概率论-大数定律和中心极限定理习题和例题
《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。
五、大数定律与中心极限定理(答案)

概率论与数理统计练习题系 专业 班 姓名 学号第五章 大数定律与中心极限定理一、选择题:1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {}n n P p n με→∞-≥ [ A ](A )0= (B )1= (C )0> (D )不存在2.设随机变量X ,若2() 1.1,()0.1E X D X ==,则一定有 [ B ](A ){11}0.9P X -<<≥ (B ){02}0.9P X <<≥(C ){|1|1}0.9P X +≥≤ (D ){|}1}0.1P X ≥≤》3.121000,,,X X X 是同分布相互独立的随机变量,~(1,)i X B p ,则下列不正确的是 [ D ](A )1000111000i i X p =≈∑ (B)10001{}i i P a X b =<<≈Φ-Φ∑ (C )10001~(1000,)i i X B p =∑ (D )10001{}()()i i P a X b b a =<<≈Φ-Φ∑二、填空题:1.对于随机变量X ,仅知其1()3,()25E X D X ==,则可知{|3|3}P X -<≥2.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据契比雪夫不等式{}6P X Y +≥≤三、计算题:1.设各零件的重量是同分布相互独立的随机变量,其数学期望为0.5kg ,均方差为0.1kg,问5000只零件的总重量超过2510kg 的概率是多少解:设第i 件零件的重量为随机变量i X ,根据题意得0.1.i EX ==5000500011()50000.52500,()50000.0150.i i i i E X D X ===⨯==⨯=∑∑ ;5000500012500(2510)110.92070.0793.i i i X P X P =->=>≈-Φ≈-=∑∑2.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的且在(0.5,0.5)-上服从均匀分布。
大数定律习题全面汇总

第五章 大数定律与中心极限定理〔练习题〕1.随机的掷6个骰子,利用切贝谢夫不等式估计6个骰子出现点数之和在15点到27点之间的概率.解:设i ξ为第i 个骰子出现的点数(1,2,3,4,5,6)i =,它们相互独立.ξ为6个骰子出现的点数之和,即1ki i ξξ==∑.那么有1234562166i E ξ+++++==, 2222112112113512666666612i D ξ⎛⎫⎛⎫⎛⎫=-⨯+-⨯++-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故21E ξ=,352D ξ=.由切贝谢夫不等式得 2351352(1527)(216)10.514672P P ξξ-<<=-<≥=-≈. 2.一本300页的书中每页印刷错误的个数服从参数为0.2的普哇松分布,求这本书的印刷错误总数不多于70的概率.解:设第i 页的印刷错误个数为(1,2,,300)i i ξ=,那么0.2i E ξ=,0.2i D ξ=且i ξ相互独立,故所求概率为()300000170 1.290.90153i i P ξ=⎛⎫⎛⎫≤≈Φ=Φ=Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭∑. 3.对敌人阵地进展1000次炮击,炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率近似值.解:设第i 次炮击击中颗数为(1,2,,1000)i i ξ=,有0.4i E ξ=, 3.6i D ξ=那么有1000000010113804203312120.629310.25863i i P ξ=⎛⎫⎛⎫⎛⎫<≤≈Φ-Φ=Φ-Φ- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫=Φ-=⨯-= ⎪⎝⎭∑ 4.某电教中心有100台彩电,各台彩电发生故障的概率为0.02,每台彩电工作是相互独立的.试分别用二项分布、普哇松分布和中心极限定理计算彩电出故障台数不少于1的概率.解:〔1〕根据题意设(100,0.02)B ξ,那么有100(1)1(0)1(0.98)0.8674P P ξξ≥=-==-=〔2〕根据普哇松定理,100n =,0.02p =,2np =,那么有2(1)1(0)10.8647P P e ξξ-≥=-==-=〔3〕根据中心极限定理,有0001(1)111(0.7143)0.7641.4P ξ-⎛⎫≥≈-Φ=-Φ=-Φ-= ⎪⎝⎭ 5.设(1,2,,50)i i ξ=是相互独立的随机变量,它们都服从参数为0.02的普哇松分布.利用中心极限定理计算5012i i P ξ=⎛⎫≥ ⎪⎝⎭∑. 解:设501i i ξξ==∑,因为0.02i E ξ=,0.02i D ξ=,故1E ξ=,1D ξ=,那么有500012(2)11(1)10.84130.1587i i P P ξξ=⎛⎫≥=≥≈-Φ=-Φ=-= ⎪⎝⎭∑ 6.某车间有200台机床,它们独立工作且开工率各为0.6,开工时耗电各为1kW.问供电所至少要供应这个车间多少电力,才能以99.9℅的概率保证这个车间不会因供电缺乏而影响生产?解:设m 为某时刻工作着的机床台数,200n =,0.6p =,某时刻m 台机床工作,需耗电m kW.设供电数为r kW ,根据题意有 ()0.999P m r ≤≥而又有00()P m r ≤≈Φ=Φ故00.999Φ≥查表可得3.1≥ 所以141r ≥.因此,假设向该车间供电141kW ,那么由于供电缺乏而影响生产的概率小于0.001.。
大数定律和中心极限定理例题与解析

在大量随机选取的人群中测量身高, 这些身高的平均值将接近正 态分布, 这也是中心极限定理的一个应用实例。
中心极限定理的应用
概率论与统计学
中心极限定理是概率论和统计学中的基本原理 之一, 用于研究随机变量的分布和统计推断。
金融领域
中心极限定理在金融领域中也有广泛应用, 例如在资 产定价、风险管理和投资组合优化等方面。
例题一解析
要点一
题目
一个班级有30名学生, 每个学生随机选择一个1-100之间的整 数。求这30个随机数的平均数大于50的概率。
要点二
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的算术平 均值趋近于期望值。在本题中, 每个随机数的期望值是50, 因 此30个随机数的平均数期望值是50。其次, 根据中心极限定 理, 当试验次数足够多时, 随机变量的算术平均值的分布趋近 于正态分布。因此, 这30个随机数的平均数大于50的概率可 以通过正态分布的概率密度函数计算得出。
大数定律的实例
抛硬币实验
如果我们抛硬币1000次,虽然单次抛 硬币的结果是随机的,但当我们计算 正面朝上的频率时,会发现这个频Βιβλιοθήκη 会逐渐趋近于50%。生日悖论
在一个有30人的房间里,存在一定概 率两个人生日相同,这个概率随着人 数的增加而趋近于100%。
大数定律的应用
概率论与统计学
大数定律是概率论和统计学中的 基本原理, 用于估计概率和预测未 来的随机事件。
例题三解析
题目
一个彩票公司发行了100万张彩票, 每张彩票都有一个独立 的随机数生成器生成的一个随机数。求至少有1张彩票的随 机数小于1的概率。
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的频率趋 近于概率。在本题中, 每张彩票的随机数小于1的概率是 1/100(即每张彩票生成的随机数小于1的概率是固定的)。 其次, 根据中心极限定理, 当试验次数足够多时, 随机变量的 独立同分布的随机变量和的分布趋近于正态分布。因此, 这 100万张彩票中至少有1张彩票的随机数小于1的概率可以 通过正态分布的概率密度函数计算得出。
概率论及数理统计教程习题(第四章大数定律及中心极限定理)

习题10 (切比雪夫不等式)•填空题1.设随机变量X的数学期望E(X) ,方差D(X) 2,则由切比雪夫不等式,得P(X 3 )2.随机掷6枚骰子,用X表示6枚骰子点数之和,则由切比雪夫不等式,得P(15 X 27)3.若二维随机变量(X,Y)满足,E(X) 2,E(Y) 2,D(X) 1,D(Y) 4,R(X,Y) 0.5,则由切比雪夫不等式,得P(X 丫 6)4.设X1, X2, ,X n,是相互独立、同分布的随机变量序列,且E(X i) 0, D(X i) 一致有n界(i 1,2, ,n,),则lim P( X i n) .ni 1二•选择题1.若随机变量X的数学期望与方差都存在,对 a b,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。
①P(a X b);②P(a X E(X)b);③P( a X a);④P(X E(X)b a).12.随机变量X服从指数分布e(),用切比雪夫不等式估计P(X | -) ( )①;②2③4;④-.)1.lim P(nX i 2三•解答题1.已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若 E(X) 7300,D(X ) 7002,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。
2.如果X-X 2, ,X n 是相互独立、同分布的随机变量序列,E(X i )3.设X i ,X 2, ,X n ,是相互独立、同分布的随机变量序列,E(X i 4)存在,且一致有界(i 1,2, ,n,).对任意实数 0,证明D(X i )8 (i 1,2, ,n) •记 XX i , 由切比雪夫不等式估计概率p(X 4).E(X i ) 0,D(X i )•填空题1.若随机变量X 服从正态分布 N(2,4),则P(X 3)P(0 X 4) ________________ ,P(X 1)5.随机变量X 1,X 2相互独立,且都服从标准正态分布,记丫 2 3X 1 4X 2,则丫概率密度f Y (y)_________________ . ________________•选择题6.若随机变量 X 1,X 2 ,,X n 相互独立,且X i ~ N(,2) (i 1 n1,2, ,n),则 D(— X i )n i 1( )①2 ;②n2; ③2/n ;④2/n 2.7.若随机变量 X,Y 相互独立, 且都服从正态分布N(:,2).设X Y ,X Y ,则cov(,)( ).①2 2 ;②1 ;③ 1;④0.X Y8.若随机变量 X,Y 满足 X ~ N(1, 32) , Y ~ N(0, 42) , R(X,Y) 1/2,则 D( ) 3 2( ).④2.11 (特征函数)2.若随机变量X ~ N (2),且 P(X c) P(X c),则 c3.若随机变量X ~ N(2, 2),且P(2 X4) 0.3,则 P(X 0)4.若X 服从正态分布 N ( 2),记 P( k X当 0.9时,k,当 0.95 时,k•解答题1.某种电池的寿命X (单位:h )服从正态分布N(300, 352) . (1)求寿命大于250小时的概率,(2)求x,使寿命在300 x之间的概率不小于092.测量某一目标的距离时,随机误差X ~ N(0, 402)(单位:m)(1)求P(X 30),(2)若作三次独立测量,求至少有一次测量误差的绝对值不超过30米的概率。
概率论-大数定律和中心极限定理习题和例题

有关大数定律习题选讲
5.5 设{ X n }是独立同分布的随机变量序列,且假设E[ X n ] 2, Var[ X n ] 6, 证明:
解: 依题意,显然有, {X n }是一个独立同分布的随机变量序列,只要存在 有限的公共数学期望,则{X n }的算术平均值依概率收敛于其公共数学期 望,由于X i 服从[5,53]上的均匀分布,所以E[ X i ] (53 5) / 2 29, i 1, 2, , n
1 n 所以,当n 时,n 次服务时间的算术平均值 X i以概率1收敛于29 (分钟). n i 1
P k1 n k2 P k1 0.5 n k2 0.5
k2 0.5 np k1 0.5 np np(1 p) np(1 p)
我们这门课对修正不做要求
中心极限定理的应用例题补充
二、给定 n 和概率,求 x
补充例4
有200台独立工作(工作的概率为0.7)的机床, 每台机床工作时需15kw电力. 问共需多少电力, 才可 有95%的可能性保证供电充足?
又记Y=X1+X2+…+X200,则 E[Y]=140,Var[Y]=42. 设供电量为x, 供电充足即为15Y≤x,则从
解:用 Xi=1表示第i台机床正常工作, 反之记为Xi=0.
2 2 2 Y X X X X X X X k 1 2 3 4 5 6 3 n 2 X 3 n 1 X 3 n k 1 n
大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
(完整word版)第五章大数定律与中心极限定理

第五章 大数定律与中心极限定理§5.1 大数定律 §5.2 中心极限定理一、填空题1.设2(),()E X D X μσ==,则由切比雪夫不等式有{||3}P X μσ-≥≤ 1/9 ; 2.设随机变量12,,,n X X X 相互独立同分布,且()i E X μ=,()8i D X =,(1,2,,)i n =, 则由切比雪夫不等式有{}||P X με-≥≤28n ε 。
并有估计{}||4P X μ-<≥ 112n-; 3.设随机变量n X X X ,,,21 相互独立且都服从参数为 的泊松分布,则 1lim n i i n X n P x n λλ=→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑ ()x Φ ;4.设随机变量X 和Y 的数学期望分别为2-和3,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式,{||6}P X Y +≥≤;解:因为 ()()()220E X Y E X E Y +=+=-+=,cov(.)()()0.5141XY X Y D X D Y ρ==-=-, ()()()2cov(.)142(1)3D X Y D X D Y X Y +=++=++⨯-=,故由切比雪夫不等式,231{||6}{|()0|6}612P X Y P X Y +≥=+-≥≤=. 5.设随机变量12,,,n X X X 相互独立,都服从参数为2的指数分布,则n →∞时,211n n i i Y X n ==∑依概率收敛于 。
解:因为 11(),(),(1,2,,)24i i E X D X i n ===,所以 22111()()()442i i i E X D X E X =+=+=,故由辛钦大数定律,对0ε∀>,有{}2111lim ()lim 12n n n i n n i P Y E Y P X n εε→∞→∞=⎧⎫-<=-<=⎨⎬⎩⎭∑,即 211n n i i Y X n ==∑依概率收敛于21()2i E X =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x /15 0.5 140 P{15Y x} 0.95 42 中解得 x 2252.
三、给定 x 和概率,求 n
补充例5
用调查对象中的收看比例 k/n 作为某电视节 目的收视率 p 的估计。 要有 90% 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象? 根据题意 Xn 服从 b(n, p) 分布,k 为Xn的实际取值。
解: 依题意,显然有, {X n }是一个独立同分布的随机变量序列,只要存在 有限的公共数学期望,则{X n }的算术平均值依概率收敛于其公共数学期 望,由于X i 服从[5,53]上的均匀分布,所以E[ X i ] (53 5) / 2 29, i 1, 2, , n
1 n 所以,当n 时,n 次服务时间的算术平均值 X i以概率1收敛于29 (分钟). n i 1
n = 271
补充例6 设每颗炮弹命中目标的概率为0.01, 求500发炮弹中命中 5 发的概率.
解: 设 X 表示命中的炮弹数, 则 X ~ b(500, 0.01)
(1) P( X 5) C
5 500
0.015 0.99495 =0.17635
5.5 5 4.5 5 4.95 4.95
Y
k 1
n
k
n a 14
2 X 12 X 2 X 3 X 4 X 5 X 6 X 32n 2 X 3n 1 X 3n P a, n n
5.11 假设某洗衣店为第i个顾客服务的时间X i 服从区间[5,53](单位:分钟) 上的均匀分布,且对每个顾客是相互独立的,试问当n 时,n 次服务时 1 n 间的算术平均值 X i以概率1收敛于何值? n i 1
解:设Yk =X 32k 2 X 3k 1 X 3k ,由于{ X n }是独立同分布的随机变量序列 所以, {Yn }也是独立同分布的随机变量序列,且
2 2 2 Y X X X X X X X k 1 2 3 4 5 6 3 n 2 X 3 n 1 X 3 n k 1 n
P k1 n k2 P k1 0.5 n k2 0.5
k2 0.5 np k1 0.5 np np(1 p) np(1 p)
我们这门课对修正不做要求
中心极限定理的应用例题补充
注:本题参考答案有误
二项分布的正态近似
定理5.2.2 棣莫弗—拉普拉斯中心极限定理
设Yn 为服从二项分布 b(n, p) 的随机变量,则当 n 充分大时,有
Yn np lim P x (x) n np(1 p )
注意点
二项分布是离散分布,而正态分布是连续分布, 所以用正态分布作为二项分布的近似时,可作 如下修正:
有关大数定律习题选讲
5.5 设{ X n }是独立同分布的随机变量序列,且假设E[ X n ] 2, Var[ X n ] 6, 证明:
2 X 12 X 2 X 3 X 4 X 5 X 6 X 32n 2 X 3n 1 X 3n P a, n , n 并确定常数a之值.
P X n / n p 0.05 2 0.05 n / p (1 p ) 1 0.90
解:用 Xn表示n 个调查对象中收看此节目的人数,则
从中解得 0.05 n / p(1 p) 1.645 又由 p(1 p ) 0.25 可解得 n 270.6
E[Yk ] E[ X 32k 2 X 3k 1 X 3k ] E[ X 32k 2 ] E[ X 3k 1 X 3k ] Var[ X 3k 2 ] ( E[ X 3k 2 ]) 2 E[ X 3k 1 ]E[ X 3k ] 6 4 4 14 k 1, 2, , n {Yn }满足辛钦大数定律条件,所以
一、给定 n 和 x,求概率
补充例3 100个独立工作(工作的概率为0.9)的部件组 成一个系统,求系统中至少有85个部件工作的概率.
解:用 Xi=1表示第i个部件正常工作, 反之记为Xi=0. 又记Y=X1+X2+…+X100,则 E[Y]=90,Var[Y]=9. 由此得:
85 0.5 90 ቤተ መጻሕፍቲ ባይዱP{Y 85} 1 0.966. 9
二、给定 n 和概率,求 x
补充例4
有200台独立工作(工作的概率为0.7)的机床, 每台机床工作时需15kw电力. 问共需多少电力, 才可 有95%的可能性保证供电充足?
又记Y=X1+X2+…+X200,则 E[Y]=140,Var[Y]=42. 设供电量为x, 供电充足即为15Y≤x,则从
解:用 Xi=1表示第i台机床正常工作, 反之记为Xi=0.
(2) 应用正态逼近: P(X=5) = P(4.5 < X < 5.5) = 0.1742