微积分(数学分析)练习题及答案doc
微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。
解析:首先,我们需要求函数f(x)的导数。
对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。
因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。
接下来,我们需要求在 x = 2 处的导数。
将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。
答案:函数f(x)在x = 2处的导数为10。
2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。
解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。
首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。
根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。
3. 求曲线y = x^3在点(1, 1)处的切线方程。
解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。
首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。
微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。
在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。
在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。
1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。
答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。
答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。
答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。
答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。
答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。
答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。
答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。
答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。
答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。
通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。
微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。
微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。
微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。
在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。
下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。
一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。
答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。
答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。
答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。
答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。
答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。
答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = e^x。
答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。
3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。
答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。
9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。
A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。
(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。
解析:首先,我们需要找到函数的极值点。
极值点对应于函数的导数为零的点。
对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。
令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。
使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。
所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。
接下来,我们需要找到函数的拐点。
拐点对应于函数的二阶导数为零的点。
对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。
令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。
综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。
第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。
解析:切线方程的斜率 m 等于函数在给定点的导数。
对函数 f(x) = e^x 求导得到 f'(x) = e^x。
根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。
将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。
所以切线的斜率 m = 1。
切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。
由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。
将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。
综上所述,切线方程为 y = x + 1。
第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)
(2)
由(1)解出
由(2)解出
19.解:设
,
.
(1) 关于 的雅可比行列式是
,
当 时,在满足方程组的任何一点 的一个邻域内,由方程组可以唯一确定 是 的可微函数;
(2) 关于 的雅可比行列式是
,
当 时,在满足方程组的任何一点 的一个邻域内,由方程组可以唯一确定 是 的可微函数.
.
其中 为 所围立体的表面的外侧.
49.求 ,其中 是 的表面,取外侧为正侧 .
50.计算积分 ,其中S是椭球面 的
外侧.
1. 试求极限
解
.
2. 试求极限
解 由
.
3. 试求极限
解 由于
,
又 ,
所以
, ,
所以
.
4. 试讨论
解 当点 沿直线 趋于原点时,
.
当点 沿抛物线线 趋于原点时,
.
因为二者不等,所以极限不存在.
24.叙述含参量 的正常积分的连续性定理的内容.
答:设二元函数 在区域
上连续,其中 为 上的连续函数,则函数
(6)
在 上连续.
25.叙述含参量 的无穷限反常积分定义.
答:设二元函数 定义在无界区域 上,若对于 上每一固定的 值,反常积分
(1)
都收敛,则它的值是 在 上取值的函数,当记这个函数为 时,则有
(Ⅱ).原式= .
50.解:由Gauss公式,得 ,由广义球坐标变换 , ,得
15. 解:显然 及 在平面上任一点都连续,由隐函数定理知道,在使得 的点 附近,方程 都能确定隐函数 ;所以,它的一阶与二阶导数如下:
对方程求关于 的导数(其中 是 的函数)并以3除之,得
,
或
(1)
于是
(2)
再对(1)式求导,得: 即
(3)
把(2)式代入(3)式的右边,得
再利用方程就得到
16.解:由于 处处连续,根据隐函数定理18.3,在原点 附近能惟一确定连续可微得隐函数 ,且可求得它得偏导数如下:
41.解:(Ⅰ).画出积分区域
(Ⅱ). .
42.解:
.
43.解:
(Ⅰ). 由 ,得 .
于是 ,故 是抛物线.令 ,得
.故 与 轴相交于 .
(Ⅱ).令 ,则 ,故 .
(Ⅲ).
.
44.解:
.
45.解:
.
.
46.解:因为 ,故 ,
.
于是 .
47.解:S是 分解为两部分:
,
.
故
.
48.解:原式=
.
49.解:(Ⅰ).画出积分区域
答:用积分形式所定义的这两个函数
(1)
与 ,(2)
通称为定义在 上含参量 的(正常)积分,或简称含参量积分.
(1)式的意义如下:设 是定义在矩形区域 上的二元函数。当 取 上某定值时,函数 则是定义在 上以y为自变量的一元函数.倘若这时 在 可积,则其积分值是 在 上取值的函数,记它为 ,就有 .
(2)式的意义如下:一般地,设 为定义在区域 上的二元函数,其中 为定义在 上的连续函数,若对于 上每一固定的 值, 作为 的函数在闭区间 上可积,则其积分值是 在 上取值的函数,记作 时,就有
17.解: (1)令 ,则有
.
由于 均连续,且
,
故在点 附近由上述方程能确定隐函数 和 .
(2)当 时,由定理知
;
同理,当 时,由定理知
.
于是求得
并且有
, .
18.解:首先, 即 满足初始条件.再求出F,G的所有一阶偏导数
容易验算,在点 处的所有六个雅可比行列式中只有
因此,只有 难以肯定能否作为以 为自变量的隐函数.除此之外,在 的近旁任何两个变量都可作为以其余两个变量为自变量的隐函数.
23.叙述含参量 的正常积分定义.
24.叙述含参量 的正常积分的连续性定理的内容.
25.叙述含参量 的无穷限反常积分定义.
26.叙述含参量 的无穷限反常积分的一致收敛性定义.
27.叙述含参量 的无穷限反常积分的一致收敛的柯西收敛准则.
28.叙述含参量反常积分一致收敛的狄利克雷判别法.
29.叙述含参量反常积分一致收敛的阿贝尔判别法.
又由(22)式
在上式中,令 ,则有 .
34.解:由于 对任一实数 成立及反常积分 收敛①,所以原积分在 上收敛.
考察含参量反常积分
, (24)
由于 对一切 成立及反常积分 收敛,根据魏尔斯特拉斯M判别法,含参量积分(24)在 上一致收敛.
综合上述结果由定理19.10即得
于是有
,
.
从而 ,又由原积分, ,所以 ,因此得到
30.叙述含参量反常积分的可积性定理内容.
31.求
32.计算积分 .
33.计算
并由此计算
34.利用公式 ,计算
.
35.利用可微性计算关于参数 的含参量反常积分
.
并由此计算
36.计算 ,其中L为单位圆周 .
37.计算 ,其中L为从(0,0,0)到(1,2,3)的直线段.
38.求积分 ,其中曲线 与 轴围成的面积为 .
则含参量反常积分
在 上一致收敛.
29.叙述含参量反常积分一致收敛的阿贝尔判别法.
答:设
在 上一致收敛;
对每一个 ,函数 为 的单调函数,且对参量 , 在 上一致有界,则含参量反常积分
在 上一致收敛。
30.叙述含参量反常积分的可积性定理内容.
答:设 在 上连续,若 在 上一致收敛,则 在 上可积,且
设 在 上连续.若
20.解:设 , .它们在 处的偏导数和雅可比行列式之值为:
和
, , .
所以曲线在 处的切线方程为:
,
即
法平面方程为
,
即
.
21.解:令 ,则,故ຫໍສະໝຸດ ,因此曲面在点 处的法向量为,
所求切平面方程为
,
即
.
法线方程为
即
22.解:这个问题实质上就是要求函数
(空间点 到原点 的距离函数的平方)
在条件 及 下的最大、最小值问题.应用拉格朗日乘数法,令
统计专业和数学专业数学分练习题
计算题
1. 试求极限
2. 试求极限
3. 试求极限
4. 试讨论
5. 试求极限
6. , 有连续的偏导数,求
7. 求
8. 求抛物面 在点 处的切平面方程与法线方程.
9. 求 在 处的泰勒公式.
10. 求函数 的极值.
11.叙述隐函数的定义.
12.叙述隐函数存在唯一性定理的内容.
答: 设 , ,函数 对于方程 , 若存在集合 与 ,使得对于任何 ,恒有唯一确定的 ,使得 满足方程 ,则称由方程 确定了一个定义在 上,值域含于 的隐函数。一般可记为 且成立恒等式
12.叙述隐函数存在唯一性定理的内容.
答:若 满足下列条件:
(i)函数F在以 为内点的某一区域 上连续;
(ii) (通常称为初始条件);
答:含参量反常积分 在 上一致收敛的充要条件是:对任给正数 ,总存在某一实数 ,使得当 时,对一切 ,都有
.
28.叙述含参量反常积分一致收敛的狄利克雷判别法.
答:设
对一切实数N>c,含参量正常积分 对参量 在 上一致有界,即存在正数M,对一切N>c及一切 ,都有
对每一个 ,函数 关于y是单调递减且当 时,对参量 一致地收敛于0.
18.讨论方程组
在点 近旁能确定怎样的隐函数组,并求其偏导数。
19.设方程组
问在什么条件下,
(1)由方程组可以唯一确定 是 的可微函数?
(2)由方程组可以唯一确定 是 的可微函数?
20.求球面 与锥面 所截出的曲线的点 处的切线与法平面方程。
21.求曲面 在点 处的切平面与法线方程.
22.抛物面 被平面 截成一个椭圆.求这个椭圆到原点的最长与最短距离.
(iii)在D内存在连续的偏导数 ;
(iv) 0,
则在点 的某邻域 内,方程 =0唯一地确定了一个定义在某区间 内的函数(隐函数) ,使得
1º , 时 且 ;
2° 在 内连续.
13.叙述隐函数可微性定理的内容.
答:若 满足下列条件:
(i)函数F在以 为内点的某一区域 上连续;
(ii) (通常称为初始条件);
关于 在任何闭区间 上一致收敛,
关于 在任何区间 上一致收敛;
积分 (18)
中有一个收敛,
则(18)中另一个积分也收敛,且
31. 解: 因为 所以 由于函数 在 上满足定理 的条件,所以交换积分顺序得到
32.解:因为
,
所以该积分是正常积分.
交换积分次序,得
.
在上面的内层积分中作变换 ,有
,
于是
.
解法二:取 为参量,利用积分号下求导数的方法,有
13.叙述隐函数可微性定理的内容.
14.利用隐函数说明反函数的存在性及其导数.
15.讨论笛卡儿叶形线
所确定的隐函数 的一阶与二阶导数.
16.讨论方程
在原点附近所确定的二元隐函数及其偏导数.
17.设函数 ,方程
.
(1)验证在点 附近由上面的方程能确定可微的隐函数 和 ;
(2)试求 和 ,以及它们在点 处的值.
(iii)在D内存在连续的偏导数 ;
(iv) 0,
又设在D内还存在连续的偏导数 ,则由方程 所确定的隐函数在 在其定义域 内有连续导函数,且
14.利用隐函数说明反函数的存在性及其导数.
答:设 在 的某邻域内有连续的导函数 ,且 ;考虑方程