三角函数与解三角形中的范围问题含答案

合集下载

三角函数与解三角形中的范围问题含答案

三角函数与解三角形中的范围问题含答案

1.在锐角△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,且B=2A ,求的ab 取值范围2.在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,设22222()()4f x a x a b x c =---,(1)若(1)0f =,且B -C=3π,求角C. (2)若(2)0f =,求角C 的取值范围.3.在锐角ABC ∆中,,,a b c 分别是角,,A B C 2sin ,c A =(1)确定角C 的大小;(2)若c =ABC ∆面积的最大值.4.已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab.(1)求cos C;(2)若c=2,求△ABC面积的最大值.5.在△中,角、、所对的边分别为、、,且.(Ⅰ)若,求角;(Ⅱ)设,,试求的最大值.6.的三个内角依次成等差数列.(1)若,试判断的形状;(2)若为钝角三角形,且,试求代数式的取值范围.7.在△ABC 中,内角A ,B ,C 所对边长分别为,,a b c ,8=•AC AB ,BAC θ∠=,4a =.(1)求b c ⋅的最大值及θ的取值范围;(2)求函数22()()2cos 4f πθθθ=++-.8.在ABC △中,1tan 4A =,3tan 5B =. (1)求角C 的大小;(2)若ABC △9.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且满足274sin cos222B C A +-=. (1)求角A 的度数;(2)求b c a+的取值范围.10.在△ABC中,sinB+sinC=sin(A-C).(1)求A的大小;(2)若BC=3,求△ABC的周长L的最大值.11.设的内角所对的边分别为且.(1)求角的大小;(2)若,求的周长的取值范围.12.已知向量,(),函数且f(x) 图像上一个最高点的坐标为,与之相邻的一个最低点的坐标为.(1)求f(x)的解析式。

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。

根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。

根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。

根据正切的定义,$\tan A=\frac{a}{b}$。

根据余切的定义,$\cotA=\frac{b}{a}$。

根据正割的定义,$\sec A=\frac{c}{a}$。

根据余割的定义,$\csc A=\frac{c}{b}$。

2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。

2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。

4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。

5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。

6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。

三角函数与解三角形题型归纳及习题含详解

三角函数与解三角形题型归纳及习题含详解
2 简而言之即“奇变偶不变,符号看象限”. 题型归纳及思路提示
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

专题24-解三角形中的最值、范围问题(解析版)

专题24-解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换及解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值 4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由cos cos>⇔>仅在A B A B>⇔<利用的是余弦函数单调性,而sin sinA B A B一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设及面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:可知:,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时, 取最大值,此时, 由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值. 【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值. 详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 , 所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<, 【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解及三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知3cos ,cos 44x x m ⎛⎫=⎪⎝⎭,sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,2⎛⎤⎥⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c , ()()()222sin 3cos b a c B C ac A C --+=+(1)求A 的大小; (2)求代数式b c a+的取值范围.【答案】(1)3π(2)32b ca+≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b c a+的取值范围即可.试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∵ABC ∆为锐角三角形,且3A π= ∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b c a+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+ ⎪⎝⎭的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为3,求ABC ∆周长的取值范围.【答案】(1) 3A π= (2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 232a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号,所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( ) A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和及两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析: (1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC面积的最大值为33. 8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦. 在ABC ∆中,由正弦定理,得sin sin b cB C=,∴22sin 2sin 3cos 3311sin sin B C B c B B π⎛⎫- ⎪⎝⎭===+=,∵43B ππ≤≤,∴1tan 3B ≤≤231c ≤≤,即c 的取值范围为31⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角,,A B C 的对边分别为,,a b c , ABC ∆的面积S 满足2223a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos2322A A B A A A A π⎛⎫+-+-=+ ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围. (2)由正弦定理sin sin b c B C=得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪⎪⎝⎭⎝⎭12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (3试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =,∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =.∴ABC ∆周长的取值范围是(3+.。

三角函数与解三角形中的最值(范围)问题

三角函数与解三角形中的最值(范围)问题


sin
2
2
(sin+cos)
sin

π
4

sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2

3

所以 的取值范围为(

2,
6+ 2
].
2

高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(

sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

三角形中的最值或范围问题

三角形中的最值或范围问题

三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档1.在锐角△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,且B=2A ,求的ab 取值范围2.在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,设22222()()4f x a x a b x c =---,(1)若(1)0f =,且B -C=3π,求角C. (2)若(2)0f =,求角C 的取值范围.3.在锐角ABC ∆中,,,a b c 分别是角,,A B C 2sin ,c A =(1)确定角C 的大小;(2)若c =ABC ∆面积的最大值.文档4.已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab.(1)求cos C;(2)若c=2,求△ABC面积的最大值.5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且ab b a c -+=222.(Ⅰ)若tan tan tan tan )A B A B -=+⋅,求角B ; (Ⅱ)设(sin ,1)m A =u r ,(3,cos 2)n A =r ,试求⋅的最大值.文档6.ABC ∆的三个内角A B C ,,依次成等差数列.(1)若C A B sin sin sin 2=,试判断ABC ∆的形状;(2)若ABC ∆为钝角三角形,且c a >,试求代数式212222C A A sincos -的取值范围.7.在△ABC 中,内角A ,B ,C 所对边长分别为,,a b c ,8=•,BAC θ∠=,(1)求b c ⋅的最大值及θ的取值范围;(2)求函数22()()2cos 4f πθθθ=++-.8.在ABC △中,1tan 4A =,3tan 5B =. (1)求角C 的大小;(2)若ABC △文档9.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且满足274sin cos222B C A +-=. (1)求角A 的度数;(2)求b c a+的取值范围.10.在△ABC中,sinB+sinC=sin(A-C). (1)求A的大小;(2)若BC=3,求△ABC的周长L的最大值.文档11.设ABC ∆的内角C B A ,,所对的边分别为,,,c b a 且b c C a =+21cos . (1)求角A 的大小;(2)若1=a ,求ABC ∆的周长l 的取值范围.12.已知向量)3,(sin ),cos ,1(x x ωω==,(0ω>),函数x f ⋅=)(且f(x) 图像上一个最高点的坐标为)2,12(π,与之相邻的一个最低点的坐标为)2,127(-π. (1)求f(x)的解析式。

(2)在△ABC 中,a b c 、、是角A B C 、、所对的边,且满足222a c b ac +-=,求角B 的大小以及f(A)取值范围。

文档(1)若AB b a cos cos =,且2=c ,求ABC ∆的面积; (2)已知向量)cos ,(sin A A m =,)sin ,(cos B B n -=,求|2-|的取值范围.14.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且ca b b a c a -=++, (1)求角B 的大小;(2)若ABC △最大边的边长为7,且A C sin 2sin =,求最小边长.15.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.它的外接圆半径为6. ∠B ,∠C 和△ABC 的面积S 满足条件:22)(c b a S --=且.34sin sin =+C B (1)求A sin(2)求△ABC 面积S 的最大值.文档16.已知C B B A ABC sin 3)cos 3sin (sin =+中,△ (Ⅰ)求角A 的大小;(Ⅱ)若BC=3,求△ABC 周长的取值范围.∆中,三个内角A、B、C的对边分别为a、b、c,且满足17.在锐角ABC+sin2=+BBBB2sin.1cos2sin2∠的值;(1)求B(2)若b=3,求a+c的最大值.文档18.在△ABC 中,角A 、B 、C 对边分别是,,a b c ,且满足222()AB AC a b c ⋅=-+u u u r u u u r .(1)求角A 的大小;(2)求24sin()23C B π--的最大值,并求取得最大值时角B 、C 的大小.19.在△ABC 中,角A 、B 、C 所对的边分别是a,b,c 且ac c b a 21222=-+. (1)求B C A 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值.20.已知在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,cos cos cos B c B b C =+(1)求角B 的大小;文档(2)设向量()()cos ,cos 2,12,5m A A n ==-u r r ,求当m n ⋅u r r 取最大值时,tan C 的值.参考答案 1.(1)C=6π(2)0<C ≤3π 【解析】(1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b=2c ,∴sinB=2sinC ,又B-C=3π.∴sin(C+3π)=2sinC , ∴sinC ·cos 3π+cosC ·sin 3π=2sinC , ∴23sinC-23cosC=0,∴sin(C-6π)=0, 又∵-6π<C-6π<65π,∴C=6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cosC=ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cosC ≥21,又∵C ∈(0,π),∴0<C ≤3π. 2.(1)C=6π (2)0<C ≤3π 【解析】解;(1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b= 2c …………(1分).又由正弦定理,得b= 2RsinB ,c=2RsinC,将其代入上式,得sinB=2sinC …………(2分) ∵B -C=3π,∴B=3π+C ,将其代入上式,得sin (3π+C )=2sinC ……………(3分) ∴sin (3π)cosC + cos 3πsinC =2sinC ,整理得,C C cos sin 3=…………(4分)∴tanC=33……………(5分) ∵角C 是三角形的内角,∴C=6π…………………(6分) (2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0,即a 2+b 2-2c 2=0……………(7分)由余弦定理,得cosC=abc b a 2222-+……………………(8分) =ab b a b a 222222+-+ ∴cosC=ab b a 422+2142=≥ab ab (当且仅当a=b 时取等号)…………(10分) ∴cosC ≥21, ∠C 是锐角,又∵余弦函数在(0,2π)上递减,∴.0<C ≤3π………………(12分) 3.(1)sin sin a c A C==sin C ∴=又C 是锐角 3C π∴=(2)222227cos 22a b c a b C ab ab +-+-==12= 22727a b ab ab ∴+-=≥-7ab ∴≤1sin 2ABC S ab C ∆∴==4≤当且仅当a b ==ABC ∆的面积有最大值4 【解析】略4.【解析】5.(Ⅰ)4π(Ⅱ)817 【解析】3212cos 222222π=⇒=-+=⇒-+=C ab c b a C ab b a c ,…….2分(1)由tan tan tan tan )A B A B -=+⋅33)tan(=-⇒B A 63232πππ=-∴<-<-B A B A Θ 4分又432ππ=∴=+B B A Θ 5分 (2)⋅=3sinA+ cos2A =-2(sinA-817)432+8分 ⇒∈⇒∈]1,0(sin )32,0(A A πΘ⋅的最大值为81710分 6..解:(Ⅰ)∵C A B sin sin sin 2=,∴ ac b =2.∵C B A ,,依次成等差数列,∴B C A B -=+=π2,3π=B .由余弦定理B ac c a b cos 2222-+=,ac ac c a =-+22,∴c a =.∴ABC ∆为正三角形.(Ⅱ)212cos 2sin 32sin2-+A A C =21sin 232cos 1-+-A C=12223sin A cos A π⎛⎫-- ⎪⎝⎭=A A A sin 43cos 41sin 23-+ =A A cos 41sin 43+ =)6sin(21π+A∵223A ππ<<,∴25366A πππ<+<,∴1262sin A π⎛⎫<+<⎪⎝⎭114264sin A π⎛⎫<+< ⎪⎝⎭.∴代数式232cos 2sin 32sin2++A A C 的取值范围是14⎛ ⎝⎭.【解析】略7.Ⅰ)cos 8bc θ⋅= 2222cos 4b c bc θ+-=即2232b c += ……………………2分又222b c bc +≥,所以16bc ≤,即bc 的最大值为16………………4分即816cos θ≤ 所以 1cos 2θ≥ , 又0<θ<π 所以0<θ3π≤ ……6分(Ⅱ)()[1cos(2)]1cos 22cos 212f πθθθθθ=-+++=++2sin(2)16πθ=++ …………………………………………9分因0<θ3π≤,所以6π<5266ππθ+≤, 1sin(2)126πθ≤+≤ ………10分 当5266ππθ+= 即3πθ=时,min 1()2122f θ=⨯+= ……………11分 当262ππθ+=即6πθ=时,max ()2113f θ=⨯+= ……………12分【解析】略8.(Ⅰ)3π4C =(Ⅱ)最小边2BC =.【解析】解:(Ⅰ)∵ π()C A B =-+,∴ 1345tan tan()113145C A B +=-+=-=--⨯. 又 0πC <<Q , ∴ 3π4C =. (Ⅱ)34C =πQ , ∴ AB 边最大,即17AB =. 又 ∵ tan tan (0)A B A B π<∈2,,, ∴ 角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π(0)2A ∈,, 得17sin A =. 由sin sin AB BC C A =, 得 sin 2sin ABC AB C==g .所以,最小边2BC =.9.(I )(II )(]1,2b ca+∈ 【解析】解:(I )()()2721cos 2cos 12A A +--=Q ,……4分 ∴24cos 4cos 10A A -+=解得1cos 2A =,……6分 ∵0A π<< 3A π∴=. ……8分(II )2sin sin sin sin 32sin sin 6sin3B B b c BC B a A πππ⎛⎫+- ⎪++⎛⎫⎝⎭===+ ⎪⎝⎭,……10分 20,3B π⎛⎫∈ ⎪⎝⎭Q ,5,666B πππ⎛⎫∴+∈ ⎪⎝⎭, ∴1sin()126B π<+≤ ∴(]1,2b c a +∈ ……12分 10.解:(1)将sinB+sinC=sin(A-C)变形得sinC(2cosA+1)=0, (2分) 而sinC ≠0,则cosA=21-,又A ∈(0,π),于是A=32π; (6分) (2)记B=θ,则C=3π-θ(0<θ<3π),由正弦定理得⎪⎩⎪⎨⎧-π==)3sin(32sin 32θAB θAC , (8分) 则△ABC 的周长l=23[sin θ+sin(3π-θ)]+3=23sin(θ+3π)+3≤23+3, (11分) 当且仅当θ=6π时,周长l 取最大值23+3. (13分) 【解析】略11.解:(1)由b c C a =+21cos 得1sin cos sin sin 2A C CB += …………2' 又()sin sin sin cos cos sin B AC A C A C =+=+ …………4'1sin cos sin 2C A C ∴=,0sin ≠C Θ,21cos =∴A , 又0A π<<Q 3π=∴A …………6'(2)由正弦定理得:B A B a b sin 32sin sin ==,C c sin 32=)())1sin sin 1sin sin l a b c B C B A B =++=+=++………8'112cos 22B B ⎛⎫=++ ⎪ ⎪⎝⎭⎪⎭⎫ ⎝⎛++=6sin 21πB …………10',3A π=Q 20,,3B π⎛⎫∴∈ ⎪⎝⎭⎪⎭⎫ ⎝⎛∈+∴65,66πππB1sin ,162B π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦故ABC ∆的周长l 的取值范围为(]2,3. …………13'(2)另解:周长l 1a b c b c =++=++ 由(1)及余弦定理2222cos a b c bc A =+-221b c bc ∴+=+ …………8'22()1313()2b c b c bc +∴+=+≤+ 2b c +≤ …………10'又12b c a l a b c +>=∴=++>即ABC ∆的周长l 的取值范围为(]2,3. ………… 13'【解析】略 12.略【解析】将条件代入求参数,分析角之间的关系求值.(Ⅰ) x x x f ωωcos 3sin )(+=⋅=………………………1分)cos 23sin 21(2x x ωω+=………………………2分)3sin(2πω+=x …………………………………3分∵f(x) 图像上一个最高点的坐标为)2,12(π,与之相邻的一个最低点的坐标为)2,127(-π. ∴2121272πππ=-=T ,所以π=T ,于是22==Tπω…………………4分 )32sin(2)x (f π+=x 可知…………………………5分(2)∵222a cb ac +-=,∴2221cos 22a cb B ac +-==,…………………7分 又0B π<<,∴3B π=…………………8分)32sin(2)A (f π+=A , ∵3B π=,∴203A π<<, 可知35323πππ<+<A …………………10分 []1,1)32sin(-∈+∴πA []2,2)(-∈∴A f …………………12分.按确定sin()y A x ωϕ=+的解析式的一般步骤定参数.13.解:(1)在△ABC 中,,222ab c b a +=+Θ即o ab b a ab b a c 60cos 222222-+=-+=Θ3π=∠∴C 又A B b a cos cos = 即B B A A ABB A b a cos sin cos sin ,cos cos sin sin =∴==,即B A B A =∴=,2sin 2sin 或2π=+B A 而3π=∠C 故△ABC 是等边三角形。

相关文档
最新文档