴△GOA∽△OBH,∵点F为x轴上一动点,∴设F(m,0),∵A(﹣1,﹣1),B(3,﹣3),∴,∴m2﹣2m=0,∴m=0或2,∴F 1(0,0),F2(2,0).6.(1)∵二次函数L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3,∴顶点M坐标为(1,3),∵a>0,∴函数y=ax2﹣2ax+a+3(a>0)的最小值为3,∵二次函数L1的对称轴为x=1,当x<1时,y随x的增大而减小;二次函数L2:y=﹣a(x+1)2+1的对称轴为x=﹣1,当x>﹣1时,y随x的增大而减小;∴当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1;。
坐标系中等腰三角形的确定课件.完美版PPT

–1
精讲拓展 交流互动
思
问题2 (请你出题)维源自你能对问题1进行类似的改编吗?
拓 展
.
9y
8 7 6 5 4C 3 2 1 A
–7 –6 –5 –4 –3 –2 –1 O 1 2 3 x
–1
精讲拓展 交流互动
思 问题3
维
抛物线 y1x2 x4与x轴交于点A(-2,0)
精讲拓展 交流互动
思 问题5
维
抛物线 y1x2 x4 与x轴交于点A(-2,0) 2
再
和B(4,0),与y轴交于点C,
拓 展
(1)探究坐标轴上是否存在点P,使得以点B、P、C为顶
点的三角形为等腰直角三角形?若存在,直接求出点P坐
标,若不存在,请说明理由;
精讲拓展 交流互动
思 问题5
维
抛物线 y1x2 x4 与x轴交于点A(-2,0) 2
和B(4,0),与y轴交于点C,在抛物线的对称
——
——坐标系中平行四边形的确定
如图,在平面直角坐标系xOy中,一次函数 的图象与反比例函数 的图象的一个交点为A(-1,n).
点的三角形为等腰直角三角形?若存在,直接求出点P坐
抛物线
与x轴交于点A(-2,0)
精讲拓展 交流互动
课堂小结
在这短短的课堂时间里,你 有哪些收获?
及时反馈
1、在知识上… 2、在技能上… 3、在思想上…
精讲拓展 交流互动
课堂检测
如图,在平面直角坐标系xOy中,一次函数 的图象 与反比例函数 的图象的一个交点为A(-1,n).
(1)求反比例函数 的解析式.;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点 的坐标. (2021·北京中考·17题)
第11讲 函数抛物线中的三角形

初三(上)数学第十讲 抛物线中特殊的三角形【知识梳理】一、重要基础知识回顾①抛物线顶点的坐标公式:( ),顶点为 。
②若抛物线与x 轴有两个交点A )0(1,x ,B )0,(2x ,AB=_________=__________. ③韦达定理:若)0(02≠=++a c bx ax 有两实根21,x x ,则_______________。
二、抛物线中的重要公式及应用1.抛物线交x 轴与A 、B 两点,与y 轴交于C 点,顶点为M ,△ABC 为直角三角形,则: AB=_______,并探索此时a 与c 的关系.2.第一类抛物线内接三角形的规律,当y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点,C 是顶点(利用含30°、45°角的直角三角形)可推导出以下结论: ①.当△ABC 是等腰Rt △时,△=_______;面积=_______. ②.当△ABC 是等边三角形时,△=_______;面积=______.③.当△ABC 是顶角为120°的等腰三角形时,△=_______;面积_______。
( 以上结论在填空、选择、探索性问题中比较简洁、高效。
有时在考试中甚至可做到“秒杀”。
)① ② ③3.一直线与抛物线交于A 、B 两点,在直线下方抛物线上有一动点C ,满足ABC S ∆面积最大值,时,有_________________。
☆4.探索:二次函数与等腰三角形、直角三角形的探索结合。
联想一次函数中等腰三角形、直角三角形的探索。
【典例解析】☆【知识随堂】1.二次函数y=x2-mx+m-2 图象与x轴交于A、B两点,与y轴交于点C点,M为顶点.(1)当m=________时,△AMB为直角三角形;(2)当m=________时,△AMB为正三角形;(3) 当m=________时,AB=3AM;(4) 若∠ACB=90°则m=________.2.设二次函数y=x2+2ax+3(a<0)的图象顶点为M,与x轴交点为A、B,当△ABM为等边三角形时,a的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1
1、了解并掌握二次函数图象的性质。 2、掌握分类讨论的数学思想。 3、掌握并会运用知识解决抛物线中的等腰三角形 问题。
.
2
1、在△ABC中,AB长为3cm,BC长为5cm,如果△ABC为等腰三角形, 那么AC的长度为多少?
有没有什么注意事项呢?
结果注意验证三角形的三边关系:两边之和大 于第三边、两边之差小于第三边。
y1
y
M
N
A
O
x
思路引领: 1、方程-a(x+1)2+1=0的解→A 点的坐标 2、求定点、设动点坐标
3、因为没有确定腰是谁→分类
1、弄懂题目的真实目的。2、找出所有能找到的点和条件。
二、此类问题做题有哪些步骤?
三、此类问题有哪些易错点需要注意?
1、思维紧密性、考虑所有情况。2、最后结果记得检验
.
4
1、求(定点)、设(动点)坐标。 2、分类讨论、列方程。(几何问题代数化) 3、解方程。(注意:计算过程不要写在试卷上) 4、检验。(三点共线、两点重合)
.
5
如图,已知二次函数y1=ax2-2ax+a+3(a>0)和二次函数 y2=-a(x+1)2+1(a>0)图象的顶点分别为M、N,y2与x轴的右交点为 A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.
.
7
思路提示
(1)从开口方向、顶点、对称轴、最值、增减性、与坐标轴交点分析。 (2)结合图象解决。 (3)注意P点只能在Y轴正半轴上,分清楚A、B两个顶点考虑。 (4)注意P点在坐标轴上,分清楚A、B两个顶点考虑。 (5)注意本题没有限制以AB为腰,所以需要分清楚A、B、P三个顶点 考虑。 (6)注意思想从几何往代数转化运算。 注:3、4、5、6题注意考虑周全,找到所有可能情况!
.
8
.
9
2、从以下方面分析二次函数y=3x2-6x的性质。开口方向、顶点、 对称轴、增减性、最值、与坐标轴的交点。
.
3
例1:已知二次函数y=3x2-6x,顶点为 A ,点Q在x轴上运动,求 出所有使△AOQ是等腰三角形的点Q的坐标.
思路引领: 1、有等腰三角形先找边,由勾 股定理→OA的长 2、因为没有确定腰是谁→分类 讨论