高中数学选修1-2第一章《统计案例》单元测试(一)

合集下载

新北师大版高中数学选修1-2第一章《统计案例》测试(答案解析)

新北师大版高中数学选修1-2第一章《统计案例》测试(答案解析)

一、选择题1.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示: 周数(x ) 1 2 3 4 5 治愈人数(y )2173693142由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5B .4C .1D .02.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .43.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9164.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚6.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机 不玩手机 合计经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%7.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .238.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆy bx a =+必经过点( )A .()33,B .()34,C .()44,D .()45,9.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”10.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 11.根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则 A .5a =B .变量x 与y 线性正相关C .当x =11时,可以确定y =3D .变量x 与y 之间是函数关系12.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .13二、填空题13.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.14.某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.16.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式() 1122122121212n n n n nn n n nχ++++-=17.已知x、y之间的一组数据如下:x0123y8264则线性回归方程ˆy a bx=+所表示的直线必经过点________.18.现有A B、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A队中每人答对的概率均为23,B队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M表示“A队得2分”,事件N表示“B队得1分”,则()P MN=______.19.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好取自由曲线y x=与直线1x=及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则(|)P B A=_________.20.给出下列命题:①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x和y的数据得到其回归直线方程ˆ:l y bx a=+,则l一定经过点(,)P x y;③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;⑤在回归直线方程ˆ0.1104y x=+中,当解释变量x每增加一个单位时,预报变量y平均增加0.1个单位,其中真命题的序号是_________.三、解答题21.随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表年轻人非年轻人合计单车族非单车族合计是“非年轻人”的人数为随机变量,X求X的分布列与期望.参考数据:独立性检验界值表其中,()()()()()2,n ad bcn a b c d Ka b c d a c b d-=+++=++++(注:保留三位小数).22.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表:男生测试情况:生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”附:22(),()()()()n ad bcK n a b c da b c d a c b d⎛⎫-==+++⎪++++⎝⎭23.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间顺序作为变量x ,每次累计确诊人数作为变量y ,得到函数关系bx y ae =(a 、0b >).对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70iii x x y y =--=∑,()()111ln ln 35.10iii x x y y =--=∑,()1121110i i x x =-=∑,()1121ln ln 11.90i i y y=-=∑, 4.0657.97e ≈, 4.0758.56e ≈,4.0859.15e ≈.根据相关数据,确定该函数关系式(函数的参数精确到0.01).(2)为了了解患新冠肺炎与年龄的关系,已知某地患有新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少一人是老年人的概率.24.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N μ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()2n ad bc K a b c d a c b d -=++++, .n a b c d =+++25.在疫情防控中,不聚集、戴口罩、保持社交距离是对每个人的基本要求同时,通过运动健身增强体质,进而提升免疫力对个人防护也有着重要的意义,某机构为了解“性别与休闲方式为运动”是否有关,随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人休闲方式是运动,而女性只有13的人休闲方式是运动. (1)完成下列22⨯列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?运动 非运动 总计男性 女性总计n参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2n P K k ≥ 0.0500.010 0.001 0k 3.8416.63510.82826.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3]).(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.①请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥ 0.050.40 0.25 0.15 0.10 0.05 0.025 0.010 0k 3.8410.7081.3232.0722.7063.8415.0246.635【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】 设2t x =,则()11491625115t =++++=,()12173693142585y =++++= 586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A 【点睛】本题考查回归分析的应用,属于中档题.2.C解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+, 令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.3.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案苏教版高中数学选修1~2 全册同步练习及检测苏版高中数学课时作业及单元检测题全册合编含答案第1章统计案例§1.1 独立性检验课时目标1.了解独立性检验的基本思想.2.体会由实际问题建模的过程,了解独立性检验的基本方法.1.独立性检验:用______________研究两个对象是否有关的方法称为独立性检验. 2.对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B,Ⅱ也有两类取值,即类1和类2.我们得到如下列联表所示的抽样数据:Ⅱ 类A 类B 合计类1 a c a+c 类2 b d b+d 合计 a+b c+d a+b+c+d Ⅰ则χ2的计算公式是________________. 3.独立性检验的一般步骤:(1)提出假设H0:两个研究对象没有关系;(2)根据2×2列联表计算χ2的值;(3)查对临界值,作出判断.一、填空题1.下面是一个2×2列联表:x1 x2 总计 y1 a 8 b y2 21 25 46 总计 73 33 则表中a、b处的值分别为________,________. 2.为了检验两个事件A,B是否相关,经过计算得χ2=8.283,则说明事件A和事件B________(填“相关”或“无关”).3.为了考察高一年级学生的性别与是否喜欢数学课程之间的关系,在高一年级随机抽1苏版高中数学课时作业及单元检测题全册合编含答案取了300名,得到如下2×2列联表.判断学生性别与是否喜欢数学________(填“有”或“无”)关系.男女合计喜欢 37 35 72 不喜欢 85 143 228 合计 122 178 300 4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2=99.9,根据这一数据分析,下列说法正确的是________(只填序号).①有99.9%的人认为该栏目优秀;②有99.9%的人认为栏目是否优秀与改革有关系;③有99.9%的把握认为电视栏目是否优秀与改革有关系;④以上说法都不对.5.某班班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示.从表中数据分析,学生学习积极性与对待班级工作的态度之间有关系的把握有________.学习积极性高学习积极性一般合计 6.给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有______.7.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的唯一数据;④若判定两事件A与B有关,则A发生B一定发生.8.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3 000人,计算发现χ2=6.023,根据这一数据查表,市政府断言市民收入增减与旅游愿望有关系,这一断言犯错误的概率不超过____________________________________________________.二、解答题2积极参加班级工作 18 6 24 不太主动参加班级工作 7 19 26 合计 25 25 50 苏版高中数学课时作业及单元检测题全册合编含答案9.在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表; (2)检验性别与休闲方式是否有关系.10.有甲、乙两个工厂生产同一种产品,产品分为一等品和二等品.为了考察这两个工厂的产品质量的水平是否一致,从甲、乙两个工厂中分别随机地抽出产品109件,191件,其中甲工厂一等品58件,二等品51件,乙工厂一等品70件,二等品121件.(1)根据以上数据,建立2×2列联表;(2)试分析甲、乙两个工厂的产品质量有无显著差别(可靠性不低于99%)能力提升11.在吸烟与患肺病是否相关的判断中,有下面的说法:3苏版高中数学课时作业及单元检测题全册合编含答案①若χ2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.12.下表是对某市8所中学学生是否吸烟进行调查所得的结果:父母中至少有一人吸烟父母均不吸烟吸烟学生 816 188 不吸烟学生 3 203 1 168 (1)在父母至少有一人吸烟的学生中,估计吸烟学生所占的百分比是多少? (2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少? (3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由. (4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?1.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法,要确认两个变量有关系这一结论成立的可信程度,首先假设该结论不成立,即假设“两个变量没有关系”成立,在该假设下我们构造的随机变量χ2应该很小,如果由观测数据计算得到的χ2的观测值很大,则在一定程度上4感谢您的阅读,祝您生活愉快。

高中数学 第一章 统计案例单元测试 苏教版选修1-2(2021年最新整理)

高中数学 第一章 统计案例单元测试 苏教版选修1-2(2021年最新整理)

高中数学第一章统计案例单元测试苏教版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章统计案例单元测试苏教版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章统计案例单元测试苏教版选修1-2的全部内容。

第1章统计案例单元检测一、填空题1.下列现象属于相关关系的是________(填序号).①家庭收入越多,消费也越多②圆的半径越大,圆的面积越大③气体体积随温度升高而膨胀,随压力加大而减小④在价格不变的条件下,商品销售量越多销售额也越多2.已知回归直线方程y bx a=+的斜率估计值是52,且样本点的中心为(4,5),则当x=-2时,y的值为__________.3.设有一个回归方程为y=2-2.5x,当变量x增加1个单位时,则变量y平均__________个单位.4.一所大学图书馆有6台复印机供学生使用,管理人员发现,每台机器的年维修费用与其每周使用时间有一定关系,根据去年一年的记录,搜集到以下数据:则每周使用时间(h)与年维修费用(百元)之间的相关系数为________.5.统计推断,当__________时,有95%的把握说事件A与B有关;当__________时,认为没有充分的证据显示事件A与B是有关的.6.下表是性别与喜欢足球与否的统计列联表,依据表中的数据,得到χ2的值约为__________.7.下列关于χ2的说法中不正确...的是________(填序号).①χ2在任何相互独立的问题中都可以用于检验有关还是无关②χ2的值越大,两个事件的相关性越强③χ2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合④χ2的观测值的计算公式为22+++ad bca b c d a c b d χ(-)=(+)()()()8.两个相关变量满足如下关系:两变量的回归直线方程为______________.9.(2012湖南高考,文5改编)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系.根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0。

厦门市一中选修1-2第一章《统计案例》测试卷(有答案解析)

厦门市一中选修1-2第一章《统计案例》测试卷(有答案解析)

一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .99.9%B .99.5%C .99%D .97.5%3.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .135.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1156.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =7.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2208.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”9.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 10.下面是22⨯列联表:则表中a b,的值分别为()A.84,60 B.42,64 C.42, 74 D.74, 4211.下列结论中正确的是()A.若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B.回归直线至少经过样本数据中的一个点C.独立性检验得到的结论一定正确D.利用随机变量2x来判断“两个独立事件,X Y的关系”时,算出的2x值越大,判断“,X Y 有关”的把握越大12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为()参考公式附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:A.130 B.190 C.240 D.250二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.从包括甲乙两人的6名学生中选出3人作为代表,记事件A:甲被选为代表,事件B:乙没有被选为代表,则()P B A │等于_________. 15.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.16.在10个形状大小均相同的球中有4个红球和6个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率为_________. 17.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.18.某团队派遣甲、乙、丙、丁四人分别完成一项任务,已知甲完成任务的概率为14,乙完成任务的概率为12,丙、丁完成任务的概率均为23,若四人完成任务与否相互独立,则至少2人完成任务的概率为____.19.现有A ,B 两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A 队中每人答对的概率均为23,B 队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.20.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件A:“高一家长的满意度等级高于高二家长的满意度等级”,则事件A发生的概率为__________.三、解答题21.随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表是“非年轻人”的人数为随机变量,X 求X 的分布列与期望. 参考数据:独立性检验界值表其中,()()()()()2,n ad bc n a b c d K a b c d a c b d -=+++=++++(注:保留三位小数). 22.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:22⨯关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()22n ad bc K a b c d a c b d -=++++. 23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示: 停车时间 取车概率 停车人员 (0,2](2,3](3,4](4,5]甲12xxx乙1613y(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 25.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸(mm)x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v u nvubv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈. 26.贝诺酯为对乙酰氨基酚与阿司匹林的酯化产物,是一种新型的抗炎、抗风湿、解热镇痛药,主要用于类风湿关节炎、急慢性风湿性关节炎、神经痛及术后疼痛.药监部门要利用小白鼠扭体实验,对某厂生产的该药品的镇痛效果进行检测,若用药后的小白鼠扭体次数没有减少,扭体时间间隔没有变长,则认定镇痛效果不明显. (1)若该药品对雌性小白鼠镇痛效果明显的概率为23,对雄性小白鼠镇痛效果明显的概率为45,药监部门要利用两只雌性和两只雄性小白鼠检测该药药效,对4只小白鼠逐一检测.若在检测过程中,一只小白鼠用药后镇痛效果明显,记录积分为1,镇痛效果不明显,则记录积分为1-.用随机变量X 表示检测4只小白鼠后的总积分,求随机变量X 的分布列和数学期望()E X ;(2)若该药品对每只雌性小白鼠镇痛效果明显的概率均为p ,现对6只雌性小白鼠逐一进行检测,当检测到镇痛效果不明显的小白鼠时,停止检测.设至少检测5只雌性小白鼠才能发现镇痛效果不明显的概率为()f p ,求()f p 最大时p 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.5.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.6.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.7.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯= ⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.8.A解析:A 【解析】()()()()()22n ad bc K a b c d a c b d -=++++2110(1200400)7.82 6.63560506050-=≈>⨯⨯⨯所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”,选A.9.C解析:C 【解析】 经计算,()2230421681020101218K ⨯-⨯==⨯⨯⨯,27.87910.828K <<,对照数表知,在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响,故选C .点睛:本题考查了独立性检验的应用问题,是基础题;其解题步骤为:(1)认真读题,取出相关数据,作出22⨯列联表;(2)根据22⨯列联表中的数据,计算2K 的观测值k ;(3)通过观测值k 与临界值0k 比较,得出事件有关的可能性大小.10.B解析:B 【解析】因2163a +=,故42a =,又22a b +=,则64b = ,应选答案B 。

上海育秀实验学校选修1-2第一章《统计案例》检测卷(含答案解析)

上海育秀实验学校选修1-2第一章《统计案例》检测卷(含答案解析)

一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9163.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6484.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表学习成绩不优秀 16 2 18 合计201030经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%6.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .297.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .598.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1159.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1x y a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.200010.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .411.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.0050k 2.072 2.706 3.841 5.024 6.635 7.879A .130B .190C .240D .250二、填空题13.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2,n n N ∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________. 14.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________. 15.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.16.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )17.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)18.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.19.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 20.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg 20.3010=,lg30.4771=) 三、解答题21.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.1500.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++ 22.某研究所在研究某种零件的使用寿命和维护成本的关系时,得到以下数据: 零件寿命x (月) 1 3 5 7 9 维护成本y (千元)102560105170(1)若x 与y 之间存在线性相关关系y a bx =+①,试估计a ,b 的值a ,b ; (2)若x 与y 之间存在非线性相关关系2y c dx =+②,可按与(1)类似的方法得到8c =,2d =,且模型②残差平方和为6.计算模型①的残差平方和,并指出哪个模型的拟合效果更好;(3)利用(2)中拟合效果较好的模型,计算当零件使用多少个月时报废,可使得零件的性价比(即零件寿命与维护成本的比值)最高.参考公式:若()(),1,2,,i i x y i n =⋅⋅⋅是线性相关变量x ,y 的n 组数据,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑. 23.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()()()()()22n ad bc K a b c d a c b d -=++++24.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价.参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155,18.8, 6.8 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.25.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系: 周光照量X (单位:小时)3050X << 5070X ≤≤70X >光照控制仪最多可运行台数 321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=∑0.55≈,0.95≈.26.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,其中每周线上学习时间不足5小时的人数为X ,求X 的分布列及其数学期望. (下面的临界值表供参考)(参考公式()()()()()22n ad bc K a b c d a c b d -=++++其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输.【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜, 所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确; 对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输, 所以乙队以3:2获胜的概率为221433327⨯⨯=,故错. 故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.3.C解析:C【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。

深圳龙岗中学选修1-2第一章《统计案例》检测卷(含答案解析)

深圳龙岗中学选修1-2第一章《统计案例》检测卷(含答案解析)

一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .43.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.下列命题:①在一个22⨯列联表中,由计算得2 6.679K =,则有99%的把握确认这两类指标间有关联②若二项式22nx x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为243,则展开式中4x -的系数是40 ③随机变量X 服从正态分布()1,2N ,则()()02P X P X <=> ④若正数,x y 满足230x y +-=,则2x yxy+的最小值为3 其中正确命题的序号为( ) A .①②③B .①③④C .②④D .③④5.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .236.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆy bx a =+必经过点( )A .()33,B .()34,C .()44,D .()45,7.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系 8.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1159.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( ) A .19 B .13 C .23D .8 910.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.A .1B .2C .3D .411.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1212.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ②命题P :“∃x 0∈R ,x 02﹣x 0﹣1>0”的否定是¬P :“∀x ∈R ,x 2﹣x ﹣1≤0”; ③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=12﹣p ④回归直线一定过样本点的中心(,x y ). 其中正确的说法有( ) A .①②③B .①②④C .②③④D .①②③④二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数) 参考公式()1122122121212n n n n n n n n n χ++++-=15.在一场对抗赛中,,A B 两人争夺冠军,若比赛采用“五局三胜制”,A 每局获胜的概率均为23,且各局比赛相互独立,则A 在第一局失利的情况下,经过五局比赛最终获得冠军的概率是_____.16.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.17.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______.18.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++19.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________. ①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.60元与性别有关.60元可抽奖3次,每次中奖概率为P (每次抽奖互不影响,且P 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望. 参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++ 附表:22.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22⨯列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;5名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(n a b c d =+++)23.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2:的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆa y bx =-;12342.54x +++==;105112114119112.54y +++==23.45≈22.47≈;()()niix x y y r --=∑0.751r ≤≤时,y 与x 正相关很强.24.某沙漠地区经过治理,生态系统得到改善.为调查该地区植物覆盖面积(单位:公顷)和某种野生动物的数量的关系,将该地区分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(),i i x y (i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,()202180i i x x =-=∑,()20219000i i y y =-=∑,()()201800i ii x xy y =--=∑.(1)求样本(),i i x y (i =1,2,…,20)的相关系数(精确到0.01),并用相关系数说明各样区的这种野生动物的数量与植物覆盖面积的相关性.(2)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()20ii xx y y r --=∑.25.某学校六年级1、2两个班级同时进行一次数学竞赛考试,已知满分100分,分数不小于60视为及格,否则视为不及格,现随机抽取两个班级各40名学生的数学成绩,其结果如下表:(1)根据表中数据,分别估计六年级1、2两个班级数学竞赛考试的及格率;(2)根据以上数据,完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的情况下认为此次数学竞赛考试中学生数学及格与班级有关?(3)若按高分(大于等于80分为高分)与非高分的比例,从1班考试的分数中抽取4个分数,从2班考试的分数中抽取5个分数,记事件A:从上面4个1班考试的分数中随机抽取2个,且都不是高分;事件B:从上面5个2班考试的分数中随机抽取2个,一个是高分,一个不是高分.试通过计算说明这两个事件中哪一个事件发生的概率大.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是12,13,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.参考数据参考公式:K 2()()()()2()n ad bc a b c d a c b d -=++++,其中n =a +b +c +d【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+, 令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.B解析:B 【解析】 【分析】根据2 6.679 6.635K =>可知①正确;代入1x =可求得5n =,利用展开式通项,可知3r =时,为含4x -的项,代入可求得系数为80,②错误;根据正态分布曲线的对称性可知③正确;由2121223x y x yxy y x y x ⎛⎫++=+=+⋅ ⎪⎝⎭,利用基本不等式求得最小值,可知④正确. 【详解】①2 6.679 6.635K =>,则有99%的把握确认这两类指标间有关联,①正确;②令1x =,则所有项的系数和为:3243n =,解得:5n = 52222n x x x x ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭则其展开式通项为:()55355222rrrr r rC x C x x --⎛⎫=⋅⋅ ⎪⎝⎭当534r -=-,即3r =时,可得4x -系数为:335280C ⋅=,②错误;③由正态分布()1,2N 可知其正态分布曲线对称轴为1X = ()()02P X P X ∴<=>,③正确; ④212122122533x y x y x yxy y x y x y x ⎛⎫⎛⎫++=+=+⋅=++ ⎪ ⎪⎝⎭⎝⎭0x,0y > 20x y ∴>,20y x>224x y y x ∴+≥=(当且仅当22x y y x =,即x y =时取等号) ()214533x y xy +∴≥+=,④正确. 本题正确选项:B 【点睛】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.5.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 6.C解析:C 【解析】分析:由题意结合回归方程的性质确定回归方程经过样本中心点即可. 详解:由题意可得:2345645x ++++==, 2.534 4.5645y ++++==,由线性回归方程的性质可知线性回归方程ˆˆˆy bx a =+经过样本中心点:()4,4.本题选择C 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.8.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.9.C解析:C 【解析】设此射手未射中目标的概率为p ,则1-p 4=8081,所以p =13,故此射手的命中率为1-p =23. 故选C10.B解析:B 【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B 。

高中数学选修1-2第一章《统计案例》单元检测卷含解析

高中数学选修1-2第一章《统计案例》单元检测卷含解析

选修1-2第一章《统计案例》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数2.第二届世界青年奥林匹克运动会,中国获37金,13银,13铜共63枚奖牌居奖牌榜首位,并打破十项青奥会记录.由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见.有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数是否与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率3. 某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel 软件计算得y ^=0.577x -0.448(x 为人的年龄,y %为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是( )A .年龄为37岁的人体内脂肪含量都为20.90%B .年龄为37岁的人体内脂肪含量为21.0%C .年龄为37岁的人群中的大部分人的体内脂肪含量为20.90%D .年龄为37岁的大部分的人体内脂肪含量为31.5%4. 设有一个回归方程为y ^=3-5x ,当变量x 增加一个单位时 ( ) A .y 平均增加3个单位 B .y 平均减少5个单位 C .y 平均增加5个单位D .y 平均减少3个单位5.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( ).A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强6.已知呈线性相关关系的变量x,y之间的关系如下表所示,则回归直线一定过点( )x 0.10.20.30.5y 2.11 2.85 4.0810.15A.(0.1,2.11)C.(0.3,4.08) D.(0.275,4.797 5)7.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下四选项,其中拟合得最好的模型为( )A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.558.如图等高条形图可以说明的问题是( )A.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C.此等高条形图看不出两种手术有什么不同的地方D.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握9.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( )A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关10.观察两个变量(存在线性相关关系)得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +111. 根据如下所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.A .1B .2C .3D .412. 有两个分类变量x 与y ,其一组观测值如2×2列联表所示:其中a ,15-a 均为大于5x 与y 之间有关系,则a 的值是( )A .7B .8C .9D .8或9第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果由一个2×2列联表中的数据计算得k =4.073,那么有__________的把握认为两变量有关系,已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.14.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查对临界值表知P (K 2≥3.841)≈0.05,对此,四名同学作出了以下的判断:p :有95%的把握认为“能起到预防感冒的作用”;q :如果某人未使用该血清,那么他在一年中有95%的可能性得感冒: r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是__________.(1)p ∧非q ;(2) 非p ∧q ;(3)( 非p ∧非q )∧(r ∨s );(4)(p ∨非r )∧(非q ∨s ).15.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加__________万元.16.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为__________cm.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)抽测了10名15岁男生的身高x (单位:cm)和体重y (单位:kg),得到如下数据:(1)(2)你能从散点图中发现身高与体重近似成什么关系吗?(3)如果近似成线性关系,试画出一条直线来近似地表示这种关系.18.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)画出散点图;(2)求物理成绩y对数学成绩x的线性回归方程;(3)一名学生的数学成绩是96分,试预测他的物理成绩.19.(本小题满分12分)某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?20.(本小题满分14分)研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离.为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得的数据如下表:(1)以车速为(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5 m,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?21.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?22.(本小题满分12分)为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别男女是否需要志愿者需要4030不需要160270(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关;(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由?附:20.050 0.010 0.001P K k()k 3.841 6.635 10.828K2=a+b c+d a+c b+d选修1-2第一章《统计案例》单元检测题参考答案选择题答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CCCBBDBDCBBD【第4题解析】-5是斜率的估计值,说明x 每增加一个单位,y 平均减少5个单位.故选B.【第5题解析】由题中散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.故选B.【第6题解析】回归直线一定过点(x ,y ),通过表格中的数据计算出x 和y ,故选D.【第7题解析】相关指数R 2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B. 【第8题解析】由等高条件形图知,D 正确.故选D.【第9题解析】因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.故选C.【第10解析】由于线性回归方程一定经过样本点的中心(x ,y ),所以本题只需求出x ,y ,然后代入所给选项进行检验,即可得到答案.由表中数据可得,x =0,y =0,只有B 项中的方程过(0,0)点,故选B.【第11题解析】由列联表可求K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=9 965(7 775×49-2 099×42)29 874×91×7 817×2 148≈56.632 由56.632>10.828>6.635.且P (K 2≥10.828)=0.001,P (K 2≥6.635)=0.010. ∴①,②均正确.故选B.【第12题解析】查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系,则k ≥2.706,而k =65×[a (30+a )-(20-a )(15-a )]220×45×15×50=65×(65a -300)220×45×15×50=13×(13a -60)260×90. 由k ≥2.706得a≥7. 19或a≤2.04.又a>5且15-a>5,a∈Z,即a=8或9.故选D.填空题答案第13题95% 第14题(1)(4)第15题0.254 第16题 185【第16题解析】根据题意列表如下:身高y(单位:cm)x 123 4y 170173176182∑4i=1x i y i=1 772,x=52,y=214+170,∑4i=1x2i=30,所以b^=∑i=1x i y i-4×xy∑4i=1x2i-4x2=1 772-4×52×⎝⎛⎭⎪⎫214+17030-4×254=3.9,a^=y-b^x=214+170-3.9×52=165.5,所以线性回归方程为y^=b^x+a^=3.9x+165.5,将x=5代入得该老师孙子的身高估计值为3.9×5+165.5=185 cm.故填185.【第17题答案】(1)见解析;(2)身高与体重线性相关;(3)见解析.【第17题解析】(1)散点图如下图所示:(2)从散点图可知,当身高增加时,体重也增加,而且这些点在一条直线附近摆动,因此身高与体重线性相关.(3)作出直线如下图所示.(2)x -=15×(88+76+73+66+63)=73.2. y -=15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. ∴b ^=∑i =15x i y i -5x -·y -∑i =15x 2i -5x -2≈0.625.∴a ^=y --b ^x -=67.8-0.625×73.2=22.05.∴y 对x 的线性回归方程是y ^=0.625x +22.05.(3)当x =96,则y ^=0.625×96+22.05≈82.所以预测他的物理成绩是82分.(2)由表中数据可得K 2=5018×19-6×7225×25×24×26=15013≈11.5>10.828, ∴有99.9%的把握说学习积极性与对待班级工作的态度有关系.【第20题答案】(1)见解析; (2) 函数的表达式为y =0.002x 2+0.01x (0≤x ≤140); (3) 因此发生事故时,汽车属于超速行驶.【第20题解析】(1)散点图如图表示:(2)由图象,设函数的表达式为y =ax 2+bx +c (a ≠0),将(0,0),(10,0.3)( 20,1.0)代入,得 ⎩⎪⎨⎪⎧ c =0,100a +10b +c =0.3,400a +20b +c =1.0,解得a =0.002,b =0.01,c =0.所以,函数的表达式为y =0.002x 2+0.01x (0≤x ≤140).经检验,表中其他各值也符合此表达式.(3)当y =46.5时,即0.002x 2+0.01x =46.5,所以x 2+5x -23 250=0.解得x 1=150,x 2=-155(舍去).故可推测刹车时的速度为150 km/h ,而150>140,因此发生事故时,汽车属于超速行驶.(2)由数据,求得x =12,y =27,由公式,求得b ^=52,a ^=y -b ^ x =-3. 所以y 关于x 的线性回归方程为y ^=52x -3. (3)当x =10时,y ^=52×10-3=22,|22-23|<2; 同样,当x =8时,y ^=52×8-3=17,|17-16|<2. 所以,该研究所得到的线性回归方程是可靠的.【第22题答案】(1)14%;(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关;(3)见解析.【第22题解析】(1)调查的500位老年人中,有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%. (2)K 2=500×40×270-30×1602200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据可以看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异.因此,在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并采用分层抽样方法比采用简单随机抽样方法更好.。

(好题)高中数学选修1-2第一章《统计案例》测试(含答案解析)

(好题)高中数学选修1-2第一章《统计案例》测试(含答案解析)

一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ).A .0.378B .0.3C .0.58D .0.9586.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 7.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.20008.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .139.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1210.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( )A .B .C .D .二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象;④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 17.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++20.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()2n ad bc K a b c d a c b d -=++++,n a b c d =+++ 23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2()P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82825.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:停车时间取车概率停车人员(0,2](2,3](3,4](4,5]甲12x x x乙1613y0(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()Eξ. 26.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动不喜爱运动总计男生a b30女生c d20总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得mP n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.7.C解析:C 【解析】1x y a a =+-图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C. 8.D解析:D 【解析】抛掷红、黄两枚骰子,第一个数字代表红色骰子,第二个数字代表黄色骰子,当红色骰子的点数为4或6时有(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共12种, 两颗骰子的点数之积大于20的种数有(4,6),6,4),(6,5),(6,6)4种, 根据概率公式得,两颗骰子的点数之积大于20的概率41123P ==. 本题选择D 选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.C解析:C 【解析】 因为12386x x x x ++++=,12383y y y y ++++=所以33,48x y ==,所以样本中心点的坐标为33(,)48, 代入回归直线方程得848ˆ331b =⨯+,解得ˆ13b=,故选C. 10.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.11.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.12.D解析:D 【解析】 由题意得,两次的点数均为奇数且和小于的情况有,则,故选D.二、填空题13.;【分析】将事件拆分为乙投进3次甲投进1次和乙投进2次甲投进0次再根据二项分布的概率计算公式和独立事件的概率计算即可求得【详解】根据题意甲和乙投进的次数均满足二项分布且甲投进和乙投进相互独立;根据题解析:16; 【分析】将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得. 【详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立; 根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为3213112123318C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;乙投进2次,甲投进0次的概率为232311212239C ⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故乙恰好比甲多投进2次的概率为111 1896+=. 故答案为:16. 【点睛】本题考查二项分布的概率计算,属综合基础题.14.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.15.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦16.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2.因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+, ∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.17.3个【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x 和y 满足关系y=-2x+3则x 与y 正相关;应该是:x 与y 负相关故错误(2)线性回归直线必过点线性回归直线必过中心点解析:3个 【分析】直接利用线性回归直线的相关理论知识的应用求出结果. 【详解】(1)已知变量x 和y 满足关系y=-2x+3,则x 与y 正相关;应该是:x 与y 负相关.故错误. (2)线性回归直线必过点(),x y ,线性回归直线必过中心点.故正确.(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大. 根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R 2的值越大,说明拟合的效果越好.故正确,根据课本上有原句. 故填3个. 【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.18.【解析】队总得分为分为事件队总得分为分即队三人有一人答错其余两人答对其概率记队得分为事件事件即为队三人人答错其余一人答对则队得分队得一分即事件同时发生则故答案为 解析:1081【解析】“A 队总得分为2分”为事件M , A 队总得分为2分,即A 队三人有一人答错,其余两人答对,其概率()2232241339P M C ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭,记“B 队得1分”为事件N ,事件N 即为B 队三人2人答错,其余一人答对,则()221221221511133233233218P N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,A 队得2分B 队得一分,即事件,M N 同时发生,则()()()451091881P MN P M P N ==⨯=,故答案为1081.19.有【解析】根据表中数据计算观测值对照临界值知有95的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异解析:有 【解析】根据表中数据,计算观测值22100(60102010)1003.8417030802021K ⨯-⨯==>⨯⨯⨯,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修1-2第一章《统计案例》单元测试一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.两个变量y与x的回归模型中,分别选择了4个不同模型,其中拟合效果最好的模型是A.相关指数R2为0.98的模型B.相关指数R2为0.80的模型C.相关指数R2为0.50的模型D.相关指数R2为0.25的模型2.对两个分类变量进行独立性检验的主要作用是A.判断模型的拟合效果B.对两个变量进行相关分析C.给出两个分类变量有关系的可靠程度D.估计预报变量的平均值3.下面是一个2⨯2列联表:y 1y2合计x1a2173x222527合计b46100则表中a,b的值分别为A. 94,96B.52,50C.52,54D.54,524.已知下列说法:①对于线性回归方程yˆ=3-5x,变量x增加1个单位时,yˆ平均增加5个单位;②对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度1越大;③两个随机变量的线性相关性越强,相关系数就越接近1.其中说法错误的个数为A.0 B.1C.2D.35.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下:零件数x (个)2345加工时间y (分钟)26a4954根据上表可得回归方程ˆ9.49.1yx =+,则实数a 的值为A.37.3 B.38C.39D.39.56.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.9934 5.16.12y1.54.047.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是A.22y x =- B.1(2xy =C.2log y x= D.21(1)2y x =-7.如图是研究某项运动与性别是否有关系得到的列联表,若这两个变量没有关系,则t 的可能取值为男性女性合计爱好运动100t100t +不爱好运动120600720合计220600t+820t+A.720 B.500C.300D.2008.在研究运动员受伤与不做热身运动是否有关系时,计算得2K 的观测值7.236k ≈,则下列结论正确的是附:20()P K k ≥0.100.050.0100.0050.0010k 2.7063.8416.6357.87910.828A.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关9.下列说法错误的是A.相关关系是一种非确定性的关系B.线性回归方程ˆˆy bx a =+至少经过其样本数据点1122(,),(,),,(,)n n x y x y x y 中的一个点C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,2R 为0.88的模型比2R 为0.79的模型拟合的效果好10.某种产品的广告费支出x 与销售额y (单位:万元)之间有如下表的关系,y 与x 的线性回归方程为 6.5175ˆ.yx =+,当广告费支出5万元时,随机误差的效应(残差)为x24568y3040605070A.10B.20C.30D.10-11.某次测量发现一组数据(,)i i x y 具有较强的相关性,并计算得ˆ 1.5y x =+,其中数据1(1,)y 因书写不清楚,只记得1y 是[0,3]上的一个值,则该数据对应的残差(残差=真实值-预测值)的绝对值不大于0.5的概率为A.16 B.56C.13D.2312.为考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验列联表:患病未患病总计服用药104555没服用药203050总计3075105由上述数据给出下列结论,其中正确结论的个数是参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.050.0250.0100.0050.0010k 3.8415.0246.6357.87910.828①能在犯错误的概率不超过0.05的前提下认为药物有效②不能在犯错误的概率不超过0.025的前提下认为药物有效③能在犯错误的概率不超过0.010的前提下认为药物有效④不能在犯错误的概率不超过0.005的前提下认为药物有效A.1 B.2C.3D.4二、填空题(本题共4小题,每小题5分,共20分)13.为了解家庭月收入x (单位:千元)与月储蓄y (单位:千元)的关系,从某居民区随机抽取10个家庭,根据测量数据的散点图可以看出x 与y 之间具有线性相关关系,其回归直线方程为ˆ0.30.4yx =-,若该居民区某家庭月收入为9千元,据此估计该家庭的月储蓄为______________千元.14.在某次对外宣传中,主办方选聘了50名记者担任对外翻译工作,在下面的“性别与是否会俄语”的22⨯列联表中,a b d -+=______________.会俄语不会俄语总计男a b 20女6d总计185015.某工厂为了对新研发的一种产品进行合理定价,将该产品事先拟订的价格进行试销,得到如下数据.单价(x 元)456789销量(y 件)908483807568由表中数据求得线性回归方程为4ˆˆyx a =-+,则预测10x =时销量为______________件.16.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如下表:玩手机不玩手机合计学习成绩优秀4812学习成绩不优秀16218合计201030则有______________%的把握认为玩手机对学习有影响.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.828三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)为了解某班学生是否喜爱打篮球与性别有关,对该班45名同学进行问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生5女生5合计45已知在这45人中随机抽取1人,是男同学的概率为59.(1)请将上面的列联表补充完整;(2)试判断:是否有99.9%的把握认为是否喜爱打篮球与性别有关?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.82818.(本小题满分12分)在一项研究中,为尽快攻克某一课题,某生物研究所分别设立了甲、乙两个研究小组同时进行对比试验,现随机在这两个小组各抽取40个数据作为样本,并规定试验数据落在[495,510)之内的数据为理想数据,否则为不理想数据.试验情况如下表所示:抽查数据频数甲小组乙小组[490,495)62[495,500)812[500,505)1418[505,510)86[510,515)42(1)由以上统计数据完成下面的22⨯列联表;甲组乙组合计理想数据不理想数据合计(2)判断是否有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P Kk ≥0.150.100.050.0250.0100k 2.0722.7063.8415.0246.63519.(本小题满分12分)近几年我国新能源汽车的年销量数据及其散点图如下图所示:年份20132014201520162017年份代码x12345新能源汽车的年销量/y 万辆1.5 5.917.732.955.6(1)请根据散点图判断ˆˆˆy bx a =+与2ˆˆˆycx d =+中哪个更适宜作为新能源汽车年销量y 关于年份代码x 的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程,并预测2019年我国新能源汽车的年销量.(结果精确到0.1)参考公式:121()()(niii nii x x y y bx x ==--=-∑∑ ,ˆˆa by x =-;令2i iw x =,121()ˆ(niii nii w w y y c w w ==--=-∑∑,ˆˆdy cw =-.参考数据y521()ii x x =-∑521()ii w w =-∑51()()iii x x y y =--∑51()()iii w w y y =--∑22.7210374135.2851.220.(本小题满分12分)2018年11月,意大利某奢侈品牌在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某论坛从关注此事件的跟帖中,随机抽取了100名网友进行调查,将他们在跟帖中的留言条数分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到如图所示的频率分布直方图;并将留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到不完整的列联表如下表:一般关注强烈关注合计男45女1055合计100(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;(2)补全22⨯列联表,并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.150.050.0250.0100.0050.0010k 2.0723.8415.0246.6357.87910.82821.(本小题满分12分)根据统计,某蔬菜基地西红柿亩产量的增加量y (百千克)与某种液体肥料每亩使用量x (千克)之间的对应数据的散点图,如图所示.(1)依据数据的散点图可以看出,可用线性回归模型拟合y 与x 的关系,请计算相关系数r 并加以说明(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合);(2)求y 关于x 的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?参考公式:12211()()()niii n niii i x x y y r x x y y ===--=--∑∑∑121()()()niii nii x x y y bx x ==--=-∑∑ ,ˆˆa by x =-.0.30.55≈0.90.95≈.22.(本小题满分12分)某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动.活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为x 元.若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这200万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取1000名,每名用户赠送1000元的红包.为了合理确定保费x 的值,该手机厂商进行了问卷调查,统计后得到下表(其中y 表示保费为x 元时愿意购买该“手机碎屏险”的用户比例):x1020304050y0.790.590.380.230.01(1)根据上面的数据求出y 关于x 的回归直线方程;(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为0.2%.已知更换一次该型号手机屏幕的费用为2000元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于70万元,能否把保费x 定为5元?参考公式:121()()()niii nii x x y y bx x ==--=-∑∑ ,ˆˆa by x =-.数学选修1-2第一章《统计案例》测试答案123456789101112A C C C C DB A B AC B13.2.314.2815.6616.99.517.(本小题满分10分)【答案】(1)列联表见解析;(2)有99.9%的把握认为是否喜爱打篮球与性别有关.【解析】(1)根据题意,可得男同学有545259⨯=名,(2分)补充完整的列联表如下:喜爱打篮球不喜爱打篮球合计男生20525女生51520合计252045(2)由题可得2K的观测值245(201555)108913.61310.8282520202580k⨯⨯-⨯==≈>⨯⨯⨯,(8分)所以有99.9%的把握认为是否喜爱打篮球与性别有关.(10分)18.(本小题满分12分)【答案】(1)列联表见解析;(2)有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关.【解析】(1)补充完整的22⨯列联表如下:甲组乙组合计理想数据303666不理想数据10414合计404080(2)由题可得2K 的观测值280(120360)2403.117 2.7066614404077k ⨯-==≈>⨯⨯⨯,(9分)所以有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关.(12分)19.(本小题满分12分)【答案】(1)2ˆˆˆy cx d=+更适宜;(2)22.28.6ˆ23y x =-,109.4万辆.【解析】(1)根据散点图得,2ˆˆˆy cx d=+更适宜作为年销量y 关于年份代码x 的回归方程.(4分)(2)依题意得,1491625115w ++++==,51521()ˆ(851.22.28374i ii i i w w y y c w w ==---==≈∑∑,(7分)则22.72 2.2811 2.3ˆˆ6d y cw =-⨯=-=-,所以22.28.6ˆ23y x =-,(8分)令7x =,则 2.2849 2.36109.36ˆ109.4y=⨯-=≈,(10分)故预测2019年我国新能源汽车的年销量为109.4万辆.(12分)20.(本小题满分12分)【答案】(1)30;(2)列联表见解析,没有95%的把握认为网友对此事件是否为“强烈关注”与性别有关.【解析】(1)依题意,10(0.0100.0180.022)0.5⨯++=,(2分)所以网友留言条数的中位数为30.(4分)(2)根据频率分布直方图,可得网友强烈关注的频率为10(0.0200.005)0.25⨯+=,所以强烈关注的人数为1000.2525⨯=,(6分)据此可得补充完整的22⨯列联表如下:一般关注强烈关注合计男301545女451055合计7525100所以2K 的观测值2100(30104515)100 3.030 3.8417525455533k ⨯⨯-⨯==≈<⨯⨯⨯,(10分)所以没有95%的把握认为网友对此事件是否为“强烈关注”与性别有关.(12分)21.(本小题满分12分)【答案】(1)见解析;(2)0.3.5ˆ2yx =+,西红柿亩产量的增加量约为6.1百千克.【解析】(1)由题可得2456855x ++++==,3444545y ++++==.(2分)所以15()((3)(1)(1)00010316iii x x y y =--=-⨯-+-⨯+⨯+⨯+⨯=∑,====,(4分)所以相关系数50.95(iix x y y r ==≈--=∑,(6分)因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.(7分)(2)由题可得5152163()()0().32010iii ii x x y y bx x ====--=-=∑∑ ,(9分)所以450.325ˆ.a=-⨯=,所以回归方程为0.3.5ˆ2y x =+.(11分)当12x =时,0.312 2.5ˆ 6.1y=⨯+=,所以当液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为6.1百千克.(12分)22.(本小题满分12分)【答案】(1)0.01920.976y x =-+;(2)能把保费x 定为5元.【解析】(1)由题可得1(1020304050)305x =⨯++++=,1(0.790.590.380.230.01)0.45y =⨯++++=,(2分)所以51()(19.2iii x x y y =--=-∑,521()1000ii x x =-=∑,所以121()()19.20.01921000()niii nii x x y y bx x ==---===--∑∑ ,(4分)所以ˆˆ0.40.0192300.976a by x =-=+⨯=,所以y 关于x 的回归直线方程为0.01920.976y x =-+.(6分)(2)能把保费x 定为5元.(8分)理由如下:若保费x 定为5元,则ˆ0.019250.9760.88y=-⨯+=,(9分)估计该手机厂商在这次活动中因销售该“手机碎屏险”产生的利润为20000000.8852000000⨯⨯-⨯60.880.2%2000100010000.7610⨯⨯-⨯=⨯(元)76=(万元),(11分)因为7670>,所以能把保费x 定为5元.(12分)。

相关文档
最新文档