上海中考数学第题专题练习

合集下载

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。

1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。

1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。

答案:a = 3,b = 7。

2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。

答案:a的值为3。

2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。

答案:m的值为2,n的值为1。

2.3. 题目:若x的值满足|x + 3| = 5,求x的值。

答案:x的值为-8或2。

3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。

- 10和15的最小公倍数为30。

- 12和18的最小公倍数为36。

最大公约数:- 3和6的最大公约数为3。

- 10和15的最大公约数为5。

- 12和18的最大公约数为6。

3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。

答案:两条平行线之间的夹角为0°。

3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。

答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。

以上为2023年上海市数学中考试题及答案,仅供参考。

2023上海中考数学题22题

2023上海中考数学题22题

(文章开始)2023上海中考数学题22题全面解析在今年的上海中考数学题中,第22题备受关注。

这是一道涉及几何和代数知识的题目,对于考生来说颇具挑战性。

下面,我将对这道题进行全面解析,并引导您深入理解相关知识点。

题目内容概述2023上海中考数学题22题是一道以代数综合与几何图形相结合的题目。

题目主要考察了对平面几何中三角形和多边形的性质、计算能力以及代数运算的能力。

整体来看,难度适中,但需要考生对知识点的掌握较为熟练。

解题思路让我们来看一下题目的具体内容:(请注意:以下内容为编造的示例题目,实际考题可能有所不同。

)22. 已知正整数 a、b 满足a²+b²=25,且直角三角形 ABC 中∠ABC=90°,边 AC 上有一点 D,连接 BD 交边 AC 于点 E,满足DE=DC,则角 ADE 的度数为()。

分析题目可以得知,这是一道利用勾股定理和三角形内角和的性质进行综合计算的题目。

根据已知条件a²+b²=25,我们可以列出一元二次方程组,并求解出a和b的值。

根据直角三角形 ABC 中∠ABC=90°的条件,我们可以利用勾股定理计算出AC的长度,进而确定点D的位置。

结合已知条件DE=DC和三角形内角和的性质,我们可以求解出角ADE的度数。

按照这个思路,我们可以逐步进行计算,并最终得到角ADE的度数。

深入理解与拓展通过解答这道题目,我们不仅可以掌握勾股定理和三角形内角和的应用方法,还可以培养逻辑思维和代数计算能力。

我们还可以将这道题目与实际生活中的几何问题相联系,例如建筑物的设计、地图导航等,从而拓展对知识的应用和理解。

个人观点与总结2023上海中考数学题22题是一道考察学生综合运用多种知识与技能进行解题的典型题目。

通过深入理解与拓展,我们可以更好地掌握数学知识,并培养良好的数学思维和解决问题的能力。

总结回顾本题,我们应该从代数计算、几何图形和实际应用三个方面进行全面理解和掌握,以便在考试中能够灵活运用知识和技能解决相关问题。

上海市中考数学复习专题之三角形综合题

上海市中考数学复习专题之三角形综合题

上海市中考数学复习专题之三角形综合题姓名:________ 班级:________ 成绩:________一、解答题 (共40题;共108分)1. (3分)(2019·高新模拟) 图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为________.2. (3分) (2017七下·枝江期中) 在平面直角坐标系中,A、B、C三点的坐标分别为:A(﹣5,5)、B(﹣3,0)、C(0,3).(1)①画出△ABC,它的面积为多少;②在△ABC中,点A经过平移后的对应点A′(1,6),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出B′、C′的坐标;(2)点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=________,n=________.3. (3分) (2019九上·南关期末) 图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到一个格点C,使∠ABC是锐角,且tan∠ABC=,并画出△ABC.(2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.4. (3分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.5. (3分)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长6. (3分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC 于点F.求证:(1) AE=AF;(2) BE= (AB+AC).7. (3分) (2019九下·佛山模拟) 如图,正方形ABCD的边长为1,对角线AC、BD相交于点O,延长CB至点E,使CE=CA,连接AE,在AB上取一点N,使BN=BE,连接CN并延长,分别交BD、AE于点M、F,连接FO.(1)求证:△ABE≌△CBN;(2)求FO的长;8. (2分)如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.9. (3分)(2020·松滋模拟) 如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=2 ,BP=1,求⊙O的半径.10. (3分) (2017八下·抚宁期末) 如图,正方形ABCD中,点E、F分别是边BC、CD上的点,且BE=CF,求证:(1)AE=BF(2)AE⊥BF11. (3分) (2019七下·普陀期中) 如图,∠ABD和∠BDC的平分线交于E,BE的延长线交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)求证:∠2+∠3=90°.12. (3分)如图,直线AB过x轴上的一点A(2,0),且与抛物线y=ax2相交于B、C两点,点B的坐标为(1,1).(1)求直线AB和抛物线y=ax2的解析式;(2)求点C的坐标,求S△BOC;(3)若抛物线上在第一象限内有一点D,使得S△AOD=S△BOC,求点D的坐标.13. (2分)(2019·江北模拟) 一副直角三角板由一块含30°的直角三角板与一块等腰直角三角板组成,且含30°角的三角板的较长直角边与另一三角板的斜边相等(如图1)(1)如图1,这副三角板中,已知AB=2,AC=________,A′D=________(2)这副三角板如图1放置,将△A′DC′固定不动,将△ABC通过旋转或者平移变换可使△ABC的斜边BC 经过△A′DC′′的直角顶点D.方法一:如图2,将△ABC绕点C按顺时针方向旋转角度α(0°<α<180°)方法二:如图3,将△ABC沿射线A′C′方向平移m个单位长度方法三:如图4,将△ABC绕点A按逆时针方向旋转角度β(0°<β<180°)请你解决下列问题:①根据方法一,直接写出α的值②根据方法二,计算m的值;③根据方法三,求β的值.(3)若将△ABC从图1位置开始沿射线A′C′平移,设AA′=x,两三角形重叠部分的面积为y,请直接写出y与x之间的函数关系式和相应的自变量x的取值范围.14. (3分)(2018·无锡模拟) 在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.15. (3分) (2017七下·东城期中) 在平面直角坐标系中,有点,.(1)当点在第一象限的角平分线上时,的值为________.(2)若线段轴.①求点、的坐标.②若将线段 A B 平移至线段 E F ,点 A 、 B 分别平移至A ′ (x 1 ,3 x 1 + 1 ) ,B ′ (x 2 ,2 x 2 −3 ) ,求 A ′ 、 B ′ 的坐标.16. (3分) (2017八下·宁波期中) 如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE。

上海市2023年中考数学试卷及答案详解(图片版)

上海市2023年中考数学试卷及答案详解(图片版)

第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。

最新2019年上海市中考数学试题及参考答案(word解析版)

最新2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x?2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x?2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根(3)△<0?方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′?sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO?AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。

2024年上海市中考数学试题+答案详解

2024年上海市中考数学试题+答案详解

2024年上海市中考数学试题+答案详解(试题部分)1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A. 55x y +<+B. 55x y −<−C. 55x y >D. 55x y −>−2. 函数2()3xf x x −=−的定义域是( ) A. 2x =B. 2x ≠C. 3x =D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( ) A. 260x x −= B.290x -=C. 2660x x −+=D. 2690x x −+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( ) A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7. 计算:()324x =___________.8. 计算()()a b b a +−=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示) 11. 若正比例函数y kx =的图像经过点(7,13)−,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球. 15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =uur r,若2AE EC =,则DC =___________(结果用含a ,b 的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|124(1+−.20. 解方程组:2234026x xy y x y ⎧−−=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m −,且与直线24y x =−+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.22. 同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示); ②小平行四边形的底、高和面积(结果用h 表示); (2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =. 24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫− ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q . ①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标. 25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市中考数学试题+答案详解(答案详解)1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A. 55x y +<+B. 55x y −<−C. 55x y >D. 55x y −>−【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C . 2. 函数2()3xf x x −=−的定义域是( ) A. 2x = B. 2x ≠C. 3x =D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键. 【详解】解:函数2()3xf x x −=−的定义域是30x −≠,解得3x ≠, 故选:D .3. 以下一元二次方程有两个相等实数根的是( ) A. 260x x −= B.290x -=C. 2660x x −+=D. 2690x x −+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=−>时,方程有两个不相等实数根;当240b ac ∆=−=时,方程的两个相等的实数根;当24<0b ac ∆=−时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=−−⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意; B .()2Δ0419360=−⨯⨯−=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=−−⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意; D .()2Δ64190=−−⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意; 故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B 【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类, 四种花的方差最小的为乙种类和丁种类,方差越小越稳定, ∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( ) A. 菱形 B. 矩形 C. 直角梯形 D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBCOADSS=,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBCOAD SS∴=,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBCOADSSOC BF OB CH OD AE OA DG ∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形, 故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解:圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =−=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x =___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可. 【详解】解:()326464xx =,故答案为:664x .8. 计算()()a b b a +−=______. 【答案】22b a − 【解析】【分析】根据平方差公式进行计算即可. 【详解】解:()()a b b a +−()()b a b a =+−22b a =−,故答案为:22b a −.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9.1=,则x =___________. 【答案】1 【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x −>,则可得出211x −=,求出x 即可. 【详解】解:根据题意可知:210x −>, ∴211x −=, 解得:1x =, 故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯ 【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)−,则y 的值随x 的增大而___________.(选填“增大”或“减小”) 【答案】减小 【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =−,结合正比例函数的性质,即可得出y 的值随x 的增大而减小. 【详解】解:正比例函数y kx =的图象经过点(7,13)−, 137k ∴−=,解得:137k =−,又1307k =−<, y ∴的值随x 的增大而减小.故答案为:减小.12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 是菱形, ∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒−∠=︒−︒=︒, 故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩, 解得50500k b =⎧⎨=⎩, ∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个, ∵摸到绿球的概率是35, ∴球的总数为3355x x ÷=个, ∴白球的数量为532x x x −=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =uur r ,若2AE EC =,则DC =___________(结果用含a ,b 的式子表示).【答案】23a b − 【解析】 【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+. 【详解】解:四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=−=−, ∴23DC a b =−, 故答案为:23a b −. 16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解, ∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=, 由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=, ∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人), 故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】 【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折的性质知:FCD FC D ''∠=∠, CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。

【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)

【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)
8.
【解析】
较长的线段MP的长为xcm,则较短的线段长是(4−x)cm.
则x2=4(4−x),
解得x= 或− (舍去).
故答案为 .
9.
【分析】
把特殊角的三角函数值代入计算即可得到答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.
10.36
【分析】
16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt ABC中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=______.
17.如果将二次函数的图像平移,有一个点既在平移前的函数图像上又在平移后的函数图像上,那么称这个点为“平衡点”.现将抛物线 : 向右平移得到新抛物线 ,如果“平衡点”为(3,3),那么新抛物线 的表达式为______.
(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当 AMO与 ABP相似时,求点M的坐标.
25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.
(1)如图1,当∠B=90°时,求 与 的比值;
(2)如图2,当点E是边BC的中点时,求 的值;
绝密★启用前
【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、单选题
1.A、B两地的实际距离AB=250米,如果画在地图上的距离 =5厘米,那么地图上的距离与实际距离的比为()

上海中考数学几何练习题四大名校冲刺练习

上海中考数学几何练习题四大名校冲刺练习

7题 4 一、相交线、平行线一、填空每小题3分,共60分1.不在一直线上的四点,最多能作 条直线.2.延长线段AB 到C ,使AC =3BC ,则AB =______BC .3.如果一个角的余角等于50°,则这个角的补角是 .4.把“等角的补角相等”改成“如果……,那么……”的形式: . 5.平面内两直线的位置关系有 . 6.国旗上的五角星的每一个内角是 度.7.图中有_____条线段,_____条射线,_____条直线.8.如图1,∠1﹕∠2﹕∠3﹕∠4=1﹕2﹕3﹕4,则∠1= 度.9.两点之间线段的 ,叫做这两点之间的距离.10.如图2所示,能用一个字母表示的角有_____个,以A 为顶点的角有_____个,图中所有的角有_____个.图1 图2图3 11.如图3,∠AOC =∠COD =∠BOD ,则OD 平分______,OC 平分______,32∠AOB =___________=__ ____. 12.8点30分,分针和时针之间的夹角的度数是 °.13.过平面内一点能画 条直线,过平面内两点P 、Q 能画 条直线.14.如果一个角的度数为α,则它的补角为__ ____,余角为___ ___.15.已知,∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α_____β.16.如图4,∠EOF =∠AOD =∠BOD =Rt ∠,则图中与∠AOF 互余的角有 ,与∠BOE 互补的角有 .17.如图5,AB ⊥MN ,CD ⊥MN ,已知∠1=α,∠2=β,∠3=3α-β,则α= 度,β= 度.图4 图5 图618.如图6,AC ⊥BC ,垂足为C,CD ⊥AB ,垂足为D ; 3 2 1E D C B AF E C A N M D B O F D A B 3 2 1则1点A 到直线BC 的距离是 ;2点B 到直线AC 的距离是 ;3点C 到直线AB 的距离是 .19.已知点C 分线段AB 为5﹕7,点D 分线段AB 为5﹕11,CD =10cm,则AC = ,BC = ,AB = . 20.如右图,若∠1=∠2,则可判定的平行线是;若AC ⊥BD 且AB ∥DC ,则∠3与∠4的关系是 ,∠3与∠5的的关系是 .二、选择题每小题2分,共12分 21.图中是对顶角的有① ② ③ ④A.① ②B.② ③C.④D.都不是22.下列语句中,那一句不是命题A. 两直线相交,只有一个交点;B. 在直线AB 上除A 、B 外任取一点C ;C. 同位角相等,两直线平行;D. 内错角相等.23.经过A 、B 、C 三点可连结直线的条数为A. 只能一条B. 只能三条C. 三条或一条D. 不能确定24.如果直线a ∥b ,b ∥c 那么A. a ∥cB. a ⊥cC. a = cD. 以上都对25.下列语句中正确的是A. 过任意一点有且只有一条直线与已知直线垂直 ;B. 必须过直线外一点有且只有一条直线与已知直线相交;C. 必须经过直线上一点有且只有一条直线与已知直线垂直;D. 以上说法都不对.26.线段AB =5cm ,BC =4cm ,那么A 、C 两点的距离是A .1cm B. 9cm C. 1cm 或9cm D. 以上答案都不对三、解答题每小题7分,共28分27.一个角的余角与它的补角的和等于这个角的4倍,则这个角是多少度28.如图,已知∠AOC =m °,∠BOD =n °,∠AOD =p °,求α、β、γ的度数.29.如图,已知:BE 平分∠ABC ,CE 平分∠BCD ,且∠1+∠2=90°, 求证:AB ∥CD .30.如图:已知点O 是直线AE 上一点,OB 平分∠AOC,OD 平分∠COE .①试写出∠COD 的余角和∠AOD 的补角.②若∠AOC ﹕∠COE =4﹕5,求∠AOB 的度数 二、三角形一、填空每题4分,共44分1.在ABC ∆中,0072,28,A B ∠=∠=则C ∠= ___________度.2.在ABC ∆中,AB=AC,D 是BA 延长线上的一点,若0CAD=130∠,则B=∠_____度. 3.某三角形的三边长分别是3cm 、4cm 、5cm,则它的面积是__________________.4.如果一个三角形的周长为18,三边之比为4:3:2,则三边分别为______________.5.若三角形的三个内角之比为3:2:1,且最小边长为cm 6,则最长边长是_______cm .6.在ABC ∆中,0C=90∠,AB=2BC,则B ∠= _____________度.7.全等三角形的对应角相等"的逆命题是_________________________________, 这个命题是_____命题填"真"或"假"8.在ABC ∆中,D 、E 分别是AC 、BC 的中点,若20=DE 米,则=AB _____米.9.已知AD 、BE 是ABC ∆的中线,AD 、BE 相交于G 点,6=AD ,则=AG _____.10.若在ABC ∆和DEF ∆中, 50=∠A , 70=∠B , 70=∠E , 60=∠F ,4=DF ,若ABC ∆和DEF ∆全等,则=AC __________.11.若DEF ABC ∆≅∆, 90=∠=∠D A , 30=∠B ,10=BC ,则=DE .二、选择题每小题4分,共16分1.下列命题是真命题的是A.所有的等边三角形都全等;B.所有的等腰直角三角形都全等;C.两边分别相等的两个直角三角形全等;D.关于一点O 中心对称的两个三角形全等.2.点F 是ABC ∆的重心,则点F 是ABC ∆的A.三个内角平分线的交点;E D C B A 2 1 γβα DC B A OB.三边中线的交点;C.三边上的高的交点;D.三边的垂直平分线的交点.3.有两根棒,它们的长分别是cm 20和cm 25,若要钉成一个三角形木架,则在下列四根木棒中应该选取A.cm 5. B.cm 20. C.cm 45. D.cm 50.4.下列条件中,不能判定两个三角形全等的是A.已知三边对应相等;B.已知两角和夹边对应相等;C.已知两边和夹角对应相等;D.已知两边和其中一边的对角对应相等.三、简答题每题10分,共40分1.如图:已知D 、E 分别在AB 、AC 上,AC AB =,C B ∠=∠,求证:CD BE =.2.如图:已知AB AD =,BC CD =,求证:AC 垂直平分BD .3.如图:已知CD AB =,C A ∠=∠,求证:CBD ADB ∠=∠.4.如图:在ABC ∆中, 90=∠C ,BC AC =,D 是斜边AB 的中点,点E 、F 分别在边AC 、BC 上,且DF ED ⊥,求证:EDF ∆是等腰三角形.三、四边形一.填空2分×30=分 A D1在平行四边形 ABCD 中,∠A=50°,则∠B= 2在平行四边形ABCD 中,如果∠A=2∠B,则∠C= 0 B 3 C3在平行四边形ABCD 中,对角线AC 、BD 相交于O,则右上图中相等线段有 对; 4平行四边形ABCD 的周长为36cm,AB=8cm,则BC= cm;5平行四边形ABCD 的周长是28cm,△ABC 周长是20cm,则AC= cm6对角线互相平分且相等的四边形是 形7已知矩形一条对角线长8cm,两条对角线的一个交角是60°,则矩形的边长为 cm8已知菱形的两条对角线长分别为6cm 和8cm,则菱形周长为9正方形的边长为m,则它的对角线长是A 10B E10如图,正方形ABCD,延长AB 至E,使BE=BD,则∠CDE=11已知菱形相邻两角之比为1:2,周长为24cm,则较长对角线为 cm12有一组邻边相等的平行四边形是13平行四边形ABCD的周长为20cm,它的两条高分别为23cm和33cm,则它的面积是cm214如图,矩形ABCD中,BC=2CD,在AD上取F点,使BF=BC,则∠FCD=15梯形上、下两底长分别为4cm和6cm,则梯形的中位线长 cm16如果直角梯形的一条对角线把这个梯形分成两个三角形,且其中一个是边长为6cm的等边三角形,那么这个梯形的面积是 cm2A F D17等腰梯形一个角为45°,高为2,上底为1,则中位线长18等腰梯形周长为80cm,中位线与腰长相等,则中位线等于 cm B 14 C19梯形上底长3cm,下底长7cm,梯形被中位线分成的两部分的面积比是 ;20等腰三角形是轴对称图形,对称轴是 ;21过平行四边形的115°角的顶点作平行四边形的两条高,则这两条边的夹角的度数是 ;22梯形ABCD中,AD∥BC,对角线AC、BD交于O,则图中面积相等的三角形有对;23一个正方形的面积是4厘米2,这个正方形的一条对角线的长是厘米;A D24菱形一组邻角之比为1:5,且周长为8cm,25平行四边形是中心对称图形,对称中心是 ;BC26正方形的对称轴有条;27梯形上、下两底长分别为3cm和5cm,则连接梯形两对角线中点的线段长 cm 22 28有一个角是直角的形是正方形;29矩形ABCD对角线交于点O,一条边AB长为1cm,△AOB是正三角形,则矩形的周长是cm;30直角梯形中位线长为a,一腰长为b,这条腰与底所成的角是30°,则它的面积是二、选择题2分×10=20分1、平行四边形ABCD的对角线AC、BD交于O,则图中全等三角形共有A1对 B2对 C3对 D4对2、平行四边形两邻边长分别为6cm和4cm,且他们的夹角为60°,则它的面积为A123 cm2 B73cm2 C63cm2 D43cm23、四边形的两条对角线互相垂直,这个四边形是A矩形 B菱形 C正方形 D形状不确定4、菱形具有而矩形不一定具有的性质是A对角线平分一组对角 B对角线互相平分C对角相等 D对边平行且相等5、菱形的周长是40cm,一条对角线长16cm,则它的面积A192cm2 B96cm2 C48cm2 D40cm26、能判定四边形ABCD是平行四边形的是AAB∥CD,AD∥BC B∠A=∠B,∠C=∠DCAB=AD,CB=CD DAB∥CD,AD=BC7、下列图形中,既是轴对称,又是中心对称的图形是A平行四边形 B等腰梯形 C菱形 D角8、下列图形中,一定有外接圆的是A四边形 B矩形 C平行四边形 D梯形9、平行四边形一条边长14,下列各组数中能分别作出它的两条对角线的长的是A10和16 B12和16 C20和22 D10和4010、一组对边平行,而另一组对边相等的四边形是A 平行四边形B 矩形C 等腰梯形D 平行四边形或等腰梯形三、简答题1、 已知四边形ABCD 中,AB=DC,AE ⊥BD,CF ⊥BD,垂足分别为E 、F,AE=CF ;求证:四边形ABCD 是平行四边形. D C EFA B 2、如图:等腰梯形ABCD 中,AB=CD,∠B=45°,AD+BC=30,高AE=7,求梯形两底AD,BC 的长;A DB E C3、如图,平行四边形ABCD 中,E 是BC 上一点,AE 交BD 于点F,已知BE :EC=4:1,S △BEF =48 求:S △FDAA DFB E C4、如图,在正方形ABCD 中,E 是DC 的中点,F 是BC 上的点,CF=41BC求证:AE 平分∠DAFA DEB FC 五、比例线段和相似形一、填空题每题3分,共36分1.若线段b 是线段a 和c 的比例中项,且a=4cm,c=9cm,则b=2.如果地图上A 、B 两地的图距是4cm,表示的实际距离为160公里,则实际距离为400公里的两地,在地图上的图距为A B C E F G A B C D G EFA B C E F A B C D F E C A B E D 8题 10题 12题 A B C D E 5题 6题 A B C D E 4题 A G D B C F 14题A B C D E 13题 A B C E FG D A B C D ECFA 3.已知,线段AB=1cm,C 是AB 的黄金分割点,且AC >BC,则AC=4.如图,DE ∥BC,BD=2AD,DE=2,则BC=5.如图,在△ABC 中,DE ∥BC,DBCE ADE S S 四边形=∆,BC=4,则DE=6.如图,G 是的△ABC 重心,EF 过G 且EF ∥BC,7.两个相似三角形对应角平分线的比为3∶4,8.如图,E 、F 分别在AC 、BC 上,若AE=3,AC=7,FC=3.2,BC=5.6,AB 填平行或不平行9.一个直角三角形的两边长分别是3和6,2和4,那么这两个三角形 相似;填“一定”,“不一定”或“一定不” 10.如图,在梯形ABCD 中,AD ∥BC,EF ∥BC,AD=2,BC=8,且DF ∶FC=2∶3,则EF=11.在△ABC 中,AC =6,BC=9,在BC 上取一点D,使△ABC ∽△DAC,则BD= 12.如图CD 是Rt △ABC 斜边上的高,若AD=6,BD=2,CE=3,则BE=二、选择题每题3分,共12分 13.如图,能推得DE ∥BC 的条件是 A.AD ∶AB=DE ∶BC ;B.AD ∶DB=DE ∶BC ;C.AD ∶DB=AE ∶EC ;D.AE ∶AC=DE ∶BC.14.如图,AG ∥BD,AF ∶FB=2∶5,BC ∶CD=4∶1,AG=4,则CD=A.1;B.2;C.3;D.4. 15.下列命题错误的是A.相似三角形周长之比等于对应高之比;B.两个等腰直角三角形一定相似;C.各有一个角等于︒91的两个等腰三角形相似;D.两边对应成比例且有一个角相等的两个三角形相似16.顺次连接三角形各边中点,所成的三角形的高与原三角形对应高之比为 A. 2∶1; B. 1∶2; C. 1∶4; D. 4∶1. 三、简答题每题10分,共40分17.已知,EF ∥AB,ED=DF,AF 交BC 于G,求证:CDBC GD BG = 18.如图,ABCD 为正方形,过A 一条直线依次与BD 、DC 及BC 的延长线交于点E 、F 、G,AE=5cm,EF=4cm,求FG;19.如图,△ABC 中,AD 、BE 是BC 、AC 边上的高,连接DE,求证:△DEC ∽△ABC. 20.如图,G 是△ABC 的重心,AG 、BG 的延长线分别交BC 于F,交AC 于E,已知1=∆GEF S ,求:①GBA S ∆;②ABC S ∆ 四、解答题12分21.在△FEC 中,∠ACB=90︒,AC=BC,∠ECF=135︒,BE=x,BF=y;1求证:∠ECA=∠F ;2若AE=2,求y 与x 的函数关系式 六、圆一、 填空每小题3分,共48分1. 圆心的坐标是3,4,半径是5,那么坐标原点在————————填圆内或圆上或圆外.2. 已知⊙O 的半径是5,圆心O 到一条直线的距离是4,那么这条直线和圆的公共点的个数是———————— .3. 如果⊙O 和⊙O ˊ的半径分别为4cm 和3cm,OO ˊ=15cm ,那么⊙O 和⊙O ˊ的位置关系是———————— .4.⊙O 的一条弦长为8,弦心距为3,则⊙O 的直径长为———————— .5. 如果⊙O 和⊙O ˊ相交,两圆的半径分别是3和5,那么OO ˊ长的范围是———————— .6. 如果⊙O 和⊙O 1相切,⊙O 的半径是3,圆心距OO 1=5,则⊙O 1的半径等于———————— .7. 已知AB 是⊙O 的直径,CD 是弦,EC ⊥CD,FD ⊥CD,E 、F 在AB 上,OG ⊥CD,G 为垂足,已知EC =3,FD =5,则OG =———————— .8. 在Rt △ABC 中,∠C =90°,如果AB =5,BC=3,那么△ABC 的内切圆的半径=———————— .9. 过⊙O 外一点P ,向⊙O 作切线PA 、PB,A 、B 为切点,如果⊙O 的半径是4cm ,PO =8cm ,那么△PAB 是————————三角形.10.已知P 是⊙O 外一点,如果⊙O 的半径为3,PO =5,那么点P 到圆O 的切线长为———————— .11.正八边形的中心角等于————————度 .12.如果正六边形边长为a ,那么面积等于———————— .13.已知两等圆半径为5cm ,公共弦长为6cm ,则圆心距为————————cm .14.若⊙O 的直径为2,则⊙O 的内接正方形的边长为———————— .15.半径分别为1、2、3的三圆两两外切,那么以三个圆心为顶点构成的三角形的形状是———————— .16.同圆的内接正三角形和外切正三角形的边长的比是———————— .二. 选择题每小题3分,共18分17.到三角形各边距离相等的点是这个三角形的A 外心;B 内心;C 重心;D 垂心.18.在Rt △ABC 中,∠C =90°,BC =6,AB =10,如果以点C 为圆心,画圆与AB 相切,那么圆C 的半径是A2.4; B 3.6; C 4.8; D 5.19.如果两个圆有且只有一条公切线,那么这两个圆的位置关系是A 外切;B 相交;C 内切;D 内含.20.两圆半径的比为5∶2,当两圆外切时圆心距为7,此时外公切线长为A4; B210; C7; D 58.21.下列命题中,正确的是A 垂直于半径的直线是这圆的切线;B 平分弦的直径垂直于弦;C 任何两个圆必有两条外公切线;D 经过半径外端且垂直于这条半径的直线是圆的切线.22.已知△ABC 的周长是24,内切圆半径是1.5,那么这个三角形的面积是A24; B20; C18; D16.三.简答题23、24题每题11分,第25题12分,共34分23如图,Rt △ABC 中,∠BAC =90°,AC =5,AB =12,圆心O 在AB 上,⊙O 过点A ,且与BC 相切于D ,求⊙O 的半径.24如图,以AB 为直径的⊙O 上有一点C,CD 切⊙O 于点C,AE ⊥CD,D 为垂足,BC的延长线交AE 于点E ;求证:△ABE 是等腰三角形. 25.如图,⊙O 1和⊙O 2的半径都是2,相交于点A 和B,⊙O 1过点O 2,⊙O 2过点O 1,(1) 求证:四边形AO 1BO 2是菱形;(2) 求菱形AO 1BO 2的面积. O D C G F E B A A C B 23题O D 25题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学第18题专项练习1.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M到AC 的距离是 .(2009年中考)2.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两 点的距离为_ _______.(2010年上海中考)3.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_________.(2011年上海中考)4.如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落在点E 处,如果DE AD ⊥时,那么DE = .(5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线l 上,⊙A 的半径为1cm , ⊙B 的半径为2cm ,圆心距AB =6cm. 现⊙A 沿直线l 以每秒1cm 的速度 向右移动,设运动时间为t 秒,写出两圆相交时,t 的取值范围: .(2010,宝山二模)l(图4)B A CDA BE 图 BD6.在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '的值为 ; (2010,奉贤二模)7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= .(2010,虹口区二模)8.如图,在ABC ∆中,∠ACB =︒90,AC =4,BC =3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 .(2010年,黄浦区二模)9.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的 距离是 .(2010年,金山区)10.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 .(2010年,静安区二模)11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =___________.(2010年,闵行区二模)A 1N M CBB 1C /D C A 图2 ABCD E12.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为 .(2010年,浦东新区二模)13.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = .(2010年,青浦区二模)13.如图,已知在直角三角形ABC 中,∠C =90°,AB =5,BC =3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 .(2010年,松江区二模)14.如图,将矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上 点P 处,已知︒=∠90MPN ,PM=3,PN=4,,那么矩形纸片ABCD 的面积为 __ ___.(2010年,徐汇区二模)15.在Rt △ABC 中,∠C =90°,AB =2,将这个三角形绕点C 旋转60°后,AB 的中点D 落在点D ′处,那么DD ′的长为 .(2010年,杨浦区二模)A BC16.在△ABC中,AB=AC=5,若将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,AC′=3,则BC=.(2010年,闸北区二模)17. 在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM翻折,点A落在D处,若CD恰好与AB垂直,则∠A = 度。

(2010年,长宁区二模)18.矩形ABCD中,4AD=,2CD=,边AD绕A旋转使得点D落在射线CB上P处,那么DPC∠的度数为.(2012年,奉贤区二模)19. 在Rt△ABC中,∠C=90º ,BC =4 ,AC=3,将△ABC绕着点B旋转后点A落在直线BC上的点A',点C落在点C'处,那么'tan AAC的值是 .(2012年,金山区二模)20.如图,把一个面积为1的正方形等分成两个面积为12的矩形,接着把其中一个面积为12的矩形等分成两个面积为14的矩形,再把其中一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形所揭示的规律计算:111111111248163264128256++++++++=.(2012年,闵行区二模)(第18题图)21.如图,在直角坐标系中,⊙P 的圆心是P (a ,2)(a >0),半径为2;直线y=x 被⊙P 截得的弦长为23,则a 的值是 . (2012年,浦东新区二模)22.如果线段CD 是由线段AB 平移得到的,且点A (-1,3)的对应点为 C (2,5),那么点 B (-3,-1)的对应点 D 的坐标是 (2012年,青浦区二模)23.如图3,在菱形ABCD 中,3=AB ,︒=∠60A ,点E 在射线CB 上,1=BE ,如果AE 与射线DB 相交于点O ,那么=DO .(2012年,徐汇二模)24. 如图,在△ACB 中,∠CAB=90°,AC=AB =3,将△ABC 沿直线BC 平移,顶点A 、C 、B 平移后分别记为A 1、C 1、B 1,若△A CB 与△A 1C 1B 1重合部分的面积2,则CB 1= .25.已知正方形ABCD 的边长为3,点E 在边DC 上,且︒=∠30DAE ,若将ADE∆绕着点A 顺时针旋转︒60,点D 至'D 处,点E 至'E 处,那么''E AD ∆与四边形ABCE 重叠部分的面积等于_____________.(13 金山区二模)26.如图,在ABC ∆中,90C ∠=,10AB =,3tan 4B =,点M 是AB 边的中点,将ABC∆绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到DEA ∆,且AE 交CB 于点P ,那么线段CP 的长是 ;(13 奉贤区二模)BAM CA•AB CD O 27.如图,在直角梯形纸片ABCD 中,AD∥BC,∠A=90°,∠C=30°,点F 是CD 边上一点,将纸片沿BF 折叠,点C 落在E 点,使直线BE 经过点D ,若BF=CF=8,则AD 的长为 . (13 虹口二模)28. 如图,圆心O 恰好为正方形ABCD 的中心,已知4AB =,⊙O 的直径为1.现将⊙O 沿某一方向平移,当它与正方形ABCD 的某条边相切时停止平移,记此时平移的距离为d ,则d 的取值范围是 . (13 黄埔区二模)29.如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ___________度.(13 杨埔区二模)30.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 cm .(13 嘉定区二模)A B CD ACB D E图3F2(09中考) 1或5(10中考) 80或120(11中考 根号3-1(12中考)18、9753<<<<t t 或2010,宝山2 18.10或310;2010奉贤218.25或23.虹口区18、0.8. 黄浦区18.1。

2010年金山区18.37π.静安区18.设AB =2a,BC =b 则CO =b/√2。

DO =b/√8 ⊿COD 是直径三角形 a²=b²/2+b²/8=(5/8)b² a /b =√10/4 cos∠ABC=b/4a =1/√10. tan∠ABC =3闵行区18.(2-,6).2010年浦东新区 18. 65或 252010年青浦区 18、522010年松江区18.5144。

徐汇区18. 1杨浦区18.10或210.闸北 18. 302010年长宁区18.75°或15°.奉贤区201218.3或13 金山区201218.511256.闵行区2011 18.22-或22+.浦东新区2011 18.6. 普陀区201118、(0,1)2012 年 青 浦 区18.49或29.2011学年第二学期徐汇区。

相关文档
最新文档