微生物产β-葡萄糖苷酶研究进展
酿酒酵母的β-葡萄糖苷酶活性及氧气对酵母产酶的影响

酿酒酵母的β-葡萄糖苷酶活性及氧气对酵母产酶的影响张方方;刘延琳【摘要】利用4-硝基苯基-β-D吡喃葡萄糖苷为底物测定酵母中的β-葡萄糖苷酶,研究8株酿酒酵母在上清液、壁膜间隙和细胞内的β-葡萄糖苷酶活性及氧气对酿酒酵母产β-葡萄糖苷酶的影响.结果表明β-葡萄糖苷主要位于细胞间隙和细胞内,酿酒酵母M4产β-葡萄糖苷酶最高,为4.1μmolpNP·mL-1·h-1.氧气显著促进酿酒酵母合成β-葡萄糖苷酶,且相对于厌氧条件,有氧条件下酿酒酵母M4的β-葡萄糖苷酶增加了4.51倍.【期刊名称】《中国酿造》【年(卷),期】2013(032)006【总页数】3页(P28-30)【关键词】酿酒酵母;β-葡萄糖苷酶;酶的分布;氧气【作者】张方方;刘延琳【作者单位】西北农林科技大学葡萄酒学院/陕西省葡萄与葡萄酒工程技术研究中心,陕西杨凌712100;西北农林科技大学葡萄酒学院/陕西省葡萄与葡萄酒工程技术研究中心,陕西杨凌712100【正文语种】中文【中图分类】TS261.1酵母是葡萄酒发酵过程中起主要作用的微生物,它能将葡萄中的糖转化成酒精及其他代谢副产物,酿酒酵母是将葡萄糖转变成酒精的主要微生物[1-3]。
β-葡萄糖苷酶(β-Glucosidase,EC3.2.1.21)是水解葡萄中糖苷的关键酶[4],它存在于植物[5],细菌、霉菌和酵母[6-8]中,植物和微生物中β-葡萄糖苷酶的水解能力取决于糖苷配基的结构和酶的来源[9]。
有研究表明酿酒酵母能产生β-葡萄糖苷酶[10-13],该酶能将葡萄中的非挥发性糖苷转化成挥发性的香气物质,提高葡萄酒香气复杂性,改善葡萄酒质量[6,14-15]。
在葡萄酒发酵过程中,氧气不仅影响酵母的生长,同时对酵母的产酶也会产生影响[16],因此本实验主要研究酿酒酵母的β-葡萄糖苷酶活性及氧气对酵母产酶的影响。
1 材料与方法1.1 材料与试剂1.1.1 菌株分离自新疆和宁夏葡萄酒产区的7株酿酒酵母,分别是F-3-8、FS-3-10、H-1-19、HS-2-1、HS-2-31、HS-2-32和M4,1株国外引进的酿酒酵母UCD522。
酵母β葡聚糖的营养研究进展

引言 葡聚糖是葡萄糖的聚合物,可来源于酵母等微生物,燕麦、
大麦等植物籽实;有 α-葡聚糖和 β-葡聚糖两种类型。按提取 方式来分,可分为碱溶性葡聚糖、碱不溶酸溶性葡聚糖及碱不溶 酸不溶性 葡 聚 糖 三 种 类 型;按 连 接 方 式 来 分,可 分 为 β-1, 3-葡聚糖、β-1,4-葡聚糖和 β-1,6-葡聚糖,在食品、保 健、化妆、饲料行业应用广泛[1-2]。近年来,随着酵母发酵产业 的发展,酵母 β-葡聚糖成为研究热点。酵母 β-葡聚糖具有 增强机体免疫、降低血糖、胆固醇、调节肠道健康等多种生理生 化功能,近年来在畜禽养殖中得到较广泛应用。 β 葡聚糖的生理生化功能 1.1 降低胆固醇、血脂及血糖的作用
酵母 β-葡聚糖具有很强的抗氧化作用,可以通过清除体 内自由基,提高抗氧化酶活性,阻止过氧化物及活性氧对机体 的损害 途 径,提 高 机 体 抗 氧 化 能 力[8]。刘 蓝 天 等 (2016)报 道[9],水溶性酵母葡聚糖可以可以使血清中 SOD活性增加,且 与剂量呈正相关。田祥 宇 等 (2014)报 道 [10],在 肉 鸡 日 粮 中 添 加 100mg/kgβ-葡 聚 糖 进 行 饲 养 实 验,可 使 肉 鸡 空 肠 黏 膜 SOD活性增加,MDA含量明显降低,进而提高盲肠黏膜的抗氧 化功能。顾鲲涛等(2018)报道[11],β-葡聚糖可提高荷斯坦奶 牛体内 SOD、GSH-Px等酶活性,从而更好地清除体内自由基, 减少过氧化物对机体的毒害作用。康雨芳等(2018)报道[12],胶 红酵母细胞壁多糖对 OH和 O2-自由基具有很好的清除效果,且 效果优于 VC的清除效果。顾鲲涛等(2018)报道[13],在围产期 奶牛日粮中添加酵母 β-葡聚糖,可显著提高产前和产后血清 谷胱甘肽过氧化物酶活性(P<0.05),且产前血清丙二醛含量有 降低的趋势。黄鑫等(2014)报道[14],酵母 β-葡聚糖可降低肝 脏中丙二醛的含量,提高谷胱甘肽过氧化物酶的活性。
土壤β-葡萄糖苷酶 微板法

土壤β-葡萄糖苷酶微板法土壤β-葡萄糖苷酶(soil β-glucosidase)是一种重要的土壤酶类,它在土壤有机碳循环和营养元素循环中扮演着重要角色。
本文将介绍土壤β-葡萄糖苷酶的微板法测定方法及其在土壤生态学研究中的应用。
β-葡萄糖苷酶是一类能水解葡萄糖苷键的酶,可将β-D-葡萄糖苷水解成葡萄糖和对应的配基。
它在生物体内广泛存在,包括植物、动物和微生物。
在土壤中,β-葡萄糖苷酶主要由微生物产生,参与碳、氮和磷等元素的循环过程。
微板法是目前常用的测定土壤β-葡萄糖苷酶活性的方法之一。
它通过利用培养基中的显色剂,如对氨基苯酚和氯化铵,与酶反应产生颜色变化,从而测定酶的活性。
这种方法具有操作简便、灵敏度高、准确度好等优点,被广泛应用于土壤生态学研究中。
微板法的步骤如下:1. 样品制备:收集土壤样品后,将其通过筛网过滤,去除大颗粒杂质。
然后将土壤样品加入适量的缓冲液中,使土壤与缓冲液充分混合。
2. 培养基制备:制备含有显色剂的培养基。
常用的培养基配方为:对氨基苯酚、氯化铵和磷酸盐缓冲液。
3. 混合反应:将土壤样品和培养基混合,使其充分接触。
然后将混合物均匀地分配到微孔板的孔中。
4. 孵育:将装有混合物的微孔板放入恒温培养箱中,以适当温度孵育一定时间。
常用的孵育温度为30摄氏度,孵育时间为24小时。
5. 颜色测定:孵育结束后,使用光谱分光光度计测定微孔板中孔的吸光度。
根据吸光度的变化,可以推算出土壤样品中β-葡萄糖苷酶的活性。
土壤β-葡萄糖苷酶的活性可以反映土壤中有机质的分解能力和微生物的活跃程度。
在土壤生态学研究中,通过测定土壤β-葡萄糖苷酶活性,可以评估土壤的健康状况、有机质分解速率和养分循环能力。
此外,β-葡萄糖苷酶活性还与土壤的物理化学性质、植被类型和管理方式等因素密切相关,因此可以用于土壤质量评价、土壤肥力改良和生态系统管理等方面。
土壤β-葡萄糖苷酶微板法是一种常用的测定土壤酶活性的方法,其操作简便、准确度高,在土壤生态学研究中具有重要应用价值。
β-葡萄糖苷酶的研究进展

化工能源化 工 设 计 通 讯Chemical EnergyChemical Engineering Design Communications·144·第47卷第2期2021年2月β-葡萄糖苷酶也称为β-D-葡萄糖苷葡萄糖水解酶,其可以水解释放出β-D-葡萄糖及相关配基。
1837年研究人员在苦杏仁中发现了β-葡萄糖苷酶,随后研究调查得出β-葡萄糖苷酶在植物和昆虫及细菌体内广泛存在,β-葡萄糖苷酶参与了生物体内的糖代谢过程,对维持生物正常的生理功能有重要作用。
β-葡萄糖苷酶参与EMP 糖酵解的途径属于参与双歧杆菌糖代谢的有关酶系。
哺乳动物和人体内的乳糖酶/根皮苷(LPH )水解酶也包含着芳基-β-葡萄糖苷酶,乳糖酶/根皮苷由于涉及成人型乳糖酶缺乏病得到广泛实验研究,同时β-葡萄糖苷酶可以使得水果和蔬菜及茶叶中的风味前体物质水解为有浓郁天然风味的香气物质,可以协助纤维素酶降解纤维素[1]。
1 β-葡萄糖苷酶简介β-葡萄糖苷酶分布比较广泛,普遍存在于植物的种子和微生物中,动物中也存在着大量的β-葡萄糖苷酶,根据酶对底物水解所具有的专一性特点,β-葡萄糖苷酶主要有芳香基-β-葡萄糖苷酶和烃基-β-葡萄糖苷酶及多底物特异性β-葡萄糖苷酶三种类型。
根据酶的结构和催化结构域的氨基酸序列等特点对其分类时,糖苷水解酶的GH1和GH3家族中所包含着的β-葡萄糖苷酶最多[2]。
β-葡萄糖苷酶是纤维素酶当中不可缺少的重要方面,随着时代的进步发展,像目前我国的医疗、食品乃至其他行业领域内,都有β-葡萄糖苷酶的应用身影。
最为关键的是,在我国经济等方面迅速发展的基础上,所带来了环境污染问题,鉴于严重的环境能源危机下,社会各界人士对β-葡萄糖苷酶提出了极高的关注程度。
通过实际调查发现,在对β-葡萄糖苷酶实施水解过程中,还存在的很大的困难就是纤维素彻底降解为单糖。
站在基因工程与蛋白质工程视角下进行分析,已经获取到了良好的β-葡萄糖苷酶。
β-葡萄糖苷酶研究进展

DO :0 3 6 / .S N. 6 27 8 . 01 . . 1 I 1 . 9 9 J I S 1 7 _9 3 2 2 01 0 6
I葡 萄 糖 苷 酶 研 究 进 展 3 一
杨 晓 宽
( 北科技师范学 院食 品科 技学院 , 河 河北 秦 皇岛 , 6O ) O O 4 6
列, 并用定点突变的方法证明了保守序列中的2 Gu 个 l 分别是酸、 碱基团和亲核基团。也有试验通过 自杀底物共价修饰
和定点突变试验证 明了这种结论 【 】 …。
2 一 葡萄糖苷 酶的理化性质及催化 反应机制
2 1 B葡萄 糖 苷酶 的理 化 性质 . 一
p葡萄糖苷 酶有 胞内酶和胞外酶 之分 , 生物体 内只含有胞 内 p葡萄糖苷 酶 , 有 的只含 胞外 p葡 萄糖 苷酶 , 一 有些 - 也 - 但
发现 , 两种来源 的百 催化 反应时按 同一种机制进行 , 孽 即在催化糖苷键 的裂解 反应时都遵循双取代反应机 制。其 反应方程
如下 :
n }s E s s s ES E S 。
第1 步是酶与底物键合成米 氏复合物 E ( S 反应速率 墨 和
) 。第 2步是酶一底物 中间体 ( -) E S 的形成( 反应速率
耐盐 和耐热特性 , 有更广 的应用范 围。瞿丽莉 , 均均等 研 究 了固体发酵 法制 备 B葡 萄糖苷 酶及其 在纤维 素水解上 朱 .
的应用 。王 冰冰 , 夏黎 明等 研 究 了黑 曲霉 B 葡萄糖苷酶基因的克隆及其在里 氏木霉 中的表达 , 酵试验表 明, - 发 基因表
达产物可 以在 ch 信 号肽 的引导下顺利 地 向细胞外 分泌 。发 酵 4 , bl 8h 重组 菌株 的纤维 二糖 酶活 力可 以高达 5 3I ・ . U
β—葡萄糖苷酶及其应用

β—葡萄糖苷酶及其应用葡萄糖苷酶是一种能够降解葡萄糖苷结构的酶类,可以将葡萄糖苷分子中的葡萄糖与其他物质解离,形成葡萄糖与其他官能团的化学键。
它主要存在于植物、微生物和动物体内,广泛应用于食品工业、医药工业、制作酒精等方面。
该酶具有多种应用价值,以下将就葡萄糖苷酶的应用进行探讨。
在食品工业中,葡萄糖苷酶被广泛用于果蔬加工、乳品加工、糖果制作等方面。
在果蔬加工中,葡萄糖苷酶能够降解果蔬中的花青素葡萄糖苷,使得紫色的葡萄糖苷变为无色的花青素,提高果蔬的色泽和风味。
在乳品加工中,葡萄糖苷酶能够降解牛奶中的乳糖,减少乳糖对乳品的影响,提高乳品的品质和口感。
在糖果制作中,葡萄糖苷酶可用于降解糖果中的蔗糖,使糖果更易消化吸收,改善口感。
在医药工业中,葡萄糖苷酶有着重要的应用价值。
它可以被用于制备药物中的活性物质。
某些药物中含有葡萄糖苷结构,葡萄糖苷酶可以通过将葡萄糖与这些活性物质解离,使其具有更好的生物利用度和药效。
葡萄糖苷酶还可以用于生物检测。
它可以将葡萄糖与某些指示剂反应,使乙酰胺开环,导致颜色变化,从而可以通过颜色变化来检测生物样品中的葡萄糖含量。
在制作酒精方面,葡萄糖苷酶也起到了重要的作用。
它可以被用于酿造酒精过程中的淀粉糖化。
在糖化过程中,葡萄糖苷酶能够将淀粉分解为葡萄糖,为后续的酒精发酵提供充足的底料。
葡萄糖苷酶还可以提高酒精的酿造效率和产品品质,使得酒精更加纯净和口感更好。
葡萄糖苷酶具有广泛的应用领域和巨大的应用潜力,它可以被用于食品工业、医药工业和制作酒精等方面。
随着科学技术的不断发展,葡萄糖苷酶的应用还将不断拓展和深化,为人类的生产和生活带来更多的便利和效益。
β—葡萄糖苷酶及其应用

β—葡萄糖苷酶及其应用1. 引言1.1 β—葡萄糖苷酶及其应用β—葡萄糖苷酶是一种重要的酶类,在生物学、食品工业、医药领域和环境工程中都有着广泛的应用。
β—葡萄糖苷酶是一种能够水解β—葡糖苷键的酶,其作用是将底物中的β—葡糖苷键水解成葡萄糖和另一种物质。
在生物学中,β—葡萄糖苷酶起着重要的催化作用,参与碳水化合物的代谢过程,并影响生物的生长和发育。
在食品工业中,β—葡萄糖苷酶可用于酿造啤酒、制作果酱和果汁等食品加工过程中。
在医药领域,β—葡萄糖苷酶可以用于制备药物和诊断试剂,具有广泛的应用前景。
在环境工程中,β—葡萄糖苷酶可以用于废水处理和污染物降解,对环境保护具有重要意义。
β—葡萄糖苷酶的应用将在未来的研究和开发中继续发挥重要作用,为多个领域的发展做出贡献。
2. 正文2.1 β—葡萄糖苷酶的结构与功能β—葡萄糖苷酶是一种重要的酶类,在生物体内发挥着重要的作用。
其结构和功能的研究对于揭示生物体内糖代谢的机制具有重要意义。
β—葡萄糖苷酶通常是由单个蛋白质组成,具有特定的氨基酸序列和空间构象。
其催化活性主要是通过特定的底物结合部位和活性中心实现的。
具体来说,β—葡萄糖苷酶能够催化底物分子中β-葡萄糖苷键的水解反应,将底物分子分解成葡萄糖和另一种残基。
这种水解作用对于生物体内糖类化合物的代谢和利用具有重要意义。
β—葡萄糖苷酶在细胞内参与糖代谢途径的调控,促进了葡萄糖等糖类物质的利用和能量产生。
β—葡萄糖苷酶还参与了一些生物体内的信号传导通路,对于维持细胞内稳态起到了关键作用。
β—葡萄糖苷酶的结构和功能研究不仅有助于深入理解生物体内糖代谢的机制,还为相关疾病的治疗提供了重要的理论基础。
随着对于这类酶的研究不断深入,相信其在生物学及医学领域的应用前景会更加广阔。
2.2 β—葡萄糖苷酶在生物学中的作用β—葡萄糖苷酶在生物学中扮演着非常重要的角色。
它是一种酶类蛋白质,能够催化β—葡萄糖苷键的水解反应,将β—葡萄糖苷水解成葡萄糖和其他产物。
β-葡萄糖苷酶研究资料

β-葡萄糖苷酶的研究1837年,Liebig和Wohler首次在苦杏仁汁中发现了β-葡萄糖苷酶。
β-葡萄糖苷酶(EC 3.2.1.21)的英文名是β-glucosidase,属于水解酶类,又称β-D-葡萄糖苷水解酶,别名龙胆二糖酶、纤维二糖酶和苦杏仁苷酶。
它可催化水解结合于末端非还原性的β-D-糖苷键,同时释放出配基与葡萄糖体。
β-葡萄糖苷酶广泛存在于自然界中,它可以来源于植物、微生物,也可来源于动物。
β-葡萄糖苷酶的植物来源有人参、大豆等;微生物来源的报道较多,如原核微生物来源的有脑膜脓毒性黄杆菌(Flavobacterium meningosepticum)、约氏黄杆菌(Flavobacterium johnsonae)等,真核生物来源的有清酒酵母(Candida peltata)、黄孢原毛平革菌(Phanerochaete chrysosporium)等;β-葡萄糖苷酶的动物来源有蜜蜂、猪肝和猪小肠等。
鉴于β-葡萄糖苷酶的研究广泛,本文对其一些研究进展进行讨论。
1 β-葡萄糖苷酶的分类β-葡萄糖苷酶按其底物特异性可以分为3类:第一类是能水解烃基-β-葡萄糖苷或芳香基-β-葡萄糖苷的酶,此类β-葡萄糖苷酶能水解的底物有纤维二糖、对硝基苯-β-D-葡萄糖苷等;第二类是只能水解烃基-β-葡萄糖苷的酶,这类β-葡萄糖苷酶能水解纤维二糖等;第三类是只能水解芳香基-β-葡萄糖苷的酶,这类酶能水解对硝基苯-β-D-葡萄糖苷等类似物。
2 β-葡萄糖苷酶的提取、纯化及酶活测定方法2.1 β-葡萄糖苷酶的提取方法不同来源的β-葡萄糖苷酶,其提取方法也有所不同。
动植物体及大型真菌中的糖苷酶一般需要对酶源进行组织捣碎,然后用缓冲液浸提。
常用的缓冲液有磷酸盐缓冲液、醋酸盐缓冲液、柠檬酸盐缓冲液等。
pH值一般选用酶的稳定pH值;提取温度适于低温,一般为4 ℃。
利用微生物发酵法生产β-葡萄糖苷酶是β-葡萄糖苷酶的另一来源,一般微生物发酵都采用液态发酵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Advances in Microbiology 微生物前沿, 2018, 7(2), 79-86Published Online June 2018 in Hans. /journal/ambhttps:///10.12677/amb.2018.72010Progress of β-Glucosidasefrom MicroorganismsZhishuai Chang*, Hui Lan, Yali Bao, Zhanying Liu#Inner Mongolia University of Technology, Hohhot Inner MongoliaReceived: Jun. 7th, 2018; accepted: Jun. 21st, 2018; published: Jun. 28th, 2018Abstractβ-glucosidase can effectively decrease the inhibitory effect of cellobiose on cellulase activity, which is a bottleneck on the complete hydrolysis of cellulose. Because of its low activity and high cost, the β-glucosidase, which is highly resistant to acid and alkali, is more suitable for industrial production and application by means of genetic engineering technology and expressing in hetero-logous hosts. In this paper, there is a detailed summary about β-glucosidase in the classification and cloning about different sources of β-glucosidase gene, enzyme activity determination and so on, which provides theoretical support for enzyme researches.Keywordsβ-Glucosidase, Gene Cloning, Enzyme Activity Determination微生物产β-葡萄糖苷酶研究进展常治帅*,兰辉,包亚莉,刘占英#内蒙古工业大学,内蒙古呼和浩特收稿日期:2018年6月7日;录用日期:2018年6月21日;发布日期:2018年6月28日摘要β-葡萄糖苷酶能有效解除纤维二糖对纤维素酶活性的抑制,是限制纤维素彻底水解的重要因素。
由于β-葡萄糖苷酶酶活相对较低、成本高等因素,通过基因工程手段对其定向改造,异源表达获得高酶活、耐*第一作者。
#通讯作者。
常治帅等热耐酸碱的β-葡萄糖苷酶,使其更适用于工业生产和应用。
文中从β-葡萄糖苷酶的分类、微生物来源β-葡萄糖苷酶基因的克隆、酶活力测定方法等几方面对β-葡萄糖苷酶进行综述,以期为β-葡萄糖苷酶的研究提供借鉴。
关键词β-葡萄糖苷酶,基因克隆,酶活力测定Copyright © 2018 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/1. 引言纤维素水解的过程需要大量的酶参与,主要包括内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶。
内切葡聚糖酶随机切割纤维素链的糖苷键得到短链,外切葡聚糖酶则作用于所得短链的非还原端,得到纤维二糖和纤维寡糖,β-葡萄糖苷酶催化外切葡聚糖酶的水解产物,得到葡萄糖[1]。
但是酶解过程中产生过多的纤维二糖会成为非竞争性抑制物,反馈抑制纤维素酶的活性。
而β-葡萄糖苷酶能够水解纤维二糖,有效地解除其对纤维素酶活性的抑制,是纤维素酶组分中的关键酶类,也是影响纤维素彻底水解的瓶颈。
β-葡萄糖苷酶来源也十分广泛,既可以存在于植物、微生物中,又可以存在于动物体中,便于获得。
随着科学技术的不断发展,这类酶己被定向改造,获得具有更适合工业大规模生产特性的菌株,不仅降低了工业生产的成本,同时提高了生产效率。
β-葡萄糖苷酶具有很好的发展前景,在食品方面,可以提高酒香,使茶叶的香味增加;在工业方面,可以大量生产大豆异黄酮苷元产品;在医药方面,其浓度可以作为肠损伤的早期生化指标,同时β-葡萄糖苷酶的底物特异性[2]、转糖苷功能[3]和葡萄糖耐受性[4]等也备受关注。
因此,深入研究β-葡萄糖苷酶,使其在科学研究和工业应用中发挥重要作用,对于人类的生产和生活具有重大意义。
2. β-葡萄糖苷酶分类β-葡萄糖苷酶(β-glucosidase),又称β-D-葡萄糖苷葡萄糖水解酶,别名龙胆二糖酶、纤维二糖酶和苦杏仁苷酶,该酶可以水解连接烃基或芳香基与糖原子团间的糖苷键,最终得到单体葡萄糖。
β-葡萄糖苷酶根据其不同的特点可以有多种分类方法。
根据β-葡萄糖苷酶所存在的部位来划分,可分为胞内和胞外两种。
根据其作用的底物不同可以将β-葡萄糖苷酶分为3类:第一类是单一水解含有烃基的β-葡萄糖苷的酶,其作用的底物一般为纤维二糖等;第二类是单一水解含有芳香基的β-葡萄糖苷的酶,该酶作用的底物为对硝基苯-β-葡萄糖苷等;最后一类是能水解含有烃基或芳香基的β-葡萄糖苷的酶,其作用的底物一般为纤维二糖、对硝基苯-β-D-葡萄糖苷等。
微观方向基因序列的不同,可以将β-葡萄糖苷酶分为A、B两大类。
刘震等人利用MEGA5软件构建系统发育树[5],发现不同来源的β-葡萄糖苷酶在氨基酸序列上均存在很大的差别,如图1。
因此根据氨基酸序列的不同可将β-葡萄糖苷酶进行分类。
CAZy网站根据结构相似性,将所有糖苷水解酶分类为153个家族(/Glycoside-Hydrolases.html,2018年4月更新),但是目前报道较多的一般为家族1和3两类。
依据不同的特点对β-葡萄糖苷酶进行分类,为更深入的科学研究提供了方便。
常治帅等Figure 1. Phylogenetic tree of β-glucosidase from different species [5]图1. 不同来源β-葡萄糖苷酶的系统发育树[5]3. 不同来源β-葡萄糖苷酶及其活力比较1837年,Liebig和Wohler首次在苦杏仁中发现β-葡萄糖苷酶。
经过长期的研究发现,β-葡萄糖苷酶既可以存在动物中又可以存在植物的果实中,同时在微生物中也发现了该酶的存在,该酶来源十分广泛。
可以产生β-葡萄糖苷酶的植物有橄榄果、甘蓝、玉米、大豆等,但是植物来源β-葡萄糖苷酶活性要比微生物中的β-葡萄糖苷酶活性低;可以产生β-葡萄糖苷酶的动物有蜜蜂、牛肝等。
相比较,关于微生物来源的β-葡萄糖苷酶的研究内容较多。
微生物主要包括细菌、丝状真菌、放线菌、酵母和古细菌等;同时在如盐碱湖、热泉等一些生存环境苛刻的条件中,也发现一些具有产β-葡萄糖苷酶能力的微生物,其中丝状真菌中主要有曲霉属、青霉属、热子囊菌属、木霉属、踝节菌属等,相比较,青霉属菌类能产生大量的β-葡萄糖苷酶,霉菌可以产生活性高的β-葡萄糖苷酶。
现在的研究主要集中在酵母、真菌、细菌和放线菌。
原核微生物产该酶的菌株有柠檬酸杆菌属菌株[6]、脑膜脓毒性黄杆菌、约氏黄杆菌、特异腐质酶、胶质类芽孢杆菌等;一般来说,来自极端环境的β-葡萄糖苷酶与普通生物来源的相比,其酶的最适温度和热稳定性都会偏高[7]。
不同来源的β-葡萄糖苷酶其理化性质和催化活力均存在很大差别。
部分不同来源β-葡萄糖苷酶的性质如表1所示。
4. 基因的克隆和表达随着分子技术的快速发展,自然选育、诱变育种、原生质体融合等技术已经远远不能满足人类需求,而基因重组技术具有定向性,也越来越受到关注,利用该技术来获得高产β-葡萄糖苷酶工程菌株已经成为现在的研究热点。
对β-葡萄糖苷酶研究的不断深入,目前,多种不同来源的β-葡萄糖苷酶已被成功克隆在不同的载体中并异源表达得到高活性蛋白。
表达宿主一般是大肠杆菌或者巴斯德毕赤酵母,但由于大肠杆菌是原核生物,不能有效修饰真核基因,表达量相对来说也比较低,故现在更倾向于毕赤酵母表达系统。
毕赤酵母具有有效修饰真核基因、操作简单和蛋白表达水平高等优点[13]。
表2中是近十几年来β-葡萄糖苷酶基因成功表达在真核系统的部分实例,其中使用毕赤酵母表达系统的研究居多。
微生物可以产生大量的β-葡萄糖苷酶,酶活比植物来源的要高,但在工业生产上,其产量远远不能满足工业要求。
将产β-葡萄糖苷酶微生物的基因克隆在异源表达载体中,其分子量、比活、热稳定性以及催化效率等酶学性质发生较大的变化,热稳定性提高,更有利于工业生产和应用。
细菌具有较高的纤维素降解能力,但是大部分细菌产生的都是胞内酶。
因此利用细菌来源的葡萄糖苷酶常治帅等Table 1. Characteristics of β-glucosidases from different sources表1. 部分不同来源β-葡萄糖苷酶的性质来源分子量(kDa) 最适pH 最适温度(℃) 构型Km/(mM·L−1)p-NPGVmax/(U·mg−1)p-NPG比活(U·mg−1)疏水层析Brassica oleracea [8]130 6.0 35 二聚体0.755 604 1719.63 Putranjiva roxburghii[9]68 5.0 65 NR 0.52 11.73 s−1119.1 Bursaphelenchus xylophilus[10]52 8.0 38 NR 2.334 9.017 180.3Aspergillus oryzae[11]90 4.5 55 NR 2.906(纤维二糖) 0.138 μmol·(L·min)−1(纤维二糖) 40.84Bacillus korlensis [12]90 7 40 NR 0.73 NR 1.64 × 105 注:NR表示文献中未有具体的数据。
Table 2. Examples of β-glucosidase genes expressed in eukaryotic systems表2. β-葡萄糖苷酶基因在真核系统的成功表达的部分实例菌株表达宿主基因序列长度GenBank登录号Saccharomycopsis fibuligera [14]酿酒酵母NR NR Paecilomyces thermophila[15]毕赤酵母2557bp/858aa HM998770Aspergillus fumigatus Z5 [16]毕赤酵母2622bp/844aa HQ836475Trichoderma reesei[17]酿酒酵母2622bp/847aa NRAspergillus niger NL-1 [18]毕赤酵母2583bp/861aa HQ385276 Aspergillus oryzae GIF-10 [19]毕赤酵母2586bp/862aa NRPutranjiva roxburghii[9]酿酒酵母1617bp/539aa KF006311注:NR表示文献中未有具体的数据。