变化率问题1PPT课件
合集下载
5.1.1变化率问题课件-高二上学期数学人教A版选择性必修第二册

4.8
.
计算运动员在 0 t 48 这段时间里的平均速度,发现了什么? 49
用平均速度描述运动员的运动状态有什么问题吗?
运动员在 0 t 48 这段时间里的平均速度为 0. 显然,在这段时间内, 49
运动员并不处于静止状态. 因此,用平均速度不能准确反映运动员在这 一时间段里的运动状态.
1.瞬时速度的概念:
1.999999
x 0
x
k Δx 2
0.01
2.01
0.001
2.001
0.0001
2.0001
0.00001
2.00001
0.000001
2.000001
……
……
当 x 无限趋近于 0 时,即无论 x 从小于 1 的一边,还是从大于 1 的一边
无限趋近于 1 时,割线 P0 P 的斜率 k 都无限趋近于 2.
给出 t 更多的值,利用计算工具计算对应的平均速度 v 的值. 当 t 无限趋近于 0 时,
即无论 t 从小于 1 的一边,还是从大于 1 的一边无限趋近于 1 时,平均速度 v 都无限
趋近于 5 .
由
v
h(1 Δt) h(1) (1 Δt) 1
4.9Δt
5
发现,当
t
无限趋近于
0
时,
4.9Δt
也无限趋近于
0,
所以 v 无限趋近于 5 ,这与前面得到的结论一致.
数学中,我们把
5
叫做“当
t
无限趋近于
0
时,
v
h(1
Δt) Δt
h(1)
的极限”,记为
h(1 Δt) h(1)
lim
5 .
课件1:5.1.1 变化率问题

∴ΔΔyx=-ΔΔxx++242,
∴k= lim Δx→0
ΔΔyx=Δlixm→0
-ΔxΔ+x-242=-44=-1.
又 x=2 时 y=242=1,
∴切线方程为 y-1=-1×(x-2),即 x+y-3=0.
【课堂小结】
1.函数 y=f (x)在 x=x0 处的切线斜率反映了函数在该点处的
瞬时变化率,它揭示了事物在某时刻的变化情况.即:
【学以致用】
1.一物体的运动方程是 s=3+2t,则在[2,2.1]这段时间
内的平均速度是( )
A.0.4
B.2
C.0.3
D.0.2
B [ v =s22.1.1--s22=4.02-.1 4=2.]
2.物体自由落体的运动方程为 s(t)=12gt2,g=9.8 m/s2,若 v
=lim Δt→0
率及瞬时速度的概念.(易混点) 及数学运算的核心素养.
1.平均变化率
【新知初探】
对于函数 y=f (x),从 x1 到 x2 的平均变化率:
(1)自变量的改变量:Δx=__x_2-__x_1_. (2)函数值的改变量:Δy=__f_(_x_2_)-__f_(_x_1)__.
(3)平均变化率ΔΔyx=
【例 2】 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关
系可用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
5.1.1 变化率问题
学习目标
核心素养
《变化率问题》课件

从以上的例子中,我们可以了解到,平均变化率 是指在某个区间内数值的平均变化量. 如果上述问题中的函数关系用 f ( x) 表示,那么问 f x2 f x1 题中的变化率可用式子: 表示。 x2 x1
函数f ( x)从x1到x2的平均变化率
f x2 f x1 平均变化率: x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2 ;
“增量”:x
x2 x1
令“增量” x x2 x1
f f x2 f x1
可以看出: 随着气球体积逐渐变大,它的 平均膨胀率逐渐变小。
思 考 ?
当空气பைடு நூலகம்量从V1增加到V2时,气
球的平均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
探究活动
气球的平均膨胀率是一个特殊的情况,我们把
这一思路延伸到函数上,归纳一下得出函数的平均
变化率:
r (V2 ) r (V1 ) f ( x2 ) f ( x1 ) V2 V1 x2 x1
3.1.1 变化率问题
很多人都吹过气球,回忆一下吹气球的过程。
发现:
随着气球内空气容量的增加,气球的半径增加 的越来越慢。 从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
4 3 3V 3 V (r ) r r (V ) 3 4
f x2 f x1 f x1 x f x1 f x x2 x1 x
f 于是:平均变化率可以表示为: x
变化率问题 课件

解析:(1)∵Δt=3,Δs=s(3)-s(0)=15, ∴该物体在0≤t≤3这段时间里的平均速度 v 1=ΔΔst=5(m/s). (2)∵Δt=3-2=1,Δs=s(3)-s(2)=7, ∴该物体在2≤t≤3这段时间里的平均速度 v 2=ΔΔst=7(m/s). (3)∵Δs=s(t0+Δt)-s(t0)=(2t0+2)·Δt+(Δt)2, ∴该物体在t0≤t≤t0+Δt这段时间里的平均速度 v =ΔΔst =2t0+2+ Δt.
(3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1,则Δy =f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
(4)在平均变化率中,当x1取定值后,Δx取不同的数值时,函数的 平均变化率不一定相同;当Δx取定值后,x1取不同的数值时,函数的 平均变化率也不一定相同.
点评:求平均变化率的步骤: 通常用“两步”法,一作差,二作商,即: ①先求出Δx=x2-x1,再计算Δy=f(x2)-f(x1); ②对所求得的差作商,即得 ΔΔxy=fxx22--xf1x1=fx1+ΔΔxx-fx1.
考点二 求平均速度 例2 已知某物体的运动方程为s=t2+2t(s的单位:m,t的单位: s).求: (1)该物体在0≤t≤3这段时间里的平均速度; (2)该物体在2≤t≤3这段时间里的平均速度; (3)该物体在t0≤t≤t0+Δt这段时间里的平均速度.
π 2
附近的平均变化率.
解析:函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 fxx0+ 0+ΔΔxx- -fxx00=[3x0+Δx2+Δx2]-3x20+2 =6x0·ΔxΔ+x3Δx2=6x0+3Δx. 当x0=2,Δx=0.1时, 函数y=3x2+2在区间[2,2.1]上的平均变化率为 6×2+3×0.1=12.3.
变化率问题PPT优秀课件

并思考下面的问题:
49
h(65) h(0) 10 v h 0
49
t
(1) 运动员在这段时间里是静止的吗? (2) 你认为用平均速度描述运动员的运动状态有什么问题吗?
在高台跳水运动中,平均速度不能准确反映 他在这段时间里运动状态.
平均变化率定义:
上述问题中的变化率可用式子 f(x2 ) f ( x1) 表示 x2 x1
h(t)4.9t26.5t10 v
如果用运动员在某段时间内的平均速度 描述其运 动状态, 那么:
在0 ≤ t ≤0.5这段时间里, vh(0.5)h(0)4.0(5 m)/;s
0.50
在1≤ t ≤2这段时间里, vh(2)h(1)8.2(m)/;s
21
探 究:
计算运动员在 0 t 65 这段时间里的平均速度,
称为函数f(x)从x1到x2的平均变化率
若设Δx=x2-x1, Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2
同样Δf=Δy=f(x2)-f(x1)
则平均变化率为
f f(x2 ) f (x1)
x
x2 x1
理解:
1,式子中△x 、△ f 的值可正、可负,但△x
(单位:dm)之间的函数关系是
V (r) 4 r3
3
在改变?变 量的变化情
如果将半径r表示为体积V的函数, 况?
那么 r (V ) 3 3V 4
我们来分析一下:
r (V ) 3 3V 4
当V从0增加到1时,气球半径增加了r(1 )r(0 )0 .6 2 (d m ) 气球的平均膨胀率为 r(1)r(0)0.62(dm/L)
变化率问题 课件

rV 3
3V
4
.(气2)球当的空平气均容膨积胀率V从1L增加到2L时
(1)当空气容积V从0增加到1 L时, 气球半径显增然加了
r1 r0 0.62cm,
气球的平均膨胀率为
r
1
1
r0
0
0.62>0.16
0.62dm / L.
(2)类似地,当空气容量从1 L增加到2 L时, 气球半径
增加了r2 r1 0.16dm,
问题4:用怎样的数学模型刻画函数 值变化的快慢程度?
比值称为函数在某一区间上的平均变化率
思考1:你能给出函数 f (x) 从x1到x2的平均变
化率的定义吗?
函数 f (x) 从x1到x2的平均变化率为
f(x2 ) f ( x1 ) x2 x1
❖ 习惯上:Δx=x2-x1, Δy=f(x2)-f(x1)
运动员的运动状态有什 h 么问题吗?
h( 65) h(0)
v 49 65 0 49
0(s / m)
O
t 65 98
65 49
t
练一练
一运动质点的位移S与时间t满足S(t)=t2,分别计算S(t)
在下列区间上的平均变化率.(位移单位为m,时间单位为s)
(1)[1, 3];
4
(2)[1, 2];
这4年我国人均GDP“猛增”? 比值反映了在某一时间段内我国人均GDP变化的
快慢程度?
某小区近十年来的房价变化如下图所示
y y元/m2
11000
((1132,,1111000000))
情境2 8000
5500
(121,8000) (101,5500)
2400 (1,2400)
变化率问题 课件

【解题探究】1.函数平均变化率计算式子中,Δx,Δy分别表 示什么? 2.求函数平均变化率的关键是什么? 探究提示: 1.Δx是自变量的改变量,即Δx=x2-x1.Δy是函数值的改变 量,即Δy=f(x2)-f(x1)=f(x1+Δx)-f(x1). 2.关键是求函数值的改变量与自变量的改变量之比, 即 y.
x0
2x
x0
2x
均为函数f(x)在x=a处的导数的表达式.
【类题试解】(2013·杭州高二检测)已知函数y=f(x)在区间
(a,b)内可导,且x0∈(a,b),则 lim f (x0 h) f (x0 h)
h0
h
的值为( )
A.f′(x0) C.-2f′(x0)
B.2f′(x0) D.0
【解析】选B.方法一:由题意,得
2
2.一个小球自由下落,它在下落3秒时的速度是多少?并说明 它的意义(重力加速度为9.8 m/s2).
【解题探究】1.运动物体的平均速度与瞬时速度有什么关系? 2.题2中“下落3秒时的速度”的含义是什么? 探究提示: 1.运动物体在某一时刻的瞬时速度是这一时刻平均速度的极 限. 2.其含义是求此小球在下落3秒时的瞬时速度.
变化率问题 导数的概念
一、函数y=f(x)从x1到x2的平均变化率
1.定义式: y = f (x2 ) f (x1) .
x
x2 x1
2.实质:函数值的改变量与自变量的改变量之比.
3.意义:刻画函数值在区间[x1,x2]上变化的快慢.
思考:(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲 线y=f(x)在区间[x1,x2]上的“陡峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]上越 “陡峭”,否则相反. (2)平均变化率可以是零吗?举例说明. 提示:可以为零,如常数函数f(x)=a(a为常数).
1.1.1变化率问题1.1.2导数的概念课件高二下学期数学人教A版选修22

度, 写成
lim
t 0
h(2
+
t) t
-
h(2)
.
即
lim
t 0
h(2
+
t) t
-
h(2)
=
-13.1.
2. 瞬时变化率
对于函数的平均变化率
y = f (x2 ) - f (x1) ,
x
x2 - x1
由△x=x2-x1 得 x2=△x+x1,
y = f (x + x1) - f (x1) .
x
x
当△x 很小很小时, △x+x1 就接近于 x1.
我们用符号
lim
x0
表示△x
趋近于零,
用平均变化
率的极限 lim y = lim f (x + x1) - f (x1)
x x0
x0
x
表示函数在 x1 处的瞬时变化率.
3. 导数
一般地, 函数 y=f(x) 在 x=x0 处的瞬时变化率是
lim f (x0 + x) - f (x0 ) = lim y ,
x0
x
x0 x
我们称它为函数 y=f(x) 在 x=x0 处的导数, 记作 f(x0)
或 y |x=x0, 即
f
(x0) =
lim
x0
f
(x0 + x)x
f
(x0) .
问题 1 中, 运动员在时间 t=2 时的瞬时速度就是 求函数 h(x) 在 t=2 时的导数.
导数可以描述任何物体的瞬时变化.
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
人教A版·高中数学·选修2-2 第一章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)[1, 1.1];
趋
(4)[1,1.01];
近 于
(5)[1,1.001]
2
越来越小
y
B
9
4
C
A
1 0 123 x
课堂练习
1.质点运动规律为 s=t2+3,则在时间(3,3+△t)中相 应的平均速度为 . 2.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临 近一点B(-1+Δx,-2+Δy),则Δy/Δx=( ) A.3 B.3Δx-(Δx)2 C.3-(Δx)2 D.3-Δx 3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy) 作曲线的割线,求出当Δx=0.1时割线的斜率.
所以:
r(1)-r(0) 1-0
≈_0_._6_2_(dm/L)
r(2)-r(1) 2-1
≈_0_._1_6_(dm/L)
r(2.5)-r(2) 2.5-2
≈_0_._1_4_(dm/L)
r(4)-r(2.5) 4-2.5
≈_0_._1_0_(dm/L)
所以,随着气球体积逐渐变大,它的_平__均__膨__胀__率___逐渐变小了。
回 1.平均变化率的概念及 顾 几何意义; 总 2.函数在某点处附近的 结 平均变化率.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
1.1.1变化率问题
牛两顿人同时创立了微莱布积尼分兹
为了描述现实世界中运动、过程等变化着的现象,在数学中 引入了函数,随着对函数的研究,产生了微积分,微积分的创立 以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程关于时间的函数,求物体 在任意时刻的速度与加速度等;
二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、 最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变 量变化的快慢程度.
问题气1 球膨胀率
0.62dm
第一次
0.16dm
问题1
(1)假设每次匀速吹入等量 1L气体,随着吹入气体的增加, 它的膨胀速度有何变化?
计算运动员在 下面的问题:
0 这t 段 时4695间里的平均速度,并思考
(1) 运动员在这段时间里是静止的吗? (2) 你认为用平均速度描述运动员的运动状态有 什么问题吗?
如果上述两个问题中的函数关系用f(x)表示, 那么问题中的变化率可用式子
f (x2 ) f (x1) x2 x1
想一想 上面的式子和我们以前 学过的什么式子相似?
的平均变化率为:g(1) g(3) 2
(1) (3)
函数 g( x)在区间[0,5]上的平
变化率为:
f (5) f (0) 2
50
均变化率为: g(5) g(0) 2
50
例2 已知函数 f(x)=x2 , 分别计算 f(x) 在
下列区间上的平均变化率.
(1)[1, 3]; (2)[1, 2]; 3
问题气1 球膨Байду номын сангаас率
思考
当气球的空气容量从V1增加到V2时,气球的 平均膨胀率是多少?
问题2高台跳水
在高台跳水运动中, 运动员
相对于水面的高度 h (单位:m)与 起跳后的时间 t (单位:s) 存在函数
关系
h(t) 4.9t 2 6.5t 10
如何用运动员在某些时
间段内的平均速度 v粗略地
描述其运动状态?
问题2高台跳水
请计算 0 t 0.5和1 t 2时的平均速度v : h h(t)=-4.9t2+6.5t+10
在0
t
0.5这段时间里,v
h(0.5)
h(0)
o
4.05(m
/
t
s)
0.5 0
在1 t 2这段时间里,v h(2) h(1) 8.2(m / s) 2 1
问题2高台跳水
例1 已知函数f (x)=2x+1, g(x)= - 2x ,分
别计算在区间[-3-1],[0,5]上 f(x)及g(x)
的平均变化率.
解: 函数 f (x)在区间[-3,-1]上的 函数 g( x) 在区间[-3,-1]上
平均变化率为:f (1) f (3) 2
(1) (3)
函数 f (x)在区间[0,5]上的平均
(2)这一现象中,把气球近 似看成球体,哪些量在改变? 变化的情况如何呢?
(3)球体的体积公式?
第二次
函数
r(V)=
3
3V 4π
(0≤V≤5
)的图象为:
利用函数图象计算:
r(0)=___0______ r(1)≈ _0_._6_2___ r(2)≈ _0_._7_8____ r(2.5)≈0_.8_5_____ r(4)≈ _1________