概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348

概率论与数理统计 第5章 大数定律和中心极限定理

概率论与数理统计 第5章  大数定律和中心极限定理

5.1 大 数 定 律 作为上述定理得特殊情况,可以得到如下重要定 理: 定理 5.3 (伯努利大数定律)设 nA 是 n 重伯努利试 验中事件 A 发生的次数, p 是事件 A 在每次试验中 发生的概率,则对于任意正数,有
nA P nA 即 (5.4) p ( n ) limP p 1 n n n
第五章 大数定律和中心极限定理 【吸烟率调查问题】 某卫生组织为确定某城市成年男子的吸烟率p,将 被调查的成年男子中吸烟的频率作为p的估计,现在 要保证有 90% 以上的把握,使得调查对象吸烟者的
频率与该城市成年男子的吸烟率p之间的差异不大于
5%,问至少要调查多少对象?
5.1
大 数定 律
对某个随机变量 X进行大量的重复观测,所得到 的大批观测数据的算术平均值也具有稳定性,由于 这类稳定性都是在对随机变量进行大量重复试验的 条件下呈现出来的,历史上把这种试验次数很大时 出现的规律统称为大数定律.
即对于任意正数,有
1 n limP X i 1 n n i 1
1 n P X (n ) 也即 (5.3) i n i 1 n n 1 1 1 证:因为 E ( X i ) E ( X i ) n n n i 1 n i 1 1 n 1 D( X i ) 2 n i 1 n
nA p 实际上几乎是必定要发生的,即对于给 n
用事件发生的频率来近似地代替事件发生的概率.
5.1 大 数 定 律 上 述 契 比 谢 夫 大 数 定 律 中 要 求 随 机 变 量 X1 , X2 , … , Xn , … 的方差存在,实际上,在高等概率
论中已经证明了在不要求D(Xi)(i = 1,2,…)存在

大学《概率论与数理统计》课件第五章 大数定律与中心极限定理

大学《概率论与数理统计》课件第五章 大数定律与中心极限定理
n 100, p 0.2, E(X ) np 20, D(X ) npq 16 4,
例5 某单位有200台电话分机,每台分机有5%的时间 要使用外线通话。假定每台分机是否使用外线是相互独 立的,问该单位总机要安装多少条外线,才能以90%以 上的概率保证分机用外线时不等待? 解 设有X 部分机同时使用外线,则有 其中 设有N 条外线.由题意有 由德莫佛-拉普拉斯定理得
第五章 大数定律与中心极限定理
§5.1 大数定律 §5.2 中心极限定理
§5.1 大数定律 一、切比雪夫Chebyshev不等式 二、几个常见的大数定律
定义1 设随机变量序列
在常数 a ,使得对于任意
有:
则称 依概率收敛于a ,记为
,如果存
注意
以概率收敛比高等数学中的普通意义下的收敛弱 一些,它具有某种不确定性.

是独立同分布的随机变量. 且
累计误差即总距离误差为1200 X k 近似 N (0,100) k 1
由定理1可得
下面介绍定理1 的特殊情况.
定理2(棣莫佛-拉普拉斯定理(De Moivre-Laplace)
设随机变量 服从参数为
的二项分布
则对任意的x ,有
即 或
证 因为 所以 其中 相互独立,且都服从(0-1)分布。
定理1(独立同分布的中心极限定理)

为一列独立同分布的随机变量,
且具有相同的期望和方差
则对任意实数x,有

,或
例1 根据以往经验,某种电器元件的寿命服从均值为 100小时的指数分布. 现随机地取16只,设它们的寿命 是相互独立的. 求这16只元件的寿命的总和大于1920小 时的概率. 解 设第i 只元件的寿命为Xi , i=1,2, …,16 由题给条件知,诸Xi 独立,E( Xi ) =100, D( Xi ) =10000 16只元件的寿命的总和为

概率论与数理统计(浙大版)第五章第六章课件资料.

概率论与数理统计(浙大版)第五章第六章课件资料.

5
随机变量序列依概率收敛的定义
定义5.1:设随机变量序列X1, X2, X3, ,若存在某常数,
使得 0,均有:lim P n
Xn
0,
则称随机变量序列 X n 依概率收敛于常数,
记为:Xn p 。
性质:已知Xn p ,并知函数g(x)在x=处连续,
则g Xn p g
6
定理5.2 契比雪夫不等式的特殊情形:
,
, Xn,
相互独立同分布,Xi ~ b(1, p).
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np源自 np(1 p)). 二项分布和正态分布的关14 系
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
则对于任意 0,都有:P
X EX
2 2
定理的等价形式为:P
X

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

概率论与数理统计第5章-大数定律与中心极限定理

概率论与数理统计第5章-大数定律与中心极限定理

又设函数 g ( x , y ) 在点 (a , b ) 连续,
P 则 g( X n , Yn ) g(a , b ).
证明
因为 g( x , y ) 在 (a , b) 连续,
0, 0,
g( x , y ) g(a , b) ,
g ( x, y) g (a, b) ,
因此0 P{ g( X n , Yn ) g(a, b) }
n 0, P X n a P Yn b 2 2
P 则 g( X n , Yn ) g(a , b).
[证毕]
定理5.1(贝努里大数定律) 设nA是n重贝努里试验中事件A发生的 次数, p是事件A在一次试验中发生的概率, 则对于任意的 0, 有
P P 注 : 若X n X , Yn Y , 则 P P (1) X n Yn X Y ;(2) X n Yn X Y;
Xn P X (3) X nYn XY ;(4) Yn Y
P
依概率收敛序列的性质
P P 设 Xn a , Yn b, (a , b为常数)
第五章 大数定律与中心极限定理
5.1 大数定律 5.2 中心极限定理
“概率是频率的稳定值”。前面已经提到,当随机 试验的次数无限增大时,频率总在其概率附近摆动, 逼近某一定值。大数定理就是从理论上说明这一结果。 正态分布是概率论中的一个重要分布,它有着非常广 泛的应用。 中心极限定理阐明,原本不是正态分布的一般随机 变量总和的分布,在一定条件下可以渐近服从正态分 布。这两类定理是概率统计中的基本理论,在概率统 计中具有重要地位。
大数定律的客观背景 大量的随机现象中平均结果的稳定性

概率论与数理统计:大数定律与中心极限定理ppt课件

概率论与数理统计:大数定律与中心极限定理ppt课件
ห้องสมุดไป่ตู้
123456 7 14916 25 36 91 2 E x ,E x 6 2 6 6 91 49 182 147 35 2 2 D x E x (E x) 6 4 12 12 D x 35 2 7 1: 2 P (|x |1 ) 12 3 2 D x 35 35 1 7 2: 2 P (|x |2 ) 4 12 48 3 2
X ,X , ,X 1 2 n 相互独立, nA X k
n k 1
1n pq 记Y Xk , E ( Y ) p , D ( Y ) n n n n k1 n
由 Chebyshev 不等式, = 0.01n ,故
0 . 1875 n P |X 0 . 75 n | 0 . 01 n 1 2 ( 0 . 01 n )

0 .1875 n 1 0 .90 2 (0 .01 n )
解得 n 18750
若 E(X ) = , D(X ) = 2, 类似于正态分布的3 原理,由 Chebyshev 不等式可估计 1 P |X | 3 0 . 1111 9 1 P |X | 2 0 . 25 4 由 Chebyshev 不等式,可看出 D (X) 反映了 X 偏离 E(X ) 的程度. 固定 , 较小者,
实际精确计算:
X 1 P 0 . 01 P 940 X 1060 6 6000
1 5 C 6 6
k 1059 k 6000 k 941
6000 k
0 . 959036
用Poisson 分布近似计算:
5.1
大数定律

概率论与数理统计图文课件最新版-第5章-大数定律及中心极限定理

概率论与数理统计图文课件最新版-第5章-大数定律及中心极限定理

0
p 是事件 A 在每次试验 中发生的概率
其中: nA X1 X2 L Xn
概率统计
其中: nA X1 X2 L Xn
p 是事件 A 在每次试验中 发生的概率。
证明: Q Xk 服从 (0 1 ) 分布
n 次独立 重复试验 中事件A 发生的次

E(Xk ) p n
令:
Xk
k 1
指的是:对任意正数 , P
lim
n
P(
Yn
a
)1
记为:Yn a
由此,定理2 的结论可叙述为:序列
依概率收敛于常数
Xn
1 n
n k 1
Xk
▲ 依概率收敛的序列具有如下性质:
P
P
设 Xn a , Yn b, 又设函数 g ( x, y ) 在点
( a, b ) 处连续,则有:
P
g( Xn , Yn ) g(a, b)
概率统计
第一节 大数定律
大数定律的客观背景 大量的随机现象中平均结果的稳定性:
大量抛掷硬币 正面出现频率
概率统计
生产过程中 的废品率
……
字母使用频率
一. 切比雪夫大数定律
定理1(切比雪夫大数定律)
设 X1 , X2, … 是相互独立的随机变 量序列,它们都有有限的方差,并且方
差有共同的上界,即 D( Xi ) ≤ K, i=1,
k 1, 2,L , 作前 n 个随机变量的算术平均值:
概率统计
1 n
Xn n k1 Xk ,
1 n
Xn n k1 Xk ,
则对任意的 0有:
lim P
n
Xn
lim P
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
Yn x
lim P i1 n
n
x
x
证明略。
在实用上,n≥30
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
关键词: 总体 个体 样本 统计量
2 分布 t 分布 F 分布
23
引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。 例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。
24
§1 总体和样本
总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样本:随机抽取的n个个体的集合(X1,X2,…,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,…,Xn)称
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
3. 用正态分布近似计算
npq 400 0.02 0.98 2.8
P
X
2
1
P( X
1)
1
1 np npq
贝努里大数定律建立了在大量重复独立试验中事件出现频 率的稳定性,正因为这种稳定性,概率的概念才有客观意 义,贝努里大数定律还提供了通过试验来确定事件概率的 方 们法便,可既以然通频过率做试nA/验n与确概定率某p事有件较发大生偏的差频的率可并能把性它很作小为,相我 应的概率估计,这种方法即是在第7章将要介绍的参数估 计法,参数估计的重要理论基础之一就是大数定理。
n
定理5.5 德莫佛--拉普拉斯定理
设nA为n次贝努里试验中A发生的次数,P A p 0 p 1,
则对任意x,有:lim n
P
nA np np(1 p)
x
x
1
e
t2 2
dt
(x),
2
证明:令X i
1 0
第i次试验时A发生 第i次试验时A未发生
则X 1
,
X
2
,
, Xn,
相互独立同分布,Xi ~ b(1, p).
1
lim
n
P
n
n i 1
Xi
1
或者,
序列
X
1 n
n i=1
Xi
以概率收敛于
即 X P
03,3,4分
7
定理5.3 贝努里大数定理
设事件A在每次试验中发生的概率为p,记nA为n次独立重复试验
中A发生的次数, 则
0, 有:lim
P
式,因nA bn, p,故:
3
随机变量序列依概率收敛的定义
定义5.1:设随机变量序列X1, X2, X3, ,若存在某常数,
使得 0,均有:lim P n
Xn
0,
则称随机变量序列 X n 依概率收敛于常数,
记为:Xn p 。
性质:已知Xn p ,并知函数g(x)在x=处连续,
则g Xn p g
4
定理5.2 契比雪夫不等式的特殊情形:
解:设X为一年中投保老人的死亡数,则X bn, p,n 10000, p 0.017
由德莫佛--拉普拉斯中心极限定理,保险公司亏本的概率为:
P10000X 10000200 P X 200
1
200 np
np 1 p
思考题: 求保险公司至少 盈利10万元的概率。
12.321 0.01 答案:0.937
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np, np(1 p)). 二项分布和正态分布的关系
第六章 样本及抽样分布
x 2
x
2
f x dx
1
2
x 2 f x dx
DX
2
2 2
17
定理5.2 契比雪夫不等式的特殊情形:
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
定理5.4 独立同分布的中心极限定理
设随机变量X 1
,
X
2
,
, Xn,
相互独立同分布,
E Xi , D Xi 2 0,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X
1 n
n
Xi的近似
i=1
分布是什么?
x R,有:
n
Xi n
lim P
相互独立同分布,Xi ~ b(1, p).
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np, np(1 p)). 二项分布和正态分布的关12 系
证明:仅就X为连续型时证之 设X的概率密度为f x,
则 P X f x dx x
f (x)
x 2
x
2
f x dx
1
2
x 2 f x dx
DX
2
2 2
例1:在n重贝努里试验中,若已知每次试验事件A 出现的概率为0.75,试利用契比雪夫不等式估 计n,使A出现的频率在0.74至0.76之间的概率不 小于0.90。
根据独立同分布的中心极限定理:
16
Y
i 1
Xi 16100 4 100
X
1600 400
近似服从N
0,1
P X 1920 1 P X 1920
1
1920 1600 400
1 0.8 0.2119
14
例3:某保险公司的老年人寿保险有1万人参加,每人每年交200元, 若老人在该年内死亡,公司付给受益人1万元。设老年人死亡 率为0.017,试求保险公司在一年内这项保险亏本的概率。
§1 大数定律
背景 本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证
为了证明大数定理,先介绍一个重要不等式
1
定理5.1 契比雪夫不等式:
设随机变量X具有数学期望E X ,方差D X 2
则对于任意 0,都有:P
X EX
2 2
定理的等价形式为:P
X
E
X
1
2 2
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
Xk
1 n2
n
D Xk
k 1
1 n2
n 2
2
n
由契比雪夫不等式得:P
1 n
n k 1
Xk
1
2
2
n
lim P n
1 n
n k 1
Xk
1
18
定理5.4 独立同分布的中心极限定理
设随机变量X 1
,
X
2
,
, Xn,
相互独立同分布,
E Xi , D Xi 2 0,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X
1 n
n
Xi的近似
i=1
分布是什么?
x R,有:
n
Xi n
lim P
E
nA n
1 n
E
nA
1 n
np
p,
D
nA n
相关文档
最新文档