α-葡萄糖苷酶的研究综述
α-葡萄糖苷酶(α-Glucosidase)使用说明

α-葡萄糖苷酶(α-Glucosidase)使用说明货号:G8820规格:1g/5g级别:BR其他名称:α-D-葡萄糖苷酶;α-葡糖苷酶CAS号:9001-42-7提取来源:黑曲霉产品简介:α-葡萄糖苷酶(α-Glucosidase,EC 3.2.1.20)又被称为α-葡萄糖苷水解酶或葡萄糖基转移酶(GTase),是一种α-D-葡萄糖苷酶。
它可以从低聚糖类底物的非还原末端切开α-1,4-糖苷键释放出葡萄糖,或将游离的葡萄糖残基转移到另一糖类底物形成α-1,6-糖苷键,从而得到非发酵性的低聚糖。
α-葡萄糖苷酶来源广泛,在人体糖原的降解和动植物、微生物的糖类代谢方面具有重要的生理功能。
α-葡萄糖苷酶广泛应用于食品和发酵工业、化学工业以及医学应用等行业。
酶活定义:每小时产生1μg葡萄糖所需的酶量定义为一个α-葡萄糖苷酶活力单位。
酶活检测方法:参见QB2525-2001。
产品特性:酶活力:300000U/g最适作用温度:50℃,合适的作用温度:50-55℃。
最适作用pH:5.0,合适的作用pH:4.8-5.4。
外观:淡白色粉末或淡黄色液体,分子量约为68.5KD,无臭无味,溶于水,不溶于乙醚和乙醇。
用途:生化研究。
能水解葡萄糖苷(Glucoside)成葡萄糖和其他组成物质,是一种具有生物催化剂功能的蛋白质。
本产品的建议添加量为800U/g干物质,根据实际情况改变添加量。
抑制剂:铜、钛、钴等金属离子对本品有一定的影响。
铅、铝、锌等金属离子对本品有较强的抑制作用。
贮存:建议密封储藏于干燥、低温的环境中(≤25℃),最好在冷藏条件下(4-8℃)储藏。
25℃以下,液体可以储存3个月,保质期内酶活不会降低于产品标示的活力;4℃以下,可较长时间储存。
α-葡萄糖苷酶抑制活性的测定方法

[1]Ma C M, Hattori M, Daneshtalab M, et al. Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent alpha-glucosidase inhibitors[J]. J Med Chem, 2008,51(19):6188-6194.
(6)0.2mol/L的Na2CO3:称取2.16g Na2CO3于烧杯中,加入适量蒸馏水溶解,并定容到100mL,4℃下保存,备用。
2.2.1.2 PNP标准曲线的绘制
精确称取0.0278g对硝基酚(PNP),加0.01mol/L磷酸缓冲液(pH为6.8)溶解,再用容量瓶定容至10mL,即得20mmol/L母液。用蒸馏水将其母液稀释成浓度分别为1、5、10、20、40、40、80和100μmol/L的标准溶液。取100μl上述标准液,各加入150μL 0.2mol/L的Na2CO3,混匀1 min,再于405 nm处测定其吸光度,得标准曲线方程:y=128.13x+0.3579 (R2 =0.9998),其中y为浓度,x为吸光值。
2.2.1.3α-葡萄糖苷酶抑制活性的测定
测定方法参照Masao Hattori等试验条件,并做调整。实验分为空白组、对照组、样品空白组和样品组,各反应物按表中剂量在96孔板中进行加样,每组3个平行。按表依次加入PBS缓冲液、抑制剂溶液和底物,混合均匀,于37℃水浴保温10min,结束后,取出,加入37℃水浴的酶溶液,充分混匀,于37℃水浴反应20min,结束后加入150μL 0.2mol/L的Na2CO3溶液中止反应。由于PNPG在α-葡萄糖苷酶的作用下能水解产生葡萄糖和PNP,PNP在405nm处有最大吸收,其测定其吸光度,根据公式便可计算出各样品α-葡萄糖苷酶的抑制率及IC50值。
α-葡萄糖苷酶

α-葡萄糖苷酶
α-葡萄糖苷酶介绍:
根据国际生化联合会(IVB)采纳的酶学委会(EC)提出的系统命名及系统分类将酶分为6大类:氧化还原酶、转移酶、裂合酶、异构酶、水解酶。
α-葡萄糖苷酶为水解酶的一种。
测定酶类是临床生化检验中常做的项目之一。
α-葡萄糖苷酶正常值:
血清或血浆[20]:
习惯单位:467±135mU/g蛋白质(±s)
法定单位:467±135U/kg蛋白质
α-葡萄糖苷酶临床意义:
(1)羊水细胞、成纤维细胞或尿中α-Glucosidase活力下降或缺乏:Ⅱ型糖原积累症。
(2)血清中α-Glucosidase活力下降:见于男性不育症(如:精索静脉曲张、精子缺乏或精子活动力下降),并常见于输精管切除后。
α-葡萄糖苷酶注意事项:
随羊水细胞培养时间延长G-6-P酶活力增加。
若培养时间过短或未加热处理。
则pH4/pH6值可能对正常胎儿提供错误的数据信息。
(1)α-Glucosidase有二种:一种最适pH是4.0,对热稳定,此酶在Ⅱ型糖原积累症中减少;另一种最适pH为6.0,对热不稳定,且对Ⅱ型糖原积累症无诊断价值。
(2)产前诊断Ⅱ型糖原积累症可通过分析羊水细胞的α-Glueosidase水平来实现。
(3)Ⅱ型糖原积累症患者心脏、骨骼肌、肝、皮肤成纤维细胞、尿和白细胞中α-Glueosidase水平均下降。
α-葡萄糖苷酶检查过程:
暂无相关信息。
α-葡萄糖苷酶抑制剂的研究进展

α2葡萄糖苷酶抑制剂的研究进展厦门市第一医院(361003) 张文婷 综述 方青枝 审校【中图分类号】R97711+5 【文献标识码】A 【文章编号】100222600(2009)022******* 糖尿病是一种多病因引起、以高血糖为特征的内分泌代谢紊乱性疾病。
高血糖是由胰岛素分泌不足、胰岛素抵抗,或二者共同存在而引起。
世界上,糖尿病患者已超过117亿,已成为继心血管疾病和肿瘤之后第三大严重威胁人类健康的非传染性疾病[1]。
临床上,根据糖尿病发病机制不同,主要分为1型糖尿病(胰岛素依赖型)和2型糖尿病(非胰岛素依赖型),我国以2型居多。
治疗2型糖尿病的药物主要分为:(1)胰岛素及类似物:如赖脯胰岛素等;(2)促胰岛素分泌剂:如磺酰脲类;(3)胰岛素增敏剂:如噻唑烷类衍生物;(4)α2葡萄糖苷酶抑制剂:如阿卡波糖等。
本文就α2葡萄糖苷酶抑制剂的研究进展作一综述。
1 α2葡萄糖苷酶抑制剂的作用机制α2葡萄糖苷酶主要由唾液和胰液中α2淀粉酶及小肠刷状缘上皮细胞上的麦芽糖酶、异麦芽糖酶、α2临界糊精酶、蔗糖酶和乳糖酶等组成。
食物中的碳水化合物,如淀粉先经α2淀粉酶水解成麦芽糖、麦芽三糖、异麦芽糖和α2临界糊精等,食物在口腔中停留时间短,所以该过程主要在小肠内进行。
而后,寡糖经小肠刷状缘上皮细胞上各种酶的作用生成葡萄糖及其他单糖,经小肠黏膜细胞吸收而被机体利用。
2型糖尿病患者因胰岛素分泌不足、胰岛素抵抗或二者的共同作用,血液中的葡萄糖进入肝、肌肉和脂肪等组织细胞及在细胞内的氧化利用发生障碍,同时,肝糖输出增多导致高血糖。
由于血糖水平超过肾小管吸收葡萄糖的能力,部分血糖随尿排出而形成糖尿病。
因此,可以通过降低α2葡萄糖苷酶活性,限制或延缓碳水化合物在消化道内分解,达到预防和治疗这类疾病[2]。
α2葡萄糖苷酶抑制剂的结构类似寡糖,能够在寡糖与α2葡萄糖苷酶的结合位点和α2葡萄糖苷酶竞争性结合,抑制酶的活性,减少寡糖分解,从而延缓肠道对单糖特别是葡萄糖吸收,避免了餐后可能发生的血糖过高。
α 葡萄糖苷酶抑制实验原理

α 葡萄糖苷酶抑制实验原理
α-葡萄糖苷酶抑制实验的原理主要基于酶的抑制作用。
在适宜的温度和酸碱环境中,α-葡糖苷酶能够催化水解4-硝基苯基-D-吡喃葡萄糖苷,生成对硝基苯酚。
这个过程可以通过酶标仪在420nm处检测到对硝基苯酚的吸光度,从而计算出产物量的变化。
当多酚与α-葡糖苷酶结合生成多酚α--葡糖苷酶络合物时,该络合物引起
α-葡糖苷酶的构象发生改变,改变构象的α-葡糖苷酶对4-硝基苯基-D-吡
喃葡萄糖苷的催化水解作用减弱或消失,从而减少了对硝基苯酚的生成。
通过酶标仪检测吸光度的变化,可以计算出多酚对α-葡糖苷酶的抑制率。
以上信息仅供参考,如需了解更多信息,建议查阅相关文献或咨询专业人士。
_葡萄糖苷酶的研究进展_综述_

安徽农业大学学报,2002,29(4):421~425Journal of A nhui A gricultural U niversityΒ2葡萄糖苷酶的研究进展(综述)α李远华(安徽农业大学农业部茶叶生物技术重点开放实验室,合肥230036)摘 要:Β2葡萄糖苷酶不仅具有纤维素的糖化作用,而且与萜烯类香气前驱体有密切关系。
本文详述了该酶在微生物体中的研究概况,特别是在茶树中的研究进展,以及Β2葡萄糖苷酶基因的克隆和表达。
关键词:Β2葡萄糖苷酶;研究进展 中图分类号:Q55612文献标识码:A文章编号:100022197(2002)0420421205Β2葡萄糖苷酶(EC3,2,1,21),其英文名是:beta gluco sidase,属于水解酶类,存在于自然界许多植物体,还存在于一些酵母、曲霉菌、木霉菌属及细菌体内。
它的特性是可水解结合于未端、非还原性的Β2D2糖苷键,同时释放Β2D2葡萄糖和相应的配基[1];此外还能微弱地水解对硝基苯2Β2D2半乳糖和Β2D2木糖苷。
在纤维素的糖化作用中,Β2葡萄糖苷酶功能是将纤维素二糖和纤维素寡糖水解成葡萄糖。
根霉能在许多种纤维素物质上生长,正是由于它能产生包括Β2葡萄糖苷酶在内的多种纤维素酶所致[2]。
近年来Β2葡萄糖苷酶的研究势头有增无减,除对其微生物体进行研究外,还扩展到其他的作物领域,如茶叶、水果、蔬菜等,主要是该酶与萜烯类香气前驱体有密切关系,使糖苷键合态变成游离态。
另外该酶能水解野黑樱苷,释放HCN,对植物体起到一定的抗病虫害作用。
1 Β-葡萄糖苷酶的研究概况Β2葡萄糖苷酶的研究可以追溯到1837年,L iebig and W oh ler[3]首次在苦杏仁汁中发现了该酶,该酶分布较为广泛,特别是植物的种子和微生物中尤为普遍,杏仁是Β2D2葡萄糖苷酶的最经典的来源。
L ym ar E S[4],K i2Bong O H[5],GuevasL[6],Podsto lsk i,H euser W,Grover A K,J H Sch reier,A shock K Grover,N adia A IT,Shoeyov,M artine L等[3]先后分离纯化了该酶且进行研究,并从黑樱桃[7]、水稻[8]、大豆[9]、木薯[10,11]作物中纯化出Β2葡萄糖苷酶。
糖苷水解酶家族的分类

糖苷水解酶家族的分类糖苷水解酶是一类广泛存在于生物体内的酶,其主要功能是水解糖苷键。
根据其催化机制和结构特征的不同,糖苷水解酶可以被分为多个家族。
本文将从分子结构、功能以及应用领域等方面,对糖苷水解酶家族进行分类介绍。
一、α-葡萄糖苷酶家族(GH1家族)α-葡萄糖苷酶家族是糖苷水解酶家族中最大的一个家族,包含了广泛的生物种类。
这类酶能够水解α-葡萄糖苷键,催化底物中的葡萄糖与另一分子之间的键合。
α-葡萄糖苷酶在生物体内起到重要的消化和代谢作用,并且在工业生产中也有广泛的应用,如酿酒、制糖等。
二、β-葡萄糖苷酶家族(GH3家族)β-葡萄糖苷酶家族是另一个重要的糖苷水解酶家族,主要催化底物中的β-葡萄糖苷键的水解。
这类酶在许多生物体中广泛存在,包括细菌、真菌、植物和动物等。
β-葡萄糖苷酶在生物体内参与糖代谢和废物降解等重要生理过程,同时也在食品加工、生物燃料生产等领域具有潜在的应用价值。
三、α-半乳糖苷酶家族(GH4家族)α-半乳糖苷酶家族是一类特殊的糖苷水解酶家族,其特点是能够催化α-半乳糖苷键的水解。
这类酶在乳糖代谢途径中起重要作用,参与乳糖的降解和利用。
α-半乳糖苷酶在乳制品工业中有广泛的应用,如乳糖酶处理乳制品中的乳糖,使其适用于乳糖不耐受的人群。
四、α-木糖苷酶家族(GH31家族)α-木糖苷酶家族是水解α-木糖苷键的酶的家族。
这类酶能够水解底物中的α-木糖苷键,参与木糖的代谢和降解。
α-木糖苷酶在木糖生产和利用过程中发挥重要作用,同时也在生物质降解和生物燃料生产等领域具有潜在的应用价值。
五、α-半乳聚糖苷酶家族(GH42家族)α-半乳聚糖苷酶家族是一类能够水解α-半乳聚糖苷键的酶的家族。
这类酶在底物中水解α-半乳聚糖,生成单糖和低聚糖。
α-半乳聚糖苷酶在乳糖代谢途径中发挥重要作用,参与乳糖的降解和利用。
此外,α-半乳聚糖苷酶还在乳糖低聚糖生产和功能食品制造等领域有广泛应用。
六、α-半乳果糖苷酶家族(GH36家族)α-半乳果糖苷酶家族是一类能够水解α-半乳果糖苷键的酶的家族。
α-葡萄糖苷酶的基本资料

关于α-葡萄糖苷酶的介绍α-葡萄糖苷酶作为淀粉水解酶家族中的重要一员,被广泛应用于食品和发酵工业、化学工业以及临床检测和疾病治疗等领域。
对它的研究一直受到人们的高度重视,多年来α-葡萄糖苷酶在不同领域的应用均产生了很好的经济和社会效益。
1、α-葡萄糖苷酶的简介α-葡萄糖苷酶(EC.3.2.1.20)为淀粉水解酶类中的一种,它又被称为α-葡萄糖苷水解酶或葡萄糖基转移酶(GTase),是一种α-D-葡萄糖苷酶。
主要在细胞外起作用。
它从多糖的非还原末端水解底物的α-葡萄糖苷键,产生α-D-葡萄糖,通常把它们归类于水解酶第3类,主要水解二糖、低聚糖、芳香糖苷,能以蔗糖和多聚糖为底物。
同时,它还具有转糖苷作用,可将低聚糖中的,α-1,4-糖苷键转化成α-1,6-糖苷键或其他形式的链接,从而得到非发酵性的低聚异麦芽糖或糖酯、糖肽等。
按一级结构可将α-葡萄糖苷酶归为水解酶13类的31家族。
α-葡萄糖苷酶通常按底物专一性分为3个类型。
Ⅰ型α-葡萄糖苷酶水解芳基葡萄糖苷如对--硝基苯酚α-D-葡萄糖吡喃苷(pNPG),且水解速率比低聚麦芽糖快。
Ⅱ型α-葡萄糖苷酶对麦芽糖具有高活性,而对芳基葡萄糖苷活性低。
Ⅲ型α-葡萄糖苷酶与Ⅱ型类似,但它水解低聚糖和淀粉的速率基本一样。
2、α-葡萄糖苷酶来源及分布α-葡萄糖苷酶在自然界分布广泛,种类繁多,性质各异,几乎存在于所有生物体内。
目前已经进行研究的α-葡萄糖苷酶除少数来源于植物和动物外,绝大多数均来自于微生物中。
细菌、霉菌及酵母菌等一些菌株能分泌此酶,其中产酶较多的是黑曲霉,市场上销售的α-葡萄糖苷酶产品大都为黑曲霉发酵生产所得。
3、微生物α-葡萄糖苷酶研究现状微生物来源的α-葡萄糖苷酶相对分子量一般在50~120kDa之间。
不同来源的α-葡萄糖苷酶的相性质则差异很大。
同一种属的微生物,除少数外,它们所产生的α-葡萄糖苷酶性质差异也较大。
例如,枯草杆菌属的不同α-葡萄糖苷酶分子量一般在65~120kDa,有些属酸性水解酶,有些属中性水解酶,合适温度各异,底物专一性也不尽相同,有的主要降解直链淀粉、有的水解麦芽糖和低聚麦芽糖、有的具有较宽的底物专一性,可水解多种底物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α-葡萄糖苷酶的研究综述摘要:α-葡萄糖苷酶(EC3.2.1.20 ) 因在淀粉加工上具有重要作用,其研究多年来一直受到重视。
α-葡萄糖苷酶广泛存在于动物、植物和微生物体内,它可从非还原末端水解低聚糖和多聚糖的α-1,4-葡萄糖苷键,也能作用于淀粉的α-1,6-糖苷键,在高葡萄糖苷受体环境中还可催化转糖苷反应。
研究表明α-葡萄糖苷酶在不同领域的开发和应用都具有很好的经济和社会效益。
关键词:葡萄糖苷酶淀粉水解转糖苷反应研究进展生物技术和酶工程的飞速发展为开发淀粉水解酶提供了技术支持。
淀粉水解酶( 包括转化酶) 是一类以淀粉或不同的糖源为底物,根据水解专一性不同,可将淀粉或糖原降解成不同的单糖、低聚糖和水解多糖的水解酶类。
同时,有些酶还具有转化功能,通过分子内的转糖苷作用,改变低聚糖的糖苷键链接方式。
淀粉酶是生物体内广泛存在的一种水解酶,主要作用于淀粉,如植物体内的淀粉消化、植物根系中淀粉积累、动物体内摄入淀粉的分解、微生物利用碳源等。
特别是具有特殊性质和新的应用领域的酶在工业上具有很重要的作用,它们可广泛应用于食品和发酵工业、化学工业以及医学应用等。
α-葡萄糖苷酶作为淀粉水解酶家族中的重要一员,对它的研究一直受到人们的高度重视,多年来α-葡萄糖苷酶在不同领域的应用均产生了很好的经济和社会效益。
1、α-葡萄糖苷酶的简介α-葡萄糖苷酶(EC.3.2.1.20,α-Glucosidases) 为淀粉水解酶类中的一种,主要在细胞外起作用。
它从多糖的非还原末端水解底物的α-葡萄糖苷键,产生α-D-葡萄糖,通常把它们归类于水解酶第3类,主要水解二糖、低聚糖、芳香糖苷,能以蔗糖和多聚糖为底物。
同时,它还具有转糖苷作用,可将低聚糖中的,α-1,4-糖苷键转化成α-1,6-糖苷键或其他形式的链接,从而得到非发酵性的低聚异麦芽糖或糖酯、糖肽等。
按一级结构可将α-葡萄糖苷酶归为水解酶13类的31家族。
α-葡萄糖苷酶通常按底物专一性分为3个类型。
Ⅰ型α-葡萄糖苷酶水解芳基葡萄糖苷如对--硝基苯酚α-D-葡萄糖吡喃苷(pNPG ) ,且水解速率比低聚麦芽糖快。
Ⅱ型α-葡萄糖苷酶对麦芽糖具有高活性,而对芳基葡萄糖苷活性低。
Ⅲ型α-葡萄糖苷酶与Ⅱ型类似,但它水解低聚糖和淀粉的速率基本一样。
2、α-葡萄糖苷酶来源及分布α-葡萄糖苷酶在自然界分布广泛,种类繁多,性质各异,几乎存在于所有生物体内。
目前已经进行研究的α-葡萄糖苷酶除少数来源于植物和动物外,绝大多数均来自于微生物中。
细菌、霉菌及酵母菌等一些菌株能分泌此酶,其中产酶较多的是黑曲霉,市场上销售的α-葡萄糖苷酶产品大都为黑曲霉发酵生产所得。
3、微生物α-葡萄糖苷酶研究现状微生物来源的α-葡萄糖苷酶相对分子量一般在50~120kDa之间。
不同来源的α-葡萄糖苷酶的相性质则差异很大。
同一种属的微生物,除少数外,它们所产生的α-葡萄糖苷酶性质差异也较大。
例如,枯草杆菌属的不同α-葡萄糖苷酶分子量一般在65~120kDa,有些属酸性水解酶,有些属中性水解酶,最适温度各异,底物专一性也不尽相同,有的主要降解直链淀粉、有的水解麦芽糖和低聚麦芽糖、有的具有较宽的底物专一性,可水解多种底物。
不同的嗜热菌产生的α-葡萄糖苷酶,分子量差异较大,嗜热温度低的为65℃,最高可达到100℃。
3.1枯草杆菌α-葡萄糖苷酶1991年Bradley等研究了嗜热枯草芽孢杆菌(Bacillus subtilis) 和热溶芽孢杆菌(Bacillus caldolyticus) α-葡萄糖苷酶。
2种酶均具有胞内低聚-1,4-α-葡萄糖苷酶活性,经薄层分析,它们水解直链低聚麦芽糖产生麦芽糖和葡萄糖,并水解普鲁兰。
二者均不水解Pnpg、麦芽糖、异麦芽糖、异麦芽三糖或潘糖。
2种酶均由二亚基组成,分子量分别为55kDa和60kDa,最适pH分别为7.5和7.0,对底物p-硝基-α-D-麦芽糖苷的K m分别为2.96mM和1.31mM。
他们在1993年进一步研究了嗜热芽孢枯草杆菌转化株(H-17) α-葡萄糖苷酶。
此酶为胞内酶,具有水解低聚-1,4-糖苷键活性,也可水解直链麦芽低聚糖产生麦芽糖和葡萄糖,同时还具有普鲁兰酶活性,水解普鲁兰产生麦芽糖、葡萄糖及( 异构) 潘糖。
此酶对pNPG、麦芽糖、异麦芽糖、异麦芽三糖、( 异构)潘糖无活性,但对淀粉有轻微的水解作用。
原酶为二亚基,亚基分子量为5.5kDa,等电点pI4.8,最适pH7.5,5Mm Tris溶液可80%抑制其活性,对p-硝基苯酚-α-D麦芽糖苷K m值为1.46Mm,最适酶活力温度65℃,其嗜热活性需要最低浓度0.02%的巯基乙醇或0.005Mm 的EDTA。
氨基酸分析发现H-17株产生的酶与枯草杆菌2S产生的酶相比,前者具有较多数量的疏水氨基酸残基,是酶热稳定性和水解活性增加的原因。
3.2 出芽短梗霉菌胞内α-葡萄糖苷酶出芽短梗霉菌(Aureobasidium pullulasns)可产胞内α-葡萄糖苷酶,1993年Badal等将此酶经Trition X-100溶解、Q-Sephacry处理,羟磷灰石、辛基---琼脂糖柱层析、Sephacryl S -200 (丙烯葡聚糖凝胶) 过滤可纯化124倍,酶活达到316.82 U/mg蛋白。
在50℃时最适Ph4.0,稳定pH范围3.0~6.0,在60℃时稳定,最适活力温度为60℃。
部分纯化的酶分解麦芽糖、异麦芽糖、蔗糖和海藻糖,水解相对速率分别为100,60,47,和50,对多聚糖无活性或活性很低,酶活性不需要金属离子参与。
3.3芽孢杆菌α-葡萄糖苷酶Takii等研究的嗜热脂肪芽孢杆菌( Bacillus stearothmophilus)ATCC12016α-葡萄糖苷酶可从非还原末端专一性水解麦芽糖和α-葡聚糖的α-1,4-糖苷键。
它的核苷酸序列推断为1665个碱基对,由555个残基组成,分子量为6.52kDa。
此酶与蜡状芽孢杆菌(Bacillus cereus)ATCC7064、嗜热葡萄糖苷酶地衣芽孢杆菌( Bacillus thermoglucosidasius)KPI006、卡尔斯伯酵母(Saccharomyes carlsbergensis)CBII、枯草杆菌(Bacillus sp.)SAM1606枯草杆菌等的葡萄糖苷酶和变性链球菌(Streptococcus mutans) 的右旋葡萄糖苷酶及大肠杆菌( Escherichia coli)ECLII6 的海藻糖6-磷酸水解酶具有40%~57% 的序列相似性( 所有这些酶均显示出于蜡状芽孢杆菌( B.cereus) 葡萄糖苷酶相似的X衍射二级结构。
他们认为此酶位于N-端的一个活性中心,为(α/B)桶状折叠结构。
2009 年Arzu 等对地衣芽孢杆菌(Geobacillus sp. )A343和嗜热菌A343的嗜热α-葡萄糖苷酶性质进行了研究。
他们从地衣芽孢杆菌A343和嗜热菌A343中部分纯化分离出2种嗜热的α-葡萄糖苷酶。
A343的α-葡萄糖苷酶最适温度60℃、Ph6.8、对pNPG底物的Km值为1.38Mm.A343α-葡萄糖苷酶最适温度65℃、Ph8.5。
通过20种底物专一性和薄层层析分析证明A343α-葡萄糖苷酶具有较高的转糖苷活性,而A343α-葡萄糖苷酶有较宽的底物专一性。
A343α-葡萄糖苷酶底物为麦芽糖、糊精、松二糖、麦芽三糖、麦芽戊糖、麦芽四糖、麦芽六糖、苯基葡萄糖吡喃。
A343α-葡萄糖苷酶更多的水解糊精、松二糖、麦芽糖、苯基葡萄糖吡喃苷、麦芽三糖、麦芽四糖、麦芽戊糖、麦芽六糖、异麦芽糖、蔗糖和曲二糖等的α-1,2、α-1,3、α-1,4、α-1,6键。
60℃保温5h,A343 和A333 的活性保留分别为92 %和83% 。
经试验测试它们能抵抗许多变性剂#抑制剂和金属离子2种α-葡萄糖苷酶的转糖苷活性和淀粉水解能力均具有潜在的开发价值。
3.4 曲霉α-葡萄糖苷酶黑曲霉(Aspergillus niger)在以木薯淀粉为碳源的培养基中可产生2种葡萄糖淀粉水解酶: α-葡萄糖酶和α-淀粉酶。
2种酶经硫酸铵沉淀、离子交换层析和2次凝胶过滤层析可纯化为2种纯酶,葡萄糖淀粉酶1和葡萄糖淀粉酶2,分子量分别为74kDa和96kDa,等电点pI分别为3.8和3.95,最适pH则分别为4.2和4.5,稳定pH范围 3.5~9.0。
这2种酶均有嗜热性,最适温度分别为60℃和65℃,在60℃时酶活性可稳定1h。
酶动力学分析表明2种酶水解支链淀粉均比直链淀粉更有效,说明2种酶均具有α-葡萄糖苷酶的水解活性。
3.5 其他微生物的α-葡萄糖苷酶疏棉状嗜热丝孢菌(Thermomyces lanuginosus)在生长过程中可用右旋糖作为碳源,它们在早期的发育过程中能产生一种具有降解右旋糖的α-葡萄糖苷酶。
酶活高峰期在培养22 h后出现,在菌种培养的稳定期,由于其他蛋白酶的影响,酶的活力极快地降低。
此酶是一种高活性的水解葡聚糖苷的α-葡萄糖苷酶。
4 α-葡萄糖苷酶研究发展趋势1982年日本林原生化研究所成功筛选出α-葡萄糖苷酶生产菌种,使该酶得以实现工业化规模发酵生产,产品大量应用于淀粉加工业和食品工业。
此后,各种新型的α-葡萄糖苷酶及其新的应用受到空前的重视。
从α-葡萄糖苷酶研究的历史进程分析,对它的研究可分为3个方面: ①主要集中在生α-葡萄糖苷酶的微生物菌种的筛选方面,涉及菌种培养、酶活力提高、酶分离纯化和酶的基本理化性质研究;②集中在酶的氨基酸序列分析、酶的结构分析、酶的催化机理研究等; ③集中在酶的应用开发,包括酶的水解底物专一性、酶水解底物的条件和速度、酶催化反应产物及应用开发、新型α-葡萄糖苷酶开发及应用等。
目前,α-葡萄糖苷酶已广泛应用于淀粉水解、酒精发酵、低聚异麦芽糖生产、化学合成、代谢机理研究、临床检测和疾病治疗等领域。
国外对α-葡萄糖苷酶的研究较深入,经文献检索已报道的各类α-葡萄糖苷酶研究达几十种,日本、美国、丹麦等国家已实现微生物发酵α-葡萄糖苷酶的工业化生产。
我国对α-葡萄糖苷酶研究还处于起步阶段,主要集中在第一方面的研究,对酶的结构、催化机制、酶应用和酶产品开发等方面的报道很少,更没有工业化α-葡萄糖苷酶的产品,研究和生产用酶基本上全部依赖进口。
今后我国α-葡萄糖苷酶的研究和产品开发任重而道远。
参考文献:【1】淮海工学院.一种热球菌产高温α-葡萄糖苷酶及其产酶方法:中国,CN101195818A[P].2008-6-11.【2】杨磊,吕明生.超嗜热菌Thermocccus sp.HJ21产高温α-葡萄糖苷酶条件和酶学性质初步研究【J】.食品发酵工业,2008,34(7):1-6.【3】中国科学院微生物研究所.一种新的高温α-葡萄糖苷酶的基因:中国,CN1500869A[P].2004-05-02.【4】汪东武,王治业,彭章普,等。