概率论与数理统计答案第四版第2章(浙大)
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
概率论与数理统计浙大第四版答案 第二章

概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。
概率论与数理统计课后习题答案浙江大学第四版完整版.pdf

完全版概率论与数理统计课后习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一]写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一]1)nn n n o S1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一]2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一](3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二]设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A -(AB+AC )或A -(B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S -(A+B+C)或CB A(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。
故表示为:C A C B B A 。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故表示为:ABCC B A 或(8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故表示为:AB +BC +AC6.[三]设A ,B 是两事件且P (A )=0.6,P (B )=0.7.问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A )=0.6,P (B )=0.7即知AB ≠φ,(否则AB =φ依互斥事件加法定理,P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为P (AB )=0.6+0.7-1=0.3。
概率论与数理统计浙大第四版-第二章1

其中一种重要的类型为
连续性 r.v.
引入 r.v.
重要意义
◇ 任何随机现象可
被 r.v.描述
◇ 借助微积分方法 将讨论进行到底
2.离散型随机变量及其概率分布
离散随机变量及分布律
定义 若随机变量 X 的可能取值是有限 个或可列个, 则称 X 为离散型随机变量
描述X 的概率特性常用概率分布或分布律
即 P ( X xk ) pk , k 1,2,
p 0.4 k 0 1 2
3
4
代入 pk 0.6 0.24 0.0960 1 2 3 4
x
0,
x0
F (x) 0.6,
0 x 1
P(Xx) 0.6 0.24 0.84,
1 x 2
0.84 0.096 0.936, 2 x 3
接到电话次数超过100次” 这一事件
r.v.的函数一般也是r.v.
在同一个样本空间可以同时定义多个
r.v., 例如
= {儿童的发育情况 } X() — 身高, Y() — 体重, Z() — 头围.
各 r.v.之间可能有一定的关系, 也可能没
有关系—— 即 相互独立
离散型
r.v. 分类 非离散型
例1 已知某型号电子管的使用寿命 X 为
续r.v., 其 pdf为
f
(x)
c x2
,
0,
x 1000 其他
(1) 求常数 c (2) 计算 P( X 1700 1500 X 2000 )
解 (1) 令
f (x)dx
1000
c x2
dx cx1
1000
c 1000
1
c = 1000
P(0 X 1/3) P(0 X 1/3)
概率论与数理统计浙大四版习题答案第二章汇编

第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0
∪
A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。
概率论与数理统计作业课后习题解答(浙大第四版)```

1 1 , P( AB) = P( BC ) = 0, P( AC ) = , 4 8
P( A ∪ B ∪ C ) = P( A) + P( A) + P(C ) − P( AB) − P( BC ) − P( AC ) + P( ABC ) =
其中由 P ( AB ) = P ( BC ) = 0, 而 ABC ⊂ AB 得 P ( ABC ) = 0 。
故
P( B) = 1 − P( B) = 1 −
200 1 199 C1100 C400 C1100 − 200 200 C1500 C1500
------------------------------------------------------------------------------9. 从 5 双不同的鞋子中任取 4 只, 问这 4 只鞋子中至少有两只鞋子配成一双的概率是多少?
0 1 100n , ,..., ,则 n n n
k k = 0,1, 2,⋯ ,100n n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为 S={(0,0) , (1,0,0) , (0,1,0,0) , (0,1,0,1) , (0,1,1,0) , (1,1, 0,0) , (1,0,1,0) , (1,0,1,1) , (0,1,1,1) , (1,1,0,1) , (1,1, 1, 0) , (1,1,1,1)} 例如(1,1,0,0)表示第一次与第二次检查到正品,而第三次与第四次检查到次品。 (4)设任取一点的坐标为(x,y) ,则样本空间为 S= ( x, y ) x + y ≤ 1
i=2
概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。
解:设X为公司的赔付金额,X=0,5,20P(X=0)=1-0.0002-0.0010=0.9988P(X=5)=0.0010P(X=20)=0.0002X 0 5 20P 0.9988 0.0010 0.00022.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律.解:方法一: 考虑到5个球取3个一共有=10种取法,数量不多可以枚举来解此题。
设样本空间为SS={123,124,125,134,135,145,234,235,245,345 }易得,P{X=3}=;P{X=4}=;P{X=5}=;X 3 4 51/10 3/10 6/10方法二:X的取值为3,4,5当X=3时,1与2必然存在,P{X=3}= =;当X=4时,1,2,3中必然存在2个,P{X=4}= =;当X=5时,1,2,3,4中必然存在2个,P{X=5}= =;X 3 4 51/10 3/10 6/10(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律.解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点)= =;P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点)= =;P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点)= =;P{X=4}= P (第一次为4点,第二次大于3点)+P(第二次为4点,第一次大于3点)- P(两次都为4点)= =;P{X=5}= P (第一次为5点,第二次大于4点)+P(第二次为5点,第一次大于4点)- P(两次都为5点)= =;P{X=6}= P (第一次为6点,第二次大于5点)+P(第二次为6点,第一次大于5点)- P(两次都为6点)= =;X 1 2 3 4 5 611/36 9/36 7/36 5/36 3/36 1/363.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以X表示取出的次品的只数.(1)求X的分布律.解:P{X=0}= =;P{X=1}= =;X 0 1 222/35 12/35 1/35(2)画出分布律的图形.4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0<p<1)(1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。
(此时称X服从以p为参数的几何分布)(2)将试验进行到出现r次成功为止,以Y表示所需的试验次数,求Y得分布律。
(此时称Y服从以r,p为参数的帕斯卡分布或负二项分布)(3)一篮球运动员的投篮命中率为45%。
以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取得偶数的概率解:(1)k=1,2,3,……P(X=k)=(2)k=r+1,r+2,r+3, ……P(Y=k)=(3)k=1,2,3, ……P(X=k)=0.45,设p为X取得偶数的概率P=P{X=2}+ P{X=4}+ ……+ P{X=2k}=0.45+0.45……+0.45=5. 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。
鸟在房子里飞来飞去,试图飞出房间。
假定鸟是没有记忆的,它飞向各扇窗子是随机的。
(1) 以X表示鸟为了飞出房间试飞的次数,求X的分布律。
(2) 户主声称,他养的一只鸟是有记忆的,它飞向任一窗子的尝试不多于一次。
以Y表示这只聪明的鸟为了飞出房间试飞的次数。
如户主所说是确实的,试求Y的分布律。
(3)求试飞次数X小于Y的概率和试飞次数Y小于X的概率。
解:(1)由题意知,鸟每次选择能飞出窗子的概率为1/3,飞不出窗子的概率为2/3,且各次选择之间是相互独立的,故X的分布律为:P(X=k)=,k=1,2,3……X 1 2 3(2)Y的可能取值为1,2,3,其分布律为方法一:P(Y=1)=P(Y=2)==P(Y=3)==方法二:由于鸟飞向各扇窗户是随机的,鸟飞出指定窗子的尝试次数也是等可能的。
即P(X=1)=P(Y=2)=P(X=3)=Y 1 2 3(3)设试飞次数X小于Y为事件A,Y小于X为事件B。
普通鸟和聪明鸟的选择是独立的X小于Y的情况有:①X=1, Y=2 ②X=1, Y=3 ③X=2, Y=3故P(A)=P(X=1)*P(Y=2)+ P(X=1)*P(Y=3)+ P(X=2)*P(Y=3)=Y小于X的情况有:①Y=1, X≥2 ②Y=2, X≥3 ③Y=3, X≥4故P(B)=P(Y=1)*P(X≥2)+P(Y=2)*P(X≥3)+P(Y=3)*P(X≥4)=P(Y=1)*[1-P(X=1)]+P(Y=2)*[1-P(X=1)-P(X=2)]+P(Y=3)*[1-P(X=1)-P(X=2)-P(X=3)]=(1-)+(1--)+(1---)=6. 一大楼装有5台同类型的供水设备。
设各台设备是否被使用相互独立。
调查表明在任一时刻t每台设备被使用的概率为0.1,问在同一时刻,(1) 恰有2台设备被使用的概率是多少?(2) 至少有3台设备被使用的概率是多少?(3) 至多有3台设备被使用的概率是多少?(4) 至少有1台设备被使用的概率是多少?解:设同一时刻被使用的设备数为X,试验次数为5且每次试验相互独立,显然X满足二次分布X(1)P(X=2)==0.0729(2)P(X≥3)=P(X=3)+P(X=4)+P(X=5)=++=0.00856(3)P(X≤3)=1-P(X=4)-P(X=5)=1--=0.99954(4)P(X≥1)=1-P(X=0)=1-=0.409517. 设事件A在每次试验发生的概率为0.3。
A发生不少于3次时,指示灯发出信号。
(1) 进行了5次重复独立试验,求指示灯发出信号的概率。
(2) 进行了7次重复独立试验,求指示灯发出信号的概率。
解:设进行5次重复独立试验指示灯发出信号为事件B,进行7次重复独立试验指示灯发出信号为事件C。
用X表示n次重复独立试验中事件A发生的次数,则P(X=k)=, k=1,2,3……(1)P(B)= P(X=3)+P(X=4)+P(X=5)=++≈0.163 或:P(B)= 1-P(X=0)-P(X=1)-P(X=2)=1---≈0.163 (2)P(C)=1- P(X=0)-P(X=1)-P(X=2)=1---≈0.3538.甲、乙两人投篮,投中的概率分别为0.6, 0.7. 今各投三次,求:(1)两人投中次数相等的概率(2)甲比乙投中次数多的概率解:记投三次后甲投中次数为X,乙投中次数为Y,,设甲投中a次,乙投中b次的概率为P(X=a,Y=b)(1)设两人投中次数相等为事件A因为甲、乙两人每次投篮相互独立且彼此投篮相互独立则P(A)P(X=0,Y=0)+P(X=1,Y=1)+P(X=2,Y=2)+P(X=3,Y=3)+++0.321(2)设甲比乙投中次数多为事件B则P(B)P(X=1,Y=0)+P(X=2,Y=0)+P(X=3,Y=0)+P(X=2,Y=1)+P(X=3,Y=1)+P(X=3,Y=2)+++++0.2439.有一大批产品,其验收方案如下,先作第一次检验:从中任取10件,经检验无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品。
若产品的次品率为10%,求:(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第二次检验的标准被接受的概率(4)这批产品在第一次检验未能作决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:记第一次检验抽取的10件中次品个数X,则X~B(10 , 0.1)第二次检验抽取的5件中次品个数Y,则Y~B(5 , 0.1)(1)设事件A为“这批产品第一次检验就能接受”,P(A)=0.349(2)设事件B为“需作第二次检验”,即第一次检验次品数为1或2P(B)= P(X=1)+P(X=2)=+0.581(3)设事件C为“这批产品按第二次检验的标准被接受”P(C)=0.590(4)设事件D为“这批产品在第一次检验未能作决定且第二次检验时被通过”由(2)(3)知事件B、C相互独立P(D)P(B)P(C)0.581 0.5900.343(5)设事件E为“这批产品被接受的概率”,其中包括事件A和事件D,A与D互斥P(E)P(A)+P(D)0.349 + 0.3430.69210.有甲、乙两种味道和颜色都极为相似的名酒各4杯,如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。
(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒,他连续试验10次,成功3次,试推断他是猜对的,还是他确有区分的能力(设每次试验是相互独立的)解:(1)设事件A为“试验成功一次”,题意为在8杯中挑4杯,恰好挑到事件A由题意知P(A)(2)设事件B为“他连续试验10次,成功3次”由于每次试验相互独立则P(B)=此概率太小在试验中竟然发生了,按实际推断原理,认为他确实有区分的能力。
11.尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的,但每年总有一些“发明家”撰写关于仅用圆规和直尺将角三等分的文章。
设某地区每年撰写此类文章篇数X服从参数为6的泊松分布。
求明年没有此类文章的概率。
解:设明年没有此类文章的概率为P,又X服从泊松分布,得令λ=6,则12.一电话总机每分钟收到呼叫的次数服从参数为4的泊松分布。
求(1)某一分钟恰有8次呼唤的概率;(2)某一分钟的呼唤次数大于3的概率。
解:设每分钟收到呼叫的次数为随机变量X,呼叫k次的概率为P,同理有(1)令k=8,则有(2)依题意,X>3,即13.某公安局在长度为t的时间间隔内收到的紧急呼叫的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。
(1)求某一天中午12点至下午3点未收到紧急呼叫的概率;(2)求某一天中午12点至下午5点至少收到1次紧急呼叫的概率。
解:(1)设某一天中午12点至下午3点未收到紧急呼叫的概率为P,时间间隔长度t=3,依题意有(2)依题意,即X≥1,时间间隔长度t=5,则14.某人家中在时间间隔t(小时)内接到电话的次数X服从参数为2t的泊松分布。