数学建模常用各种检验方法
数学建模方法-非参数假设检验

两相关样本的非参数检验(2 Related Samples Test)
【例12】clinical trial.sav 比较试验药组(group=1) 治疗前血红蛋白含量(hb1)和治疗后血红蛋白含量(hb2) 有无差异.
这是两组相关计量资料的比较. 结论:P=0.018,有显著性差异.
多个相关样本的非参数检验(K Related Samples Test) 【例13】nonpara_7.sav 分析药物是否有效
两相关样本的非参数检验(2 Related Samples Test) 多个相关样本的非参数检验(K Related Samples Test)
两独立样本的非参数检验(2 Independent Samples Test) 检验两个独立样本间是否具有相同的分布. 【例8】nonpara_3.sav 比较两组人群的RD值有无差别 这是两组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-2),其它使用默认选项即可.从负二项分 布的结论.
单样本的K_S拟合优度检验
检验一计量资料是否服从某种理论分布,这里的分布可以 是正态分布(Normal),均匀分布(Uniform),泊松分布(Poisson), 指数分布(Exponential).
【例7】diameter_sub.sav 检验是否服从正态分布
多个独立样本的非参数检验(K Independent Samples Test) 【例10】nonpara_5.sav 比较三种药物的效果有无差别 这是三组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-3),其它使用默认选项即可. 结论:三组的秩和12.6,7.6,3.8,P=0.008,三种药物的 效果有显著性差异,以甲药效果最好. 【例11】nonpara_6.sav 比较三种固定钉治疗骨折的疗效 这是三组等级/频数资料的比较. 先说明频数变量, 再选择要检验的变量和分类变量,定义分类值(1-3),其它 使用默认选项即可. 结论:P=0.129,故三组无显著性差异.
数学建模的实验类型

数学建模的实验类型
数学建模的实验类型可以分为以下几种:
1. 理论验证实验:通过实验验证建模过程中的假设、推导以及模型中的数学公式是否正确。
例如,通过实验验证牛顿力学中的运动定律是否成立。
2. 数据收集实验:通过实际观测或者采集数据来支持数学模型的构建和验证。
例如,利用实验仪器收集实验数据,用于构建统计模型或者回归模型。
3. 数值模拟实验:利用计算机技术和数值方法对数学模型进行求解和模拟。
例如,使用有限元方法对结构力学模型进行数值分析,得到结构的应力分布和变形情况。
4. 实物模型实验:通过制作物理或者机械模型来验证数学模型的预测结果。
例如,使用比例缩小的航天器模型进行飞行实验,验证飞行力学模型的准确性。
5. 实际应用实验:将数学模型应用到实际问题中,通过实验对模型效果进行评估和优化。
例如,在工业过程中应用控制理论模型对系统进行控制,通过实验验证控制效果是否满足需求。
这些实验类型可以根据具体的研究目的和实验条件来选择和设计。
不同类型的实验可以相互组合和补充,最终得到对数学模型的全面理解和验证。
数学建模 假设检验方法

数学建模假设检验方法嘿,咱今儿来聊聊数学建模里的假设检验方法。
你说这玩意儿像不像个侦探,在一堆数据里找线索、找真相呢!想象一下,你面前有一大堆的数据,就像一团乱麻。
那假设检验方法呀,就是帮你理清这团乱麻的神奇工具。
它能让你在看似毫无头绪的数据中,找到关键的信息,判断出一些说法到底靠不靠谱。
比如说,有人说喝某种神奇药水能让人长高。
那咱怎么判断这话对不对呢?这时候假设检验就出马啦!咱先假设这个说法是对的,然后去收集数据,看看喝了药水的人和没喝药水的人身高到底有没有明显差别。
如果有,那可能这个说法有点道理;要是没有,嘿嘿,那这个说法就得打个问号啦。
这就好比你去判断一个人说的话是不是吹牛。
你不能光听他说呀,得用事实去验证。
假设检验就是那个帮你验证的好帮手。
它就像是个严格的裁判,不会轻易相信那些没经过检验的说法。
它会仔细地分析数据,不放过任何一个细节。
有时候,一个小小的数据偏差,都可能让结果完全不同呢!在实际应用中,假设检验可太重要啦。
比如在医学领域,要判断一种新药物有没有效果,就得用假设检验。
在经济领域,想知道一个政策对市场的影响,也得靠它。
你看,数学建模里的假设检验方法可不只是在书本上的知识,它是能实实在在帮我们解决问题的利器呢!它就像一个默默无闻却超级厉害的幕后英雄,在很多领域都发挥着重要作用。
咱可不能小瞧了它呀!要是没有它,那我们面对那些复杂的数据,不就像无头苍蝇一样乱撞啦?所以啊,好好掌握假设检验方法,就等于给自己配备了一把开启数据宝藏大门的钥匙。
让我们能在数据的海洋里畅游,找到那些隐藏的宝藏和真相。
咱可别觉得它难,只要用心去学,去实践,你肯定能发现它的奇妙之处。
说不定哪天,你就会像发现新大陆一样,感叹:“哎呀,原来假设检验这么好用啊!”总之呢,数学建模的假设检验方法,那绝对是个好东西。
大家可得重视起来,好好去钻研钻研。
别等要用的时候才后悔没学好呀!。
数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
数学建模常用各种检验方法

数学建模常用各种检验方法数学建模是利用数学方法解决实际问题的过程。
在进行数学建模时,需要对模型的合理性进行检验,以确保模型的可靠性和准确性。
本文将介绍数学建模中常用的各种检验方法。
1.残差分析方法残差(residual)是指观测值与模型预测值之间的差异。
残差分析可以通过比较残差的大小、分布和形态,来检验模型的合理性。
常用的残差分析方法包括:正态性检验、稳定性检验、独立性检验和同方差性检验。
2.敏感性分析方法敏感性分析(sensitivity analysis)用于分析参数对模型结果的影响程度。
通过改变参数的值,并观察输出结果的变化,可以评估参数对模型的敏感性。
常用的敏感性分析方法包括:单参数敏感性分析、多参数敏感性分析和全局敏感性分析。
3.假设检验方法假设检验(hypothesis testing)用于判断模型的假设是否成立。
通过对模型的假设进行检验,可以评估模型的合理性和拟合优度。
常用的假设检验方法包括:t检验、F检验和卡方检验。
4.误差分析方法误差分析(error analysis)用于评估模型的误差水平。
通过比较实际观测值与模型预测值之间的误差,可以评估模型的准确性和精度。
常用的误差分析方法包括:平均绝对误差(MAE)、均方根误差(RMSE)和平均百分比误差(MAPE)。
5.稳定性分析方法稳定性分析(stability analysis)用于评估模型的稳定性和鲁棒性。
通过对模型进行参数扰动或输入扰动,并观察输出结果的变化,可以评估模型的稳定性和可靠性。
常用的稳定性分析方法包括:参数扰动分析、输入扰动分析和鲁棒性分析。
6.验证方法验证(validation)用于评估模型的预测能力和适用范围。
通过对模型进行验证,可以判断模型在不同情况下的预测效果和适用性。
常用的验证方法包括:留一验证(leave-one-out validation)、交叉验证(cross-validation)和外部验证(external validation)。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种检验方法
1.单个总体2
Nμσ的均值μ的检验:
(,)
2
σ已知,关于均值的检验用ztest命令来实现.
[h,p,ci]=ztest(x,mu,sigma,alpha,tail)
2
σ已知,关于均值的检验用ttest命令来实现.
[h,p,ci]=ttest(x,mu,alpha,tail)
2.两个正态总体均值差的检验(t 检验)
还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。
在Matlab 中
由函数ttest2 实现,命令为:
[h,p,ci]=ttest2(x,y,alpha,tail)
3.分布拟合检验
在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检
验关于分布的假设。
下面介绍2χ检验法和专用于检验分布是否为正态的“偏峰、峰度
检验法”。
2
χ检验法
0 H :总体x的分布函数为F(x) ,
1 H : 总体x的分布函数不是F(x).
在用下述χ 2检验法检验假设0 H 时,若在假设0 H 下F(x)的形式已
知,但其参数
值未知,这时需要先用极大似然估计法估计参数,然后作检验。
偏度、峰度检验
4.其它非参数检验
Wilcoxon秩和检验
在Matlab中,秩和检验由函数ranksum实现。
命令为:
[p,h]=ranksum(x,y,alpha)
其中x,y可为不等长向量,alpha为给定的显著水平,它必须为0和1之间的数量。
p返回
产生两独立样本的总体是否相同的显著性概率,h返回假设检验的结果。
如果x和y的总
体差别不显著,则h为零;如果x和y的总体差别显著,则h为1。
如果p 接近于零,则可对
原假设质疑。
5.中位数检验
在假设检验中还有一种检验方法为中位数检验,在一般的教学中不一定介绍,但在
实际中也是被广泛应用到的。
在Matlab中提供了这种检验的函数。
函数的使用方法简单,
下面只给出函数介绍。
signrank函数
signrank Wilcoxon符号秩检验
[p,h]=signrank(x,y,alpha)
其中p给出两个配对样本x和y的中位数相等的假设的显著性概率。
向量x,y的长度必须
相同,alpha为给出的显著性水平,取值为0和1之间的数。
h返回假设检验的结果。
如果
这两个样本的中位数之差几乎为0,则h=0;若有显著差异,则h=1。
signtest函数
signtest 符号检验
[p,h]= signtest(x,y,alpha)
其中p给出两个配对样本x和y的中位数相等的假设的显著性概率。
x
和y若为向量,二者
的长度必须相同;y亦可为标量,在此情况下,计算x的中位数与常数y之间的差异。
alpha
和h同上。
matlab 判断正态分布
总体分布正态性检验
进行参数估计和假设检验时,通常总是假定总体服从正态分布,虽然在许多情况下这个假定是合理的,但是当要以此为前提进行重要的参数估计或假设检验,或者人们对它有较大怀疑的时候,就确有必要对
这个假设进行检验,
进行总体正态性检验的方法有很多种,以下针对MATLAB统计工具箱中提供的程序,简单介绍几种方法。
1)Jarque-Bera检验
利用正态分布的偏度g1和峰度g2,构造一个包含g1,g2的分布统计量(自由度n=2),对于显著性水平,当分布统计量小于分布的分位数时,接受H0:总体服从正态分布;否则拒绝H0,即总体不服从正态分布。
这个检验适用于大样本,当样本容量n较小时需慎用。
Matlab命令:h =jbtest(x),[h,p,jbstat,cv] =jbtest (x,alpha)。
2)Kolmogorov-Smirnov检验
通过样本的经验分布函数与给定分布函数的比较,推断该样本是否来自给定分布函数的总体。
容量n的样本的经验分布函数记为F n(x),可由样本中小于x的数据所占的比例得到,给定分布函数记为G(x),构造的统计量为,即两个分布函数之差的最大值,对于假设H0:总体服从给定的分布G(x),及给定的,根据D n的极限分布(n®¥时的分布)确定统计量关于是否接受H0的数量界限。
因为这个检验需要给定G(x),所以当用于正态性检验时只能做标准正态检验,即H0:总体服从标准正态分布。
Matlab命令:h =k stest(x)。
3)Lilliefors检验
它将Kolmogorov-Smirnov检验改进用于一般的正态性检验,即H0:
总体服从正态分布,其中由样本均值和方差估计。
Matla b命令:
h =lillietest(x),[h,p,lstat,cv]=lillietest(x,alpha)。
4)另外还有一种方法:首先对于数据进行标准化:Z = ZSCORE(X),然后在进行2)的Kolmogorov-Smirnov检验,检验是否为标准正态分布,类似于对于方法2)的改进。